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In this study we tested predictions of two important
theories of visual coding, contrast energy and sparse
coding theory, on the dependence of population activity
level and metabolic demands on spatial structure of the
visual input. With carefully calibrated displays we find
that in humans neither the V1 blood oxygenation level
dependent (BOLD) response nor the initial visually
evoked fields in magnetoencephalography (MEG) are
sensitive to phase perturbations in photographs of
natural scenes. As a control, we quantitatively show that
the applied phase perturbations decrease sparseness
(kurtosis) of our stimuli but preserve their root mean
square (RMS) contrast. Importantly, we show that the
lack of sensitivity of the V1 population response level to
phase perturbations is not due to a lack of sensitivity of
our methods because V1 responses were highly sensitive
to variations of image RMS contrast. Our results suggest
that the transition from a sparse to a distributed neural
code in the early visual system induced by reducing
image sparseness has negligible consequences for
population metabolic cost. This result imposes a novel
and important empirical constraint on quantitative
models of sparse coding: Population metabolic rate and
population activation level is sensitive to second order

statistics (RMS contrast) of the input but not to its spatial
phase and fourth order statistics (kurtosis).

Introduction

A prevalent theory of spatial coding in the early
visual system supposes that the spatial receptive fields
of neurons in the early mammalian visual cortex
evolved to efficiently represent information about the
natural environment by exploiting redundancies in the
spatial structure of the visual world (e.g., Atick &
Redlich, 1992; Bell & Sejnowski, 1997; Field, 1987,
1994; Olshausen & Field, 1996). By making this
assumption the efficient coding theory puts a strong
weight on the biological adaptive value of the neuronal
code. In V1, coding efficiency is often measured as the
ability of neurons to represent information about the
natural environment with a sparse population code in
which only few neurons are highly active at a time.

The sparse coding hypothesis received strong theo-
retical support. Field (1994) found that natural scene
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photographs elicit a sparse population response when
they are presented to a population of model neurons
with receptive fields comparable to those found in a
monkey V1. However, the sparseness of the code was
greatly reduced and activation spread among larger
proportion of the model neuron population when pink
noise images, matching natural scenes in the shape of
the amplitude spectrum, were presented instead of
natural scenes. Furthermore, computational models
designed to represent natural scenes with a sparse
population response found localized Gabor patch like
basis functions resembling localized V1 simple cell
receptive fields (Bell & Sejnowski, 1997; Olshausen &
Field, 1996). The analysis of the spatial structure of
natural scenes suggested that edges defining the shapes
of objects are the features of the visual environment
that are important for the development of a sparse code
with localized, receptive fields (Bell & Sejnowski, 1997;
Field, 1993, 1994; Thomson, Foster, & Summers,
2000). Edges in natural scenes can be described as
sparsely distributed local luminance variations that are
spatially correlated over multiple spatial scales.

However, it is less clear what the adaptive value of a
sparse code in V1 could be. Two approaches are
currently investigated. One focuses on the efficiency in
information representation and the other on metabolic
efficiency. Sparse codes are considered information
efficient as compared to dense codes. In the latter many
neurons are simultaneously active. Information effi-
ciency increases because neuronal responses are less
correlated in a population employing a sparse code
(Bell & Sejnowski, 1997; Földiak, 2002; Olshausen &
Field, 1997; but see also Bethge, 2006). Supporting the
notion of information efficient coding of natural scenes,
several studies report that V1 neurons exhibit sparse
responses when presented with complex natural scene
stimuli (e.g., Baddeley et al., 1997; Felsen, Touryan,
Han, & Dan, 2005; Vinje & Gallant 2000, 2002; Weliky,
Fiser, Hunt, & Wagner, 2003; Willmore & Tolhurst,
2001). However, most of these studies investigated
single neuron responses which makes it hard to draw
conclusions about the behavior of the population of
neurons in a brain area (Olshausen & Field, 2004). In
addition to increasing information efficiency, a sparse
population code might help to reduce the metabolic
burden of visual processing. Metabolic costs of
neuronal firing are high (Attwell & Laughlin, 2001;
Lennie, 2003) and theoretical considerations suggest
that a sparse code, in which only relatively few neurons
in a population fire simultaneously at high rates while
all others are relatively inactive, might be metabolically
efficient (Baddeley et al., 1997; Graham & Field, 2009;
Hyvärinen, Hurri, & Hoyer, 2009; Laughlin &
Sejnowski, 2003; Lennie, 2003; Levy & Baxter, 1996;
Olshausen and Field, 2004; Rozell, Johnson, Baraniuk,
& Olshausen, 2008; Vinje and Gallant, 2002). However,

no experimental data exists so far investigating the
metabolic efficiency of sparse coding in area V1 at the
neuronal population level.

The extent to which the neuronal code in the early
visual system can sparsely represent a visual input
depends on the input’s specific features. In natural
scenes adjacent locations provide highly correlated
information (Field, 1994; Kersten 1987) except for edges
where color and luminance change rapidly over space.
Several theoretical studies (Bell & Sejnowski, 1997;
Field, 1993, 1994; Thomson et al., 2000) identified such
local structure in natural scenes with local Fourier phase
alignments over spatial scales and argued that these
phase alignments are the basis for the sparseness of the
responses of spatial filters resembling V1 receptive
fields. Importantly, Field (1994) noted that such spatial
filters cannot sparsely represent natural scene photo-
graphs with local phase alignments destroyed by
increasing phase noise (i.e., pink noise images). Hence,
sparsely distributed edges seem to be important features
that allow V1 neurons to represent information from
natural scenes with a sparse code (Bell & Sejnowski,
1997; Field, 1994). Accordingly, the neuronal code
should become more distributed and thus less infor-
mation efficient and energy efficient when edges are
removed.

However, the prediction that energy efficiency
depends on sparseness of the visual input stands in
contrast to another well-accepted classical theory of
visual coding in V1, the contrast energy theory
(Albrecht & Hamilton, 1982; De Valois, Albrecht, &
Thorell, 1982; De Valois & De Valois, 1990; Movshon,
Thompson, & Tolhurst, 1978). Contrast energy theory
supposes that the activation level in the neuronal
population of V1 is essentially determined by local
contrast at different spatial resolutions rather than by
local phase alignments that produce edges. In other
words, contrast energy theory predicts that the
population activation level in V1 does not vary when
edges are removed from the visual input, given that the
global image contrast is retained. This prediction
stands in sharp contrast with the presumption that
metabolic efficiency of sparse neural coding critically
depends on the occurrence of edges. Contrast energy
theory of V1 coding (Albrecht & Hamilton, 1982; De
Valois et al., 1982; De Valois & De Valois, 1990;
Movshon et al., 1978) would be fundamentally flawed if
the energy efficiency assumption of sparse coding
theory put forward by several authors (Baddeley et al.,
1997; Graham & Field, 2009; Hyvärinen et al., 2009;
Laughlin & Sejnowski, 2003; Lennie, 2003; Levy &
Baxter, 1996; Olshausen & Field, 2004; Rozell et al.,
2008; Vinje & Gallant, 2002) proves to be correct for
natural scene stimuli. The few existing experimental
data addressing this contradiction between the two
most successful theories of early visual coding are not
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conclusive (Dakin, Hess, Ledgeway, & Achtman, 2002;
Rainer, Augath, Trinath, & Logothetis, 2001).

In the approach taken in this study we use functional
magnetic resonance imaging (fMRI) and magnetoen-
cephalography (MEG) to quantify the strength of the
population responses in early visual areas to natural
scene stimuli with constant contrast but parametrically
varied amounts of local structure such as edges. Our
results indicate that sparse coding theory and classical
spatial energy coding theories are compatible. Howev-
er, energy savings in V1 due to concentrating contrast
energy in edges appear to be minimal or at least below
our measurement accuracy. Our findings impose a
strong constraint on sparse coding theories in that the
stimulus dependent neural code must change from
sparse to distributed in a population energy conserving
way when the visual input becomes less sparse.

Methods

Stimuli, phase randomization, and image
statistics

Color photos of natural scenes were chosen from a
commercial database (Corel Stock Photo Library, 356
different images) and vignetted with a cumulative
Weibull function (10 pixels wide) to ensure a smooth
transition into the screen background. Fourier phase
randomization was employed to gradually remove
edges in the images. Edges critically depend on local
phase alignments of Fourier components over spatial
scales. Note that phase randomization retains the
images’ root mean square (RMS) contrast. Parseval’s
theorem (Equation 1) states that the rooted mean
square (RMS) image contrast is equal to the sum over
the image’s 2-D power spectrum:

XN�1
x¼0

XM�1
y¼0

pðx; yÞ2 ¼ 1

NM

XN�1
u¼0

XM�1
v¼0

Fðu; vÞ2: ð1Þ

Here, p(x, y) is the value of pixel p at the image location
x, y. The Fourier component F(u, v)2 is the real valued
power (squared amplitude) of the complex valued
spatial frequency component F(u, v). Power is by
definition phase independent. Hence, phase randomi-
zation retains image statistics up to the order of two
including both RMS contrast and the shape of the
amplitude spectrum F(u, v).

The complex Fourier transform of real valued
images is symmetric up to complex conjugation of
phase angles such that F(�u, �v)¼ F(u, v)*, where *
denotes complex conjugation. Phase randomization
must retain this symmetry because only the symmetric
Fourier matrices produce real valued images when the

inverse Fourier transform is applied. To retain this
symmetry we performed phase randomization on one
half of the complex valued Fourier components (e.g.,
the quadrants u, v and –u, v) and used their complex
conjugates to fill in the other two quadrants in the
Fourier matrix (e.g., –u,�v and u,�v, respectively). For
phase randomization a random angle a chosen from an
interval [�h, h] with flat density was added to the phase
angles u(u, v) of the 2-D Fourier matrix. A new random
angle was drawn for each phase angle. The amount of
phase randomization was varied in five steps by
choosing narrower or wider interval limits for h: [�308,
�308], [�608, 608], [�908, 908], [�1358, �1358], and
[�1808, �1808]. Resulting angles exceeding 61808 were
circularly included at the opposing end of the interval
by taking the modulo over the interval 2p:

urandðu; vÞ ¼ mod
�
pþ uðu; vÞ þ a; 2p

�
: ð2Þ

This circular inclusion retains the flat distribution
phase angles and avoids the over-representation of
certain phase angles. The latter can lead to artificial
local concentrations of image contrast in the noise
images (Dakin et al., 2002; Rainer et al., 2001; Tjan,
Lestou, & Kourtzi, 2006).

Inverse Fourier transformation of the phase ran-
domized images can produce pixel values exceeding the
dynamic range available for the real valued photo-
graphs. We clipped out-of-range pixel values occurring
after inverse Fourier transformation to the attainable
range. In order to prevent excessive clipping, which may
alter image contrast, we reduced the contrast of all
natural scene photographs by 10% before Fourier
transformation. This reduced the proportion of clipped
pixels to less than 0.5%. Importantly, the flat average
RMS contrast function in Figure 1B shows that our
approach was successful because clipping due to phase
randomization did not alter image contrast. After the
inverse Fourier transformation the phase randomized
images were vignetted with a cumulative Weibull
function (10 pixels wide) to guarantee a smooth
transition into the background. Examples of the original
and the phase randomized images are shown in Figure
1A. The images’ RMS contrasts within the region
surrounded by the vignette are shown in Figure 1B.

We calculated the excess kurtosis (Thomson et al.,
2000, Equation 3) of the image pixel values, a fourth
order statistic, to assess the effects of phase random-
ization on image sparseness:

k ¼

1

NM� 1

XN�1
x¼0

XM�1
y¼0

�
pðx; yÞ � �p

�4

1

NM� 1

XN�1
x¼0

XM�1
y¼0

�
pðx; yÞ � �p

�2 !2
� 3: ð3Þ
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Excess kurtosis of a Gaussian distribution is zero, and
values above zero indicate a peaked distribution.
Excess kurtosis is a pixel based measure to assess phase
alignment in the natural scenes. Similar to the kurtosis
of the coefficients of the log Gabor transformation of
the images (Field, 1994) excess kurtosis falls off to
values close to zero for fully phase randomized natural
scene pictures (Figure 1B). Note that phase randomi-
zation may change the third order statistics (skew) of
the image as well as kurtosis (Field, 1994; Thomson et
al., 2000). However, a potential role for skew in sparse
coding is less clear. Therefore, we focus on RMS
contrast and kurtosis as statistical descriptors.

Subjects

Four subjects (three male) participated in the first
fMRI experiment in which only the Fourier phase was
manipulated. The same number of subjects (one new
male) participated in the second fMRI experiment
where both phase and contrast of the images were
manipulated. Borders of V1 were determined with
retinotopic mapping. Ten new subjects participated in
the MEG experiment (five male). The data from one
subject were excluded from the analysis due to excessive
artifacts in the MEG recordings. All subjects had
normal or corrected-to-normal visual acuity and gave
written informed consent prior to the experiment. The
experimental protocol was approved by the ethics
committee of the Medical University of Magdeburg.

Stimulus presentation

In the MRI scanner stimuli were back projected
(Sharp SX21) onto a screen 27 cm from the eyes in

the magnet bore and viewed via a mirror. The
screen’s background was set to the average luminance
of the photographs (892 cd/m2). Natural scene
photographs and phase randomized versions thereof
were presented alternately (every 3 s) to the left and
right of a central fixation cross, centered on the
horizontal midline. The medial edges of the images
were 28 from fixation. The photos subtended 26.18
visual angle vertically and 17.48 visual angle hori-
zontally. In the MEG experiment, the stimuli were
back-projected (JVC DLA-G150CL) onto a screen
placed 120 cm from the eyes. Our aim was to keep the
visual stimuli as comparable as possible between the
experiments. Therefore, we matched the retinal size of
the images with the size in the MRI scanner and set
the background luminance to the mean luminance
over all natural scene photographs (377 cd/m2).
However, in the MEG experiment photos were
presented in the lower visual field to increase the size
of the C1 component that is thought to reflect
neuronal activity from striate cortex (Martı́nez, Di
Russo, Anllo-Vento, & Hillyard, 2001; Noesselt et al.,
2002). To ensure fixation and to bind spatial attention
subjects performed a demanding discrimination task
at the fixation cross throughout all experimental runs.
The length of the bars of the fixation cross slightly
changed approximately every second and independent
of the image onsets. The subjects had to detect the
change and to report whether the shape of the cross
was tall or wide. The mean correct performance in
this task was 89.5% throughout the experiments and
did not differ significantly across experimental con-
ditions.

The RGB-to-luminance functions of both display
systems were measured with a PR650 spectroradiom-
eter (SpectraScan). A linearization lookup table was
calculated and used to linearize the intact and

Figure 1. (A) Example of a photograph used in the experiment. The phase noise level increases parametrically from left to right. All

images have identical amplitude spectra and RMS contrast. (B) The mean of the RMS contrast and the phase-only kurtosis over all

images used in the first experiment. The RMS-contrast variations over the phase noise levels are less than 0.6%. Pixel kurtosis

decreases with increasing phase noise. RMS contrast and kurtosis values were calculated from RGB-values (8-bit resolution) used to

represent the images. Only the pixels within the vignette were used to calculate the image statistics.
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transformed images. This is necessary since RMS
contrast in phase-randomized images is only main-
tained when the RGB-to-luminance function of the
display system is linear.

FMRI scanning and data analysis

MRI scanning was performed in a 1.5T GE-Signa
LX neuro-optimized system (General Electrics, Mil-
waukee, WI) with a 5’’ receive-only surface coil
placed over the occipital pole. A BOLD sensitive
gradient recalled echo planar imaging (EPI) sequence
(TR ¼ 2, TE ¼ 40 ms, flip angle ¼ 808) was used to
collect 23 slices (2.81 · 2.81 · 3 mm in-plane
resolution, no gap, matrix 64 · 64 pixels) approxi-
mately perpendicular to the calcarine sulcus. The six
phase randomization levels were presented in a
pseudorandomized sequence of 36 s blocks separated
by 10 s blocks in which only the fixation task
displayed. Twelve blocks were presented per run (two
blocks of every phase randomization level per run).
Every run started and ended with the fixation
condition. Every subject was scanned in seven runs,
each 594 seconds long. Eye movements were moni-
tored online with a custom-made video-based eye-
tracking system (Kanowski, Rieger, Noesselt, Tem-
pelmann, & Hinrichs, 2007). No significant eye
movements were observed. For the anatomical
localization of the functional images, T1 weighted
anatomical images (2-D spin echo sequence) were
scanned with the same slice position and thickness as
the EPI images (in-plane resolution 0.76 · 0.76 mm,
256 · 256 pixels).

We used the standard approach of the statistical
parametric mapping (SPM) software (Wellcome De-
partment of Cognitive Neurology, UK) to estimate
individual BOLD response amplitudes from the EPI
time series. The EPIs were first 3-D motion corrected
and then spatially smoothed applying a 6 mm full width
at half maximum (FWHM) Gaussian kernel. We
estimated the magnitude of the BOLD responses
employing the regression model implemented in SPM.
In short, we produced model BOLD responses for each
of the seven experimental conditions (intact scenes, five
levels of phase randomization, and rest) by convolving
boxcar functions representing the time course of the
condition with the canonical hemodynamic response.
The model functions were regressed onto the EPI voxel
time series using a multiple regression model. The
regression weights are estimates of the BOLD responses
evoked in the different experimental conditions. To
make the estimates of BOLD responses more compa-
rable between subjects we set the individual BOLD
responses elicited by intact scenes to one and expressed
the BOLD responses to the phase randomized versions

of the images in proportions of the BOLD response to
the intact scenes.

The voxel in V1 with the most significant modulation
in the comparison ‘‘intact scene . fixation only’’ was
selected as the region of interest (ROI) for subsequent
analyses. Note that due to the spatial smoothing the
time series of this voxel is a weighted average of 27
neighboring voxels.

Retinotopic mapping was performed in a separate
session to establish the individual borders of V1 and
followed the standard protocol (Engel et al., 1994). A
custom modified version of the mrVista toolbox (http://
white.stanford.edu/software) was used to determine the
borders of V1 and to confirm that the anatomically
selected ROIs were within the functionally defined area
borders.

MEG recordings and data analysis

The MEG was recorded with a BTI Magnes 2500
WH 148 channel whole head magnetometer system at
678.17 Hz sampling rate. Data were low-pass filtered at
40 Hz and trials containing artifacts (peak-to-peak
values exceeding 3 pT within 500 ms) or drifts were
discarded from further analysis. The same blocked
presentation scheme used in the fMRI scans was used
in the MEG experiments except that only three
experimental conditions were presented (intact scenes,
908, and 1808 phase randomization) to increase the
signal-to-noise ratio in each condition. We used the
same attention binding task at the fixation as in the
fMRI study to minimize top down attentional influ-
ence. A photodiode was attached to the presentation
screen to detect the onset of the image. This signal was
recorded and served as the marker for the start of the
trials. On average, 322.2 trials per subject and
condition were analyzed.

We performed two complementary analyses. Sensor
data were analyzed using an ANOVA with the factor
phase noise calculated for each sampling point and
thresholded according to a standard criterion (p ,
0.01) and at least ten consecutive samples in the time
series above threshold (Johnson and Olshausen,
2003). In addition, current source density (CSD)
maps were calculated with the Curry software
package (Neuroscan, Charlotte, NC) on the surface
of the individual brains. We extracted the CSD time
courses from ROIs (radius 5 mm) placed on the
individual activation maximum in the calcarine sulcus
elicited by intact scenes and extracted the activation
time courses between 50 ms to 100 ms after the onset
of the scene. Effects on the stimulus driven activation
in V1 would be expected between 50 ms and 80 ms
(Martı́nez et al., 2001; Noesselt et al., 2002). The CSD
time courses provide a better separation of the
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activity from different sources outside V1 than the
sensor data.

Results

The effect of phase randomization on natural scene
photographs is shown in Figure 1A. Perceptually, edge
sharpness declines as phase noise increases because
edges require phase alignment of spatial image com-
ponents over spatial scales. Consequently, only a
cloudy image is left at the highest phase randomization
level (1808). The effect of phase randomization on the
pixel statistics of the pictures is shown in Figure 1B. As
phase noise increases, excess kurtosis of the pixel values
histogram decreases. Lower kurtosis indicates a de-
crease of pixel value redundancy in the pictures with
increasing phase noise (Bell & Sejnowski, 1997; Field,
1994; van Hateren & van der Schaaf, 1998). Perceptu-
ally this is evident as reduction of uniform areas and a
transition to cloudy pictures (see Figure 1A). Figure 1B
shows that at the highest phase noise level excess
kurtosis is close to zero, indicating that the distribution
of pixel values is now close to Gaussian. In addition to
pixel based excess kurtosis (Thomson et al., 2000) we
calculated the kurtosis of the responses in a Gabor filter
bank (Field, 1994) to quantify the sparseness of the
population response of filters at different phase noise
levels. The filter bank consisted of Gabor filters with 4 -
0.5 cycles/8 visual angle center frequency (three steps),
1.5 octave bandwidth, and eight orientations. The
kurtosis of the filter bank responses to the different
phase randomization levels was slightly higher than
pixel based kurtosis (phase randomization/kurtosis: 0/
12.3, 30/10.6, 60/7.1, 90/3.9, 135/1.7, and 180/1.6) but
followed the same trend as predicted by Field (1994):
increasing phase noise decreases the pixel sparseness
(kurtosis) of the images and the sparseness (kurtosis) of
the population response in the Gabor filter bank.
Importantly, RMS contrast remained constant over
phase noise levels (Figure 1B). The reason is that
second order statistics, the RMS contrast, is deter-
mined by the Fourier amplitude spectrum and thus
unaffected by noise added to the Fourier phases.
Conversely, kurtosis is a fourth order statistic and
therefore sensitive to Fourier phase noise. According to
the sparse coding hypothesis decreasing redundancy in
the input images should transform the population
distribution of activation in early visual areas from a
sparse code with few vigorously activated neurons to a
dense code with more distributed population activation
(Bell & Sejnowski, 1997; Dakin et al., 2002; Field,
1994). Thus, if sparse codes are more energy efficient
than dense codes, then the population activation level
in V1 should increase with increasing phase random-

ization. However, the population activation should
remain at a constant level if it is determined by RMS
contrast and independent of the redundancy of the
pixel values in the natural scene photographs. We
tested these conflicting predictions in the first experi-
ment.

We determined individual regions of interest (ROI)
in each hemisphere by computing the BOLD contrast
intact image versus fixation and selecting the region
around the peak effect in V1 (Figure 2A). Figure 2B
shows the BOLD responses obtained in the V1 ROI at
different phase noise levels. We found no influence of
phase coherence or image pixel sparseness on the
population response level in V1. Accordingly, the
parametric response function is flat (regression slope¼
0.00003/8 with a 95% confidence interval of�0.0005/8
to 0.0006/8) and an analysis of variance (ANOVA)
fails to show a significant effect of phase noise, F(4,
12)¼ 2.4; p . 0.1. This result was independent of the
particular definition of the ROIs. We obtained the
same nonsignificant regression when we included all
voxels in calcarine sulcus that showed a response to
pictures of any phase randomization level, regression
slope¼ 0.00068/8; p . 0.1; 95% confidence interval of
�0.0003/8 to 0.0017/8; F(4, 12) ¼ 0.8, p . 0.1; mean
number of voxels in ROI: 61.6 with an SE of 632.1.
Figure 2C shows the results of a control experiment in
which we reduced the RMS contrast of the pictures in
addition to the phase manipulation. The V1 BOLD
response reliably covaried with the image RMS
contrast, Figure 2C, ANOVA, F(4, 12) ¼ 8.9, p ,

0.005; regression slope ¼ 0.11/RMS with a 95%
confidence interval of 0.04/RMS to 0.19/RMS. These
results indicate that the population activation level in
V1 assessed by the BOLD response is independent of
several spatial features of the stimuli: phase coherence,
presence or absence of edges, and the recognizability
of the image content. Importantly, the V1 BOLD
response level was also independent of the higher
order pixel statistics such as kurtosis, a measure of
redundancy in the pixel statistics of the stimuli. Thus,
although sparseness of the neuronal population code
in V1 varies with redundancy in the stimulus, as
suggested by the sparse coding hypothesis (Bell &
Sejnowski, 1997; Field, 1994) and confirmed by
multiple singe cell studies (Baddeley et al., 1997;
Felsen et al., 2005; Vinje & Gallant, 2000, 2002;
Weliky et al., 2003; Willmore & Tolhurst, 2001), our
data indicate that the population activation level does
not depend on the level of input redundancy (Field,
1994). Importantly, the constant V1 activation levels
for stimuli with equal RMS contrast are predicted by
contrast energy theory. According to this theory the
population activation level is largely independent of
the particular spatial structure of the stimulus but
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changes when RMS contrast, a second order stimulus
statistics, changes.

In a third experiment, we aimed to exclude the
possibility that the observed insensitivity of the V1
population response level to higher order spatial
stimulus characteristics in the slow BOLD response is
mediated by late top-down processes that compensate
bottom-up response differences. MEG provides the
necessary temporal resolution in the order of millisec-
onds. Therefore, we ran the experiment in the MEG
with three phase randomization levels (08, 908, and
1808). Figure 3A shows the time series of significant
differences between MEG activations of at least two
phase randomization levels. The sensors included in
this plot broadly covered early visual and temporal
brain areas but also receive input from higher order
visual areas in the temporal and parietal cortex. The
sensor locations are indicated as small dots in the upper
left inset. No activation differences are evident during
the initial 80 ms after scene onset. The bottom-up
activation sweep in V1 is known to occur between 50–
80 ms at the scalp (Martı́nez et al., 2001; Noesselt et al.,
2002). The lack of an effect during this interval
indicates that phase randomization does not have an
effect on the amplitude of the initial bottom up
population response in early visual areas. The earliest
significant effects of phase randomization observable in
some sensors started after 86 ms and peaked circa 110
ms after stimulus onset (p , 0.01 in at least 10
consecutive samples). The later effects indicate the
beginning of neural processing of meaningful image
contents in extrastriate brain areas. A previous study
showed that they predict the subject’s ability to
discriminate among different (intact) natural scene
photographs in single trials (Rieger, Reichert et al.,
2008). In short, the sensor space analysis suggests that
the initial V1 population activation level is independent
of phase randomization level whereas late phase
randomization dependent MEG activations differences
are generated in extrastriate cortex.

Sensor space analysis is valuable because it provides
an overview of the sequence of effects in different brain
areas. However, a problem with it is that MEG sensors
receive signals from different brain areas which can be
located several centimeters apart. Therefore, we aimed
to increase the anatomical specificity of our time
resolved analysis. We used current source density
(CSD) mapping to model the spatial distribution of
neural population activation on the individual gray
matter sheets of our subjects’ brains in order to recover
the initial V1 activation elicited by image presentations
from the MEG sensor data. CSD mapping provides a
spatially and temporally resolved estimate of the local
density of electric current flow accompanying neuronal
activity in cortex. The inset in Figure 3B shows the
CSD distribution at 70 ms after stimulus onset on the

Figure 2. (A) The location of the ROIs in the left and right

hemispheres of three subjects. The blue dots indicate the location

of the ROI. The red lines depict the borders of V1. Red in the color

map indicates higher and green indicates lower t-values in the

comparison intact scene . fixation only. (B) The normalized BOLD

responses elicited in human V1 by natural scene photographs with

different phase noise levels.The flat response profile indicates that

neither the noise in the phase spectrum nor the phase-only

kurtosis had an influence on the amplitude of the V1 BOLD

response. Normalization was done by dividing individual BOLD

responses by the individual BOLD response obtained with intact

scenes. The different symbols depict the responses for single

subjects. (C) The BOLD response obtained in human V1 when the

contrast was varied in addition to the phase noise. The BOLD

response increases as the contrast increases. The responses were

normalized to the value obtained with intact scenes which had the

maximum contrast.
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medial views of the right brain hemispheres of two
subjects. At this latency, the activation is mostly
restricted to occipital cortex. The three activation time
courses are taken from ROIs that were placed on the
individual activation maximum in calcarine sulcus. The
black and gray curves with error bars show the time
courses of the difference between activations elicited by
natural scene photographs and 908 and 1808 phase
randomized scenes, respectively. The error bars indicate
the two sided p , 0.01 confidence interval for the
difference at each time point. These confidence
intervals contain zero over the whole time interval in
indicating phase randomization has no effect on the
magnitude of the population activation in V1 during
the initial bottom-up response between 50 and 100 ms
after image presentation onset.

In concordance with the fMRI results, the MEG
results indicate that the population activation level in
V1 is insensitive to phase randomization, the occur-
rence of edges, and the redundancy in the stimulus as
assessed by higher-order image statistics. The inde-
pendence of the V1 activation level of stimulus
redundancy assessed by both fMRI and MEG strongly
argues against the assumption that a sparse population
code in V1 would be particularly energy efficient in a
natural environment with high local redundancies. Our
results rather suggest that the population activation
level in V1 is determined by RMS contrast, as predicted
by contrast energy theory.

Discussion

The two best accepted theories of visual coding in
primate V1 state that (a) neurons in the early visual
system code image contrast and that (b) their localized
receptive fields are adapted to efficiently represent
spatially sparse informative features in the natural
environment in a sparse neural code. A necessary
precondition for neural sparse coding is edges in the
luminance profile that manifest as local phase align-
ment over a range of spatial scales. A potential
contradiction between the two theories arises with the
often stated idea that a sparse neural code is
metabolically more efficient than a dense code. We
tested this hypothesis by presenting carefully manipu-
lated photographs of natural scenes with spatial
structures important for neural sparse coding gradually
removed but unaltered RMS contrast. We measured V1
neural activation elicited by such stimuli with two
complementary imaging methods, functional magnetic
resonance imaging (fMRI) and magnetoencephalogra-
phy (MEG). With precisely calibrated displays we find
that neither the V1 BOLD response nor the initial
visually evoked fields in MEG are sensitive to

Figure 3. (A) The MEG sensor by time matrix of the time series

of significant effects of phase randomization (ANOVA with three

levels of phase randomization) provides an overview of the

timing of statistically significant effects of phase randomization.

The earliest effects begin 86 ms post stimulus and reach a

maximum after circa 110 ms. The initial stimulus driven

response in V1 would be expected earlier between 50–80 ms

(see text). Each row shows the results of a time series of

ANOVAs performed in one MEG-sensor. Time points with p ,

0.01 in more than 10 consecutive samples are marked in black.

The time series of individual MEG-sensors are stacked vertically.

The inset shows the average evoked magnetic fields distribution

over the head 80 ms after scene onset. Black dots show that the

sensors included in the matrix cover the early activation. (B)

Curves without error bars show the current source density

(CSD) time courses extracted from a ROI in the calcarine sulcus

at the location showing maximum activation around 80 ms after

stimulus onset. The time courses are very similar for all three

phase randomization levels tested. The difference curves with

error bars (08–908 and 08–1808 phase randomization) are close

to zero. The p , 0.01 confidence interval for a paired t test is

indicated by the errors bars. No significant differences occur in

the critical time interval for initial stimulus driven V1 activation.

The inset shows the CSD distribution on the individual right

hemispheres of two subjects 70 ms after stimulus onset. The

blue dots indicate the location of the ROIs.
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parametric manipulations of image sparseness. As
controls, we quantitatively show that the applied phase
perturbations decrease sparseness (kurtosis) of our
images but preserve their RMS contrast and that the
lack of sensitivity of the V1 population responses level
to phase perturbations is not due to a lack of sensitivity
of our brain imaging methods. BOLD responses in V1
proved to be highly sensitive to variations of image
RMS contrast. Our results indicate that the transition
from a sparse to a dense neural code in the early visual
system induced by reducing image pixel sparseness has
negligible consequences for population activation level
and metabolic cost in V1. This result imposes a novel
and important empirical constraint on quantitative
models of sparse coding: Population metabolic rate and
population activation level in human V1 is sensitive to
second order statistics (RMS contrast) of the input but
not to its spatial phase and fourth order statistics (pixel
kurtosis).

Input sparseness, sparse coding in the early
visual system, and metabolic efficiency

The recent decades of research on the visual system
were strongly influenced by the question of potential
goals of sensory coding driving the development of
localized receptive fields empirically found in primate
V1. Different models were developed to represent
information in input images with a sparse code in
which few neurons are simultaneously active. In one
approach sparse coding is achieved by adapting the
neurons’ receptive fields, the model’s basis functions, to
exploit regularities in the spatial structure of natural
scenes (Bell & Sejnowski, 1997; Field, 1994; Olshausen
& Field, 1996). In another approach the models start
from an overcomplete set of basis functions and
enforce sparseness of the image representation, for
example by means of lateral inhibitory interaction
(Rozell et al., 2008; Schwartz & Simoncelli, 2001). We
will relate our results to both approaches.

Important in the first approach was the idea that the
spatial structure of the receptive fields in the early
visual system is well suited to optimize information
representation in a sparse neural code that exploits
spatial regularities in the natural environment and
reduces energy consumption (Lennie, 2003). Starting
from signal processing considerations several groups
(Atick & Redlich, 1992; Field, 1987) found that
receptive fields of simple and complex cells in primate
V1 are well adapted to the approximate 1/f fall-off in
the amplitude spectrum of natural scenes. However,
later investigations showed that the 1/f amplitude fall-
off in natural scenes cannot explain the development of
localized receptive fields in the visual system (Bell &
Sejnowski, 1997; Field, 1994; Olshausen & Field, 1996).

Field (1987, 1994) showed that nonlocalized receptive
fields would be better suited to represent spatial
information in a world with 1/f amplitude fall-off than
localized receptive fields. This insight highlighted the
importance of local phase alignments over multiple
spatial scales of natural scenes for sparse coding. These
phase alignments perceptually manifest as lines and
edges in natural scenes and are thought to drive the
development of localized Gabor-like receptive fields in
models when a sparse coding constraint is imposed
(Bell & Sejnowski, 1997; Field, 1994; Olshausen &
Field, 1996). Field (1994) argued that these nonrandom
phase alignments in natural scenes produce higher
spatial redundancy in natural scenes as compared to
noise images with amplitude spectra that have the same
shape as the intact images. Therefore, our goal was to
keep amplitude spectra perfectly matched between
phase randomization levels. In our approach, we
randomized Fourier phases in photographs of natural
scenes independently over spatial scales and orienta-
tions. In addition, we used different degrees of
randomization to parametrically transform the highly
redundant spatial statistics of our natural scene
photographs to the low redundancy level of pink noise
images. The success of this manipulation is indicated by
the decrease of pixel kurtosis with increasing degrees of
phase randomization while RMS contrast remains at
the same level. Field (1994) showed theoretically and
multiple single neuron recordings (Baddeley et al.,
1997; Felsen et al., 2005; Vinje & Gallant, 2000, 2002;
Weliky et al., 2003; Willmore & Tolhurst, 2001) showed
experimentally that localized log Gabor-like receptive
fields, similar to those of V1 neurons, translate high
pixel redundancy in natural scenes in high redundancy
in neuronal population activity. To provide further
support for the biological plausibility of this theory,
Olshausen and Field (1996) derived a dictionary of
basis function which closely resembled the receptive
fields of neurons in V1 to approximate natural scene
photographs with a sparse code. To obtain these basis
functions the authors traded off the veridicality of
natural scene representation with the sparseness of the
neural code. In sum these studies suggest that V1
neuronal population activation is expected to be sparse
with many weakly activated and few strongly activated
neurons when intact natural scene photographs are
presented as visual stimuli. With increasing phase
randomization in our images, however, the neuronal
population code in V1 would become less sparse. This
behavior is expected for sparse coding models based on
log Gabor-like basis functions that are optimal to
veridically represent natural scenes with a sparse
population code. The implementations of sparse coding
discussed so far do not impose constraints on the
veridicality of the image representation once the basis
functions are determined. The veridical sparse repre-
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sentation of natural scenes is considered energy efficient
with such basis functions (Baddeley et al., 1997;
Graham & Field, 2009; Hyvärinen et al., 2009; Perna,
Tosetti, Montanaro, & Morrone, 2008; Rozell et al.,
2008; Vinje & Gallant, 2000, 2002; Willmore &
Tolhurst, 2001) but because they are optimized to
represent structure in natural scenes they would
produce a less energy efficient population code when
the goal is to veridically represent images lacking the
required spatial structures. Of course it is not possible
to directly measure neural population sparseness and
veridicality of the image representation with the
noninvasive recording methods we used in our study.
However, based on the discussed theoretical consider-
ations and experimental evidence we consider it safe to
suppose that the manipulation of the pixel sparseness
by increasing phase randomization of our stimuli
transformed the neuronal population code in V1 from
sparse to distributed as predicted by sparse coding
theory. Importantly, this manipulation had no effect on
the overall population activation level measured with
the complementary imaging methods fMRI and MEG.
This result implies that redundancy reduction in V1’s
neural population response does not reduce the
metabolic demand of neural information coding. These
are constraints that sparse coding models should meet
to be biologically plausible. The independence of the
population response level of Fourier phase and the
dependence of the response level on Fourier amplitude
we found support the hypothesis that at the population
level, neural responses in V1 can be described in a good
approximation as a linear shift invariant system (e.g.,
De Valois & De Valois, 1990; Movshon et al., 1978).
This conclusion is in concordance with contrast energy
theory and theoretical work aiming to derive linear
basis functions (receptive fields) for sparse coding of
spatial information directly from natural scenes (Bell &
Sejnowski, 1997; Field, 1987; Hancock, Baddeley, &
Smith, 1992; Olshausen & Field, 1997; van Hateren &
van der Schaaf, 1998).

The second implementation of sparse coding
considered here does not necessarily assume that the
goal of sparse coding is to veridically represent
images independent of spatial structure. For example,
contrast normalization through inhibitory interac-
tions in a pool of neurons receiving input from the
same retinotopic location might help to make neural
responses sparser (Schwartz & Simoncelli, 2001).
Moreover, a recent biologically inspired signal pro-
cessing approach to sparse approximation of images
used a fixed dictionary of basis functions and traded
of the veridicality of the image representation against
the sparseness of the population activation (Rozell et
al., 2008). In principle, such approaches could enforce
a fixed level of sparseness of the image representation
independent of the level of phase randomization in

the input images but at the cost of the veridicality of
the representation. Whether a bound on sparseness
that retains population activity strength for images
with different levels of phase randomization can be
implemented in a biologically plausible way remains
to be shown.

Relationship among neural coding schemes

The literature on sparse coding distinguishes two
different types of sparseness (e.g., Willmore & Tol-
hurst, 2001). A neuron with high lifetime sparseness
would rarely respond to few natural scene images but
vigorously if it responds. Population sparseness de-
scribes the situation that an image elicits vigorous
responses in a few neurons and no response in most
other neurons of the population. Most previous single
cell studies focused on lifetime sparseness and mean
firing rates because population sparseness is difficult or
even impossible to measure in recordings using only
one electrode (Willmore & Tolhurst, 2001). We
designed our stimuli to manipulate population sparse-
ness by carefully varying image pixel sparseness.
Covariation of neural population activation with
varying stimulus contrast and independence of popu-
lation activation levels of image pixel sparseness
indicates that V1 population activation levels represent
stimulus contrast rather than sparseness of the popu-
lation code. This is in concordance with the contrast
energy model of visual coding that states that V1
neurons represent local visual stimulus contrast (De
Valois et al., 1982; Movshon et al., 1978; Wandell,
1995) up to a nonlinearity in the output function which
becomes evident at high contrasts (Albrecht & Ham-
ilton, 1982) and a potential non-phase sensitive
contrast normalization (Heeger, 1992; Tolhurst, 1972).
However, sparse population coding and contrast
energy coding are not necessarily mutually exclusive.
This is already suggested by the fact that the early
theory of sparse coding in V1 cortex was developed on
the basis of linear, spatially localized log Gabor-like
filter banks (Field, 1987, 1994; Olshausen & Field,
1996).

What is a sparse neural code good for?

Graham and Field (2009) discuss three potential
goals of sparse codes: increase of the code’s informa-
tion capacity, increase of the neural population’s
memory capacity, and decrease of the metabolic burden
of visual processing. A potential decrease of the
metabolic burden of visual processing in a sparse code
is one of seemingly plausible goals of sparse codes put
forward by several authors (e.g., Baddeley et al., 1997;
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Graham & Field, 2009; Hyvärinen et al., 2009; Perna et
al., 2008; Rozell et al., 2008; Vinje & Gallant, 2000,
2002; Willmore & Tolhurst, 2001). The high metabolic
cost of spiking (Attwell & Laughlin, 2001; Lennie,
2003) is thought to limit the brain’s information
processing capacity. A sparse code would reduce the
average spike rate and thus reduce metabolic demands
of information coding. However, our data suggest
otherwise. We find no indication that the neural code in
the early visual system is optimized for representing
ecologically valid natural scene stimuli with low
metabolic demands. In concordance with Olman,
Ugurbil, Schrater, and Kersten (2004) and Tjan et al.
(2006) we find that the metabolic demand of the
population code in the early visual system is invariant
to the phase structure of the visual input but highly
dependent on the RMS contrast. In addition, the
importance and the amount of information capacity
improvement by a sparse code has been called into
question (Bethge, 2006; Graham & Field, 2009).

To date no strong, empirically supported argument
seems to exist for the notion that localized receptive
fields in the early visual system developed as an
adaptation to spatial statistics of natural scenes. It is
thus conceivable that internal, instead of external,
factors contribute to the development of receptive fields
in their observed form. One such biological constraint
might be the reduction of average wiring length in
neural tissue (Chklovskii & Koulakov, 2004; Laughlin
& Sejnowski, 2003). Axons have slow and variable
conduction velocities. Thus shorter axons might
increase computation speed and spike timing reliability
in the visual system (VanRullen & Thorpe, 2002). In
addition, 40%–50% of the human brain consists of
white matter (Miller, Alston, & Corsellis, 1980), space
in the skull unavailable for the gray matter that
performs computations. Several attractive arguments
exist that make the reduction of wiring length a
plausible constraint that has a strong influence on the
spatial functional organization of the primate visual
system (Chklovskii & Koulakov, 2004). However,
further theoretical and experimental research is re-
quired to investigate this possibility with respect to the
structure of receptive fields.

Early visual system fMRI effects of modifications
of spatial structure in the visual input

In contrast to the rather large number of studies
employing animal single cell electrophysiology or
theoretical approaches to investigate the idea of sparse
neural coding of spatial structure in natural scenes in
V1, only a few previous fMRI studies were particularly
designed to investigate this issue in the BOLD response.
One of the first studies by Rainer et al. (2001) raised the

possibility that phase alignment might indeed have an
influence on the strength of the population response, in
particular at intermediate phase randomization levels.
However, Dakin et al. (2002) argued on theoretical
grounds that Rainer et al.’s approach to stimulus
generation may have artificially created this result.
Olman et al. (2004) investigated V1 contrast sensitiv-
ities for inputs with different spatial structure, a
stimulus dimension orthogonal to phase coherence.
Similar to Rainer et al. they found similar BOLD
response levels at the endpoints of the phase random-
ization scale (intact and fully phase randomized pink
noise). Unfortunately, these authors did not include
intermediate phase randomization levels where Rainer
et al. had reported their strongest effects. Dumoulin,
Dakin, and Hess (2008) used binary (black and white)
versions of natural scenes to investigate the influence of
spatial structure on BOLD responses. However, the
study used highly artificial stimuli with kurtosis
matched among stimulus conditions, potentially at the
cost of modifying the shape of the amplitude spectrum.
This study cannot inform about the relationship
between image statistics higher than an order of two
(the RMS contrast) and the BOLD response. Tjan et al.
(2006) used a similar approach to phase randomization
as we did, although their study was designed to relate
recognizability of natural scene content to the BOLD
response level in different brain areas. Interestingly,
these authors found in V1 nearly constant BOLD
response levels at different phase randomization levels
although their subjects performed a task on the images.
To our knowledge our study is the first to specifically
test the effects of precisely controlled manipulations of
the spatial statistics of natural scene photographs in
humans combining spatially precise fMRI with tem-
porally precise MEG recordings.

The combination of BOLD with MEG measure-
ments is important because the interpretation of the
results obtained with either method alone is limited.
The MEG is dominated by post-synaptic intracellular
currents in cortical pyramidal cells oriented tangen-
tially to the surface of the skull (Murakami & Okada,
2006). The BOLD signal measured in fMRI is of
complex biochemical rather than bioelectric origin but
its amplitude is correlated with the amplitude of the
local field potentials (Logothetis & Wandell, 2004). The
BOLD response can reflect postsynaptic activity that
may not be visible to noninvasive MEG due to closed
fields that cancel out in the distant MEG sensors
(Nunez & Silberstein, 2000). It is thus reassuring that
we neither find a modulation of the initial MEG nor of
the BOLD response amplitude in V1 when we varied
the phase noise level in our images. The exact
physiological processes linking BOLD response to
neuronal activity are multifactorial (Davis, Kwong,
Weisskoff, & Rosen, 2008; Griffeth & Buxton, 2011)
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and currently not well understood. It is generally
agreed that an increase of neural activity triggers an
increase of supply of fresh blood in the activated brain
area to meet the increased metabolic demands (Sokol-
off, 1977) and that cerebral blood flow is closely
coupled to local energy metabolism but may over-
compensate the actual demand (Goense & Logothetis,
2010; Logothetis & Wandell, 2004). In this sense the
BOLD response can be considered a sensitive index for
local changes in metabolic demand. Thus, the fact that
we neither find a change in neural activity in MEG nor
an index of a change in metabolic demands in the
BOLD response strongly supports our conclusions that
V1’s metabolic demands do not differ between neural
coding of natural scenes or phase randomized versions
of them.

Caveats of phase randomization

Randomization of Fourier phase is a technique that
is increasingly used to parametrically degrade the
visibility of image features defining shapes and outlines
of complex visual stimuli (e.g., Honey, Kirchner, &
VanRullen, 2008; Philiastides & Sajda, 2006; Rainer et
al., 2001; Rieger, Köchy, Schalk, Grüschow, & Heinze,
2008; Sadr & Sinha, 2004; Tjan et al., 2006). It is
considered an elegant way of controlling recognizabil-
ity of image content to study mid- and high-level vision
without introducing amplitude spectrum shape and
offset distortions as it is the case with image scrambling
(e.g., Rieger, Köchy, et al., 2008; Tjan et al., 2006).
Manipulations of the Fourier amplitude spectrum can
be problematic in studies of mid- and high-level vision
because they lead to distortions of overall image
contrast and image sharpness. As a consequence,
effects of low-level contrast manipulations may con-
found effects of mid- and high-level processing of
image content. Phase randomization can perfectly
retain overall RMS contrast as well as shape and offset
of the image’s amplitude spectrum. However, the
method offers a multiple potential pitfalls. For
example, Dakin et al. (2002) pointed out that some
phase randomization schemes might lead to overrep-
resentation of certain phase angles and, as a conse-
quence, to local concentrations of image contrast, e.g.,
in the image corners (Rainer et al., 2001). Observed
neural effects of phase randomization might then be
attributable to changes in image contrast rather than
phase manipulations. Another important aspect is that
phase randomization only retains the original ampli-
tude spectrum if all transformations applied to the final
retinal image are linear. Of course, the fast Fourier
transform and the inverse fast Fourier transform are
linear and phase manipulations in complex Fourier
space leave amplitude manipulations unaltered. How-

ever, an important step that needs to be taken care of
after phase randomization is the nonlinear conversion
of RGB pixel values to pixel luminance of the display
system. This nonlinearity typically takes the form of a
power law with an exponent around two. Careful
calibration of the display ensuring a linear RGB value
to pixel intensity relationship is necessary to prevent
severe distortions of the amplitude spectrum of the
retinal image. Unfortunately only a few studies using
phase randomization report that such calibration
procedures were employed (Rieger, Köchy, et al., 2008;
Tjan et al., 2006; Wichmann, Braun, & Gegenfurtner,
2006). This opens the possibility that several studies
using image phase randomization might be flawed.

Keywords: natural scenes, sparse coding, contrast
energy coding, MEG, fMRI
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