
Theoretical Computer Science 306 (2003) 1–18
www.elsevier.com/locate/tcs

The Go polynomials of a graph
G.E. Farr1

School of Computer Science and Software Engineering, Monash University (Clayton Campus), Clayton,
Victoria 3168, Australia

Received 23 May 2002; received in revised form 14 October 2002; accepted 21 October 2002
Communicated by A.S. Fraenkel

Abstract

This paper introduces graph polynomials based on a concept from the game of Go. Suppose
that, for each vertex of a graph, we either leave it uncoloured or choose a colour uniformly
at random from a set of available colours, with the choices for the vertices being independent
and identically distributed. We ask for the probability that the resulting partial assignment of
colours has the following property: for every colour class, each component of the subgraph it
induces has a vertex that is adjacent to an uncoloured vertex. In Go terms, we are requiring that
every group is uncaptured. This de5nition leads to Go polynomials for a graph. Although these
polynomials are based on properties that are less “local” in nature than those used to de5ne
more traditional graph polynomials such as the chromatic polynomial, we show that they satisfy
recursive relations based on local modi5cations similar in spirit to the deletion–contraction rela-
tion for the chromatic polynomial. We then show that they are #P-hard to compute in general,
using a result on linear forms in logarithms from transcendental number theory. We also brie;y
record some correlation inequalities.
c© 2002 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns graph polynomials based on a concept from the game of Go.
In the game (known as Go or Igo in Japan, Weiqi in China and Baduk in Korea),

two players (Black and White) take turns to place stones of their respective colours
on the vertices of a 19 × 19 square grid graph (with 192 vertices altogether). Fig. 1
shows a portion of this grid, together with a few stones of each colour. Each player

1 Part of the work of this paper was done while the author was visiting the Department of Computer
Science, Royal Holloway, University of London.

E-mail address: gfarr@csse.monash.edu.au (G.E. Farr).

0304-3975/03/$ - see front matter c© 2002 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(02)00831-9

mailto:gfarr@csse.monash.edu.au

2 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

Fig. 1. Five black groups on part of a Go board. All are free except the top right one.

aims to enclose (in a particular sense) as much territory on the board as possible, and
to capture the opponent’s stones by surrounding them. We will not be concerned with
most details of this game, and refer the interested reader to books on the subject such
as [15]. The ideas that are important to us are the notion of a group of stones and
recognising when a group is captured.
A player’s stones on the board induce a subgraph of the square grid graph in the

natural way, and a group is a connected component of this subgraph. Thus, a group
consists of a maximal set of stones (or their corresponding vertices) that are all of
one colour and form a connected subgraph of the grid. A group is captured if every
vertex not in it but adjacent to it is occupied by a stone of a diLerent colour. For
example, see the black group in the top right area of Fig. 1. A captured group is
immediately removed from the board. There are rules about how capture is done and
in what circumstances, but these do not concern us here. SuMce to say that, in any
legal Go position (and apart from the brief periods of time during which captures are
physically carried out and captured stones are removed from the board), every group
has a stone that is adjacent to an unoccupied vertex.
This last concept is our key de5nition. We say that such a group is free or uncap-

tured. The de5nition extends easily to general graphs and more than two players, and
is a perfectly natural graph-theoretic concept.
Suppose each vertex of a graph is given a stone of a randomly chosen colour (from

some 5xed palette), or possibly left vacant, and that this is done independently and
with the same probability distribution for all the vertices of the graph. We can ask
for the probability that the resulting con5guration is free in the sense that it has no
captured groups. We take particular interest in (i) the case of two players, with each
colour equally likely, and the probability of receiving a colour is varied, and (ii) �
players, and hence colours, with all colours (and being vacant or “uncoloured”) equally
likely, in which case we are essentially just counting the number of free con5gurations.
These probabilities can be written as polynomials in the variables of interest, and

are the subject of this paper. It is natural to ask whether these Go polynomials have

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 3

any interesting theory, and whether they behave much like other known families of
graph polynomials.
There is a considerable literature on graph polynomials. Many of the most inter-

esting ones (e.g., chromatic and ;ow polynomials, percolation probability, reliability
polynomials, Ising and Potts model partition functions, Jones polynomial) arise as par-
tial evaluations of the Tutte polynomial (or Whitney rank generating function); see
[8,30,31]. Analogues of the Tutte polynomial or its specialisations have been intro-
duced in many contexts (see, e.g., [11,12,17,23–28,32,33]). Some of these polynomials
have links with knot polynomials [16,23]. Other graph polynomials of interest include
polynomials for counting cliques or stable sets (see [14] for the earliest paper I have
found on this kind of polynomial, or [10, Section 1] for other references), matchings
[19, Section 8.5], and dominating sets [1].
One common theme in the study of these diverse polynomials is the development

of simple relations (usually linear in some sense) that express the polynomial in ques-
tion, for some given graph G, in terms of a small number (typically two or three)
polynomials for graphs derived from G by simple local modi5cations. The classic ex-
ample is the deletion-contraction rule for the chromatic polynomial: writing P(G; k)
for the number of k-colourings of G, we have

P(G; k) = P(G − e; k)− P(G=e; k);
where G− e is obtained by deleting e from G, and G=e is obtained by identifying the
endpoints of e and deleting e. Rules of this sort allow the polynomial to be computed,
albeit in exponential time. Although not very eMcient, it should be borne in mind that
most of these polynomials are #P-hard to compute exactly [16,29], and so probably
do not have polynomial time algorithms. Such rules are also very important in the
study of the polynomial’s properties, and in fact can sometimes be used to characterise
classes of polynomials (see, e.g., [31]).
Rules of this kind are often very elementary. They generally depend on the property

in question (e.g., validity of a putative k-colouring) being testable by a conjunction of
independent local tests on the graph (e.g., for colouring, testing whether each edge has
diLerent colours on its endpoints).
The situation is not so straightforward for Go polynomials. Whether or not a con5g-

uration of stones is free depends on knowing about groups of stones, and such groups
may be quite large. The property does not seem so “local” in character, and it does
not seem obvious whether a rule of the kind discussed above, using a constant number
of locally modi5ed graphs, exists.
Our 5rst aim in this paper is to show (in Section 3) that such rules can, in fact, be

derived for Go polynomials. We 5nd it necessary to move beyond the class of graphs
by adding a few kinds of labels to vertices and edges. Also, we need more than one
rule if we want to calculate the Go polynomial recursively in terms of trivial base cases.
We divide the calculation of the Go polynomial into several stages. Each stage has its
own rule, and repeated application of that rule allows the elimination of a certain kind
of edge or vertex from the graph, often at the cost of introducing vertices or edges of a
new kind. When application of the rule for that stage is 5nished, a new rule is applied
in the next stage, and this is used to eliminate some of the new kinds of vertices or

4 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

edges introduced in earlier stages. We eventually 5nd ourselves asking for chromatic
polynomials of graphs, so the rule for that stage is just the usual deletion-contraction
one, and of course that stage then ends with trivial base cases (null graphs). Taken
successively, these stages show how to calculate Go polynomials by simple recursive
rules, based on purely local modi5cations of graphs, with trivial base cases. Of course,
this procedure for calculating the Go polynomial takes exponential time, though in
general it is faster than the naOPve method based on exhaustively checking all partial
�-assignments.
In Section 4 we consider further the complexity of computing the Go polynomial, and

show that it is #P-hard if �¿2. The proof uses a result on linear forms in logarithms
from transcendental number theory.
There is considerable literature on mathematical and computational aspects of Go,

though this present work is not directly related to it. That literature can be divided into
about three main streams. Firstly, Go is studied using the theory of games developed
by Berlekamp, Conway and others (see, e.g., [4–6]). Secondly, it has been studied as a
problem in computational complexity: determining which player can win from a given
position was shown to be PSPACE-hard by Lichtenstein and Sipser [18], and for a
recent re5nement see [9]. Thirdly, it is studied in the 5eld of arti5cial intelligence, and
programs are written to play it: see [7,21,22].
Although inspired by Go, we do not suggest that the work of this paper is applicable

to playing the game, but hope to show that it is of some interest in its own right.

2. Partial �-assignments and Go polynomials

This section gives formal de5nitions of our main concepts, and brie;y records some
natural correlation inequalities for the Go polynomials.
Let G=(V; E) be a graph, and �∈N∪{0}. A partial assignment is a function
f :W →�, where W ⊆V and � is a 5nite set (we often use {1; : : : ; �}). If |�|= �,
we may call f a partial �-assignment. If W =V then f is simply an assignment or
a �-assignment. We refer to the members of � as colours, and for each i∈� the set
of vertices receiving colour i is denoted by Ci or Ci(f) and called a colour class.
Note that the colour classes here do not have to be independent sets. (An independent
or stable set of vertices is one in which no two vertices are adjacent.) The set of
uncoloured vertices is denoted by U =U (f). An edge of G is good (respectively,
bad) under f if both its endpoints are coloured and these colours are diLerent (the
same).
A colour class C under a particular �-assignment is said to be free in G if, for each

component H of the subgraph 〈C〉 induced by C, some vertex of H is adjacent to
an uncoloured vertex. Clearly, C is free if and only if for each v∈C there is a path
P(v) in G, beginning at v, ending at some uncoloured vertex w, and with all vertices
of P(v)− w belonging to C. We say that a partial �-assignment is free in G if all its
colour classes are free in G.
Referring back to the game, any con5guration of stones on the graph constitutes a

partial 2-assignment, with each player’s stones giving a colour class in the obvious

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 5

way. A group is (in our language) a component of a colour class. Note that it is quite
possible for a group to be free in this sense, even though it might be “doomed” in the
sense that the opponent can certainly capture the group on a subsequent move. In this
latter case, a Go player might well deem the group to be dead, even though we (with
a far simpler purpose) do not. We are only concerned with the prima facie legality
of a position, ignoring prior history (including whether or not our position could arise
in an actual game that begins with an empty board) and any questions of viability of
uncaptured groups.
Fig. 1 illustrates these remarks. It contains 5ve black groups (note that the bottom

left region contains two black groups of three stones each). All are free except the one
at top right. The top right group is captured by White and is immediately removed from
the board. The bottom right group is doomed, but not yet captured so it is still free
for our purposes. The partial 2-assignment represented by this con5guration of stones
is not free, because it has a group that is not free. However, after the captured group
is removed, the partial 2-assignment corresponding to the remaining stones is free.
We consider hypothetical Go positions generated not from actual play but by ran-

dom partial assignments of colours to vertices, and de5ne polynomials that give the
probability that such a random partial assignment is free.
We use the following model of random partial assignment. Let (r; p1; : : : ; p�) be a

probability distribution. For each v∈V (G), assign it colour i with probability pi (and
no colour with probability r=1 −∑�

i=1 pi), with the choices for the vertices being
independent and identically distributed. The colour classes Ci and the uncoloured set
U are now set-valued random variables. Let f be the partial �-assignment generated
randomly in this way. In this paper we will be interested in

Pr(f is free in G):

If �=2 and p1 =p2 =p6 1
2 , then this probability is a polynomial in p. We refer to it

as the Go polynomial of G, and denote it by Go(G;p). We will also take an interest
in the number of free partial �-assignments in G (for general �). This is a polynomial
in �, and will be written Go#(G; �). It is just (�+ 1)n Pr(f is free in G) for the case
r=p1 = · · · =p�=1=(�+ 1), where n= |V (G)|.

Here are some elementary examples.

Go(Kn;p) = 1− (2p)n;

Go(Kn;p) = (1− 2p)n;

Go(K1;k ;p) = 1− 2p+ 2p((1− p)k − pk);
Go(C4;p) = r4 + 8r3p+ 24r2p2 + 4r(1− 2p3); (where r = 1− 2p);

Go#(Kn; �) = (�+ 1)n − �n;
Go#(Kn; �) = 1;

Go#(K1;k ; �) = �k + �(2k − 1);

Go#(C4; �) = 1 + 4�+ 6�2 + 4(�3 − �(�− 1)− �(�− 1)(�− 2));

= 1 + 14�2:

6 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

We also note the obvious fact that if G and H are disjoint graphs then

Go(G ∪ H ;p) = Go(G;p)Go(H ;p);

Go#(G ∪ H ; �) = Go#(G; �)Go#(H ; �):

The Go polynomials give the probability that all colour classes, in a random partial
assignment, are free. It is natural to consider the probability that certain designated
colour classes are free (with other colour classes allowed to be free or not), and ask
how these probabilities compare.
Write Go1(G;p) for the probability that colour class C1 is free, under the model

used for Go(G;p). If L⊆�, write Go#L(G; �) for the number of partial �-assignments
in which colour classes Ci; i∈L, are free.
The following are straightforward corollaries of a lemma of McDiarmid [20], and

are reminiscent of the main inequality of [10].

Theorem 1.
(a) Go(G;p)6Go1(G;p)2.
(b) If L1; L2⊆� and L1 ∩L2 = ∅, then Go#L1 ∪ L2 (G; �)6�

−nGo#L1 (G; �)Go
#
L1 (G; �).

(c) Go#(G; �)6�−n(n−1)(Go#1(G; �))
n−1.

3. Relations based on local changes

We now 5nd some relations involving Go polynomials that are somewhat analogous
to deletion–contraction expressions for Tutte polynomials (see, e.g., [30]).

3.1. Intermediate graphs

All our relations require us to move beyond the class of ordinary graphs, though in
recursively applying them to compute Go polynomials we eventually end up dealing
just with ordinary graphs again, as we shall see.
An intermediate graph is a graph with exactly one label from {J; L; A; a} on each

edge, and zero, one or two labels from {C; S} on each vertex. We brie;y discuss the
interpretation of the labels to assist reading the subsequent de5nitions.
Observe that, when determining whether a group in an ordinary graph is free, the

edges serve two distinct purposes: joining vertices of the same colour together in order
to help form a group, and being a lifeline by making a coloured vertex adjacent to an
uncoloured one in order to preserve the former’s group. This provides the motivation
for our 5rst two edge labels, J and L, as they allow us to separate the two roles of a
normal (unlabelled) edge.
If an edge is labelled A, then we forbid its endpoints from receiving the same colour,

but allow them to receive two diLerent colours. In addition, one or both endpoints may
remain uncoloured. Label a is similar, except that at most one of the edge’s endpoints
can be uncoloured. Vertex label C means that a vertex so labelled cannot be left
uncoloured, and a vertex labelled S guarantees the freedom of any group of which it

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 7

Table 1

Label Short for Explanation

Edge labels
J Joining Joins identically coloured vertices into groups
L Lifeline Allows a coloured vertex (and hence its group) to

be free, by being linked to an uncoloured vertex
A Antichromatic (5rst type) Endpoints cannot get same colour
a Antichromatic (second type) Ditto, and cannot both be uncoloured

Vertex labels
C Coloured Must receive a colour
S Safe Can survive without a lifeline

is a part, regardless of whether the group has a lifeline to an uncoloured vertex. The
need for the various labels will become apparent in subsequent subsections. Table 1
may help keep track of them.
In practice, we only deal with three or four types of intermediate graph, each of

which only uses a particular subset of these allowed labels. However, it is convenient
to state all the de5nitions for intermediate graphs in general, rather than for the several
speci5c types we actually use, to avoid repetition.
Let G be an intermediate graph. If Z∈{J; L; A; a} then we write EZ=EZ(G) for the

set of edges of G with label Z. These edge sets partition E(G). Similarly, if Z∈{C; S},
then VZ=VZ(G) denotes the set of vertices with label Z, although these sets can now
be arbitrary subsets of V (G) (in particular, they do not have to partition V (G)).
The de5nitions of partial assignments, colour classes and so on extend immediately

to intermediate graphs.
A colour class C of a partial �-assignment of an intermediate graph G is free in G

if
(a) for each component H of the subraph 〈C〉 of (V; EJ) induced by C, either some

vertex of H is adjacent via an edge of EL to an uncoloured vertex, or some vertex
of H is labelled S;

(b) it is an independent set in the subgraph (V (G); EA ∪Ea).
Thus, C is free in G if and only if (a) for all v∈C there exists a path P(v) in G

from v to some vertex w such that all vertices of P(v)−w belong to C, all edges but
the last are joining, and either w is uncoloured and the last edge of P(v) is a lifeline,
or w is labelled S and the last edge of P(v) is also joining (which includes the case
w= v when P(v) is trivial); and (b) the endpoints of an antichromatic edge do not
both belong to C.
A partial assignment is free in G if (a) all its colour classes are, (b) no edge

labelled a has both endpoints uncoloured, and (c) every vertex labelled C is coloured:
VC⊆ domf.
If f is free then it must be a proper colouring of the subgraph of (V (G); EA ∪Ea)

induced by domf.

8 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

We let f be a random partial �-assignment, consider Pr(f is free in G), and de5ne
the Go polynomials from this as in Section 2.
Let Z be a label. If e∈E(G) then G[e← Z] denotes the intermediate graph obtained

by replacing the label of e by Z. If v∈V (G) then N (Z)
G (v) denotes the set of those

neighbours w of v such that vw has label Z. If v∈V (G) then G[v← Z] is obtained
from G by giving v the label Z if it does not have it already, in addition to any other
labels it may already have. If W ⊆V then G[W ← Z] is obtained from G analogously,
by giving the additional label Z to all vertices in W that are not already so labelled.
G=e is the intermediate graph formed from G by contracting e and giving all labels

held by its endpoints to the new vertex so formed.
If L⊆{J; L; A; a; C; S} then an intermediate L-graph is an intermediate graph in

which all labels belong to L, and the class of such graphs is denoted by G(L). We
frequently drop braces when the meaning is clear: for example, we may write G(J; L)
for G({J; L}).
Ordinary graphs can be regarded as intermediate {J; L}-graphs of a particular kind.

To see this, let G be an ordinary graph. Replace each edge of G by a pair of parallel
edges, one labelled J and the other labelled L. Such a parallel pair makes explicit the
“double act” performed by an ordinary edge: it can join like-coloured vertices to help
form a group, and it can serve as a lifeline to an uncoloured vertex. The resulting
graph is called the intermediate version of G. It is clear that a partial assignment f
is free in G if and only if it is free in the intermediate version of G. If we wish to
compute Pr(f is free inG), we may as well start with the intermediate version of G.
Fig. 2 gives an overview of how the main results of this section allow recursive

computation of the Go polynomials, using intermediate graphs. Each box represents a
class of intermediate L-graphs, with the label set L shown at the top of the box,
and any additional structure for that class speci5ed within the box. An arrow from one
box to another means that repeated application of the indicated result allows the Go
polynomial of an intermediate graph of the 5rst type (i.e., from the class indicated in
the 5rst box) to be expressed in terms of Go polynomials of graphs of the second type.
A solid line means that both polynomials Go() and Go#() are covered by the result; a
dashed line means that the result only applies to Go#().

3.2. A four-term relation

The proof of our 5rst relation (Corollary 4) rests on the following Lemma.

Lemma 2. If G ∈G(J; L); f is a partial �-assignment of G, and eJ ∈EJ(G) and
eL ∈EL(G) are parallel edges, then:
(a) f is free in G − eJ or G − eL if and only if f is free in G.
(b) f is free in both G − eJ and G − eL if and only if f is free in G − eJ − eL.

Proof. The forward implication for (a) and the reverse implication for (b) are clear.
Suppose both eJ and eL have endpoints v1; v2 ∈V (G).

(a) Suppose f is free in G. Exactly one of the following is true:
1. v1; v2 are both coloured, and f(v1)=f(v2).

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 9

Fig. 2. Overview of computation of Go polynomials using intermediate graphs.

2. Exactly one of v1; v2 is uncoloured.
3. v1; v2 are both coloured and f(v1) �=f(v2), or v1 and v2 are both uncoloured.
If the 5rst of these holds, then f is free in G − eL. If the second holds, then f is

free in G − eJ. If the third holds, then f is free in G − eJ − eL and hence in both
G − eJ and G − eL. In any of these cases, f is free in at least one of G − eJ and
G − eL.
(b) Suppose f is free in both G − eJ and G − eL. Again, exactly one of conditions

1–3 above holds. If the 5rst holds, the fact that f is free in G − eJ implies that f is

10 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

also free in G− eJ − eL. If the second holds, the fact that f is free in G− eL implies
that f is also free in G − eJ − eL. If the third holds, then the fact that f is free in
both G − eJ and G − eL implies that f is free in G − eJ − eL.

Theorem 3. If G ∈G(J; L); f is a random partial �-assignment of G, and eJ ∈EJ(G)
and eL ∈EL(G) are parallel edges, then

Pr(f is free in G) + Pr(f is free in G − eJ − eL)
= Pr(f is free in G − eL) + Pr(f is free in G − eJ):

Proof.

Pr(f is free in G) = Pr((f is free in G − eL) ∪ (f is free in G − eJ)) (1)

= Pr(f is free in G − eL) + Pr(f is free in G − eJ)
−Pr((f is free in G − eL) ∩ (f is free in G − eJ))

= Pr(f is free in G − eL) + Pr(f is free in G − eJ)
−Pr(f is free in G − eJ − eL); (2)

where (1) and (2) follow by Lemma 2(a) and (b), respectively.

Corollary 4. If G is a stage 1 graph and eJ ∈EJ(G) and eL ∈EL(G) are parallel edges
then

Go(G;p) + Go(G − eJ − eL;p) = Go(G − eL;p) + Go(G − eJ;p):
Go#(G; �) + Go#(G − eJ − eL; �) = Go#(G − eL; �) + Go#(G − eJ; �):

Repeated application of Corollary 4 allows us to express the Go polynomial of a
graph G (speci5cally, its intermediate version) in terms of the Go polynomials of a
number of intermediate {J; L}-graphs, with no parallel edges, derived from it. The
number of these derived graphs will in general be exponential in the number of edges
of the initial (ordinary) graph G, in fact 3|E(G)| in the worst case.

3.3. Relations that eliminate joining edges

We now look at relations that use contraction and relabelling of joining edges. These
introduce antichromatic edges and (except for the last relation of the subsection) one
type of vertex label.

Theorem 5. Let G ∈G(J; L; C; A) and e= uv∈EJ(G). Let f be a random partial
�-assignment whose distribution satis7es p1 = · · · =p�=p61=�. Then

Pr(f free in G) = p Pr(f free in (G=e)[u← C]) + Pr(f free in G[e← A]):

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 11

Proof. In the following, f is randomly generated, while g just stands for some non-
random partial assignment.

Pr(f free in G) =
∑

g free in G
p�i|Ci(g)|(1− �p)n−�i|Ci(g)|

=
∑

g free in G:
g(u)=g(v)

p�i|Ci(g)|(1− �p)n−�i|Ci(g)|

+
∑

g free in G:
{u;v}∩U (g)�=∅;
or g(u)�=g(v)

p�i|Ci(g)|(1− �p)n−�i|Ci(g)|

=p
∑

g′ free in G=uv:
u =∈U (g′)

p�i|Ci(g
′)|(1− �p)(n−1)−�i|Ci(g′)|

+Pr(f free in G[e← A])

(noting that; in the 5rst summand;
⋃
i Ci(g

′) =
(⋃
i Ci(g)

) \{v})

=p Pr(f free in (G=e)[u← C])

+Pr(f free in G[e← A]):

Corollary 6. If G ∈G(J; L; C; A) and e= uv∈EJ(G) then

Go(G;p) =pGo((G=e)[u← C];p) + Go(G[e← A];p);

Go#(G; �) = Go#((G=e)[u← C]; �) + Go#(G[e← A]; �):

This can be applied repeatedly to express a Go polynomial of an intermediate {J; L}-
graph G in terms of Go polynomials of intermediate {L; A; C}-graphs. Of course, the
number of these latter graphs is again exponential, this time at most 2|EJ(G)|. Observe
that, for any intermediate {L; A; C}-graph H so produced,

|VC(H)|+ |EA(H)|6 |EJ(G)|; (3)

since every application of Corollary 6 produces graphs with one fewer joining edge and
either at most one new vertex label or exactly one new antichromatic edge (though
some existing antichromatic edges may become redundant as a side-eLect of some
contractions).
Corollary 6 may be used on intermediate versions of ordinary graphs, since it still

works when the edge e is parallel to a lifeline, and can then be used repeatedly until
no joining vertices are left. At that stage, between every pair of adjacent vertices there
will be two parallel edges, with labels L and A.

12 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

Alternatively (but generally less eMciently), beginning again with an intermediate
version of an ordinary graph, Corollary 4 may be applied repeatedly until all graphs
under consideration have no parallel edges, and then Corollary 6 may be applied re-
peatedly to those graphs.
For the polynomials Go#, another relation may be used to remove joining edges. To

do so, we must use antichromatic edges of a diLerent kind to those used above. It is
straightforward to prove

Theorem 7. Let G ∈G(J; L; a) and e∈ eJ(G). Then
Go#(G; �) = Go#(G=e; �) + Go#(G[e← a]; �):

This may be used to express Go# for an intermediate {J; L}-graph G in terms of Go
polynomials of intermediate {L; a}-graphs. We can begin with an intermediate version
of an ordinary graph if we wish.

3.4. Relations based on removal of vertices and lifelines

For graphs with no joining edges, there is no notion of vertices of like colour joining
together, so each coloured vertex is just a singleton group. This enables us to prove
another type of relation.

Theorem 8. If G ∈G(L; A; a; C; S) and v∈V\VC then

Pr(f free in G) = r Pr(f free in (G − v)[N (L)
G (v)← S])

+Pr(f free in G[v← C]):

Proof.

Pr(f free in G) = Pr(v ∈ U) Pr(f free in G | v ∈ U)
+Pr((f free in G) ∩ (v =∈ U))

= r Pr(f free in (G − v)[N (L)
G (v)← S])

+Pr(f free in G[v← C]);

since v∈U implies that its neighbours must be free (if coloured), and v =∈U means it
must be coloured.

Proposition 9. If G ∈G(L; A; a; C; S) and v∈VC ∩VS then

Pr(f free in G) = Pr(f free in G − EL({v}; N (L)
G (v))):

(Note that G−EL({v}; N (L)
G (v)) is the intermediate graph obtained from G by deleting

all lifelines incident with v.)

Proof. A lifeline plays no role when one endpoint is a safe coloured vertex.

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 13

Corollary 10. Let G ∈G(L; A; a; C; S).
(a) If v∈V\VC then

Go(G;p) = (1− 2p)Go((G − v)[N (L)
G (v)← S];p) + Go(G[v← C];p);

Go#(G; �) = Go#((G − v)[N (L)
G (v)← S]; �) + Go#(G[v← C]; �):

(b) If v∈VC ∩VS then

Go(G;p) = Go(G − EL({v}; N (L)
G (v));p);

Go#(G; �) = Go#(G − EL({v}; N (L)
G (v)); �):

Remarks. 1. If G has a lifeline with both endpoints labelled C (regardless of whether
either endpoint has label S as well), then this lifeline plays no role and can be deleted.
2. If G has a vertex labelled C but not S and with no incident lifelines, then no
partial assignment can be free in G, so Pr(f is free in G) and the corresponding Go
polynomials are all zero.
Repeated application of Corollary 10 and the subsequent remarks allows one to

express a Go polynomial of an intermediate {L; A; C}-graph in terms of the Go poly-
nomials of a number of intermediate {A; C; S}-graphs in which all vertices are labelled
both C and S. This number is of course exponential in |V (G)\(VC ∩VS)|.

Similar remarks apply to the Go polynomial Go# of an intermediate {L; a}-graph.
Note that, once all vertices are labelled both C and S, the edge labels A and a have
the same eLect.

3.5. Counting colourings again

Suppose we have an intermediate {A; C; S}-graph with all vertices labelled both C and
S. Call such a graph a processed graph. As usual, we look to express its Go polynomial
in terms of some simpler local modi5cations of the graph. But this is familiar territory,
since a partial assignment f is free in a processed graph G if and only if it is a proper
colouring, in the usual sense, of G (now unlabelled). So, if G is a processed graph,
then

Go(G;p) =pnP(G; 2);

Go#(G; �) = P(G; �):

These Go polynomials can therefore use the deletion–contraction expression for the
chromatic polynomial (though P(G; 2) can of course be calculated much more easily).

3.6. Recursive computation of Go polynomials

The naOPve approach to computing Go polynomials is to work directly from the
de5nition and enumerate all partial �-assignments, picking out those that are free in G,
adding up the appropriate probability for each. This will need to be done for suMciently

14 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

many � to determine the polynomial. The complexity will be dominated by a factor
(�+ 1)n, or something close to it (where n= |V (G)|).

The recursive rules presented in this section allow faster computation of the Go
polynomials, although it still takes exponential time. Let G be a graph with n vertices
and m edges. Starting with its intermediate version, we apply Corollary 6 (respec-
tively, Theorem 7) repeatedly, until we have a set of 62m intermediate {L; A; C}-graphs
(a set of intermediate {L; a}-graphs). For each such graph, apply Corollary 10 and the
subsequent remarks repeatedly until we are left just with processed graphs, 62n in
number. This phase will give up to 2m+n processed graphs altogether. Finally, for each
processed graph, we 5nd its chromatic polynomial using the usual deletion–contraction
rule, which will generate 62m base cases per processed graph. The complexity will
thus be dominated by a factor of 22m+n.

4. Complexity

In this section, we show that calculating Go#(G; �) is #P-complete for �¿2. We do
not undertake a comprehensive study of the complexity of Go polynomials. We just
introduce the topic and prove a 5rst result on it.
Observe that Section 3.5 gives us the #P-completeness of Go#(G; �) when G is a

certain kind of processed graph—roughly, those for which partial �-assignments are
just proper colourings, so little is really said about complexity. It is of more interest to
consider Go#(G; �) for ordinary graphs G, when partial �-colourings are quite diLerent
things to proper colourings, so #P-completeness is not immediate.
We will need the following special case of a result of Fel’dman on linear forms in

logarithms.

Lemma 11 (Fel’dman [13]; see also Baker [2, Theorem 3.1], Baker [3]). If integers
s; t; u are not all zero, with absolute values 6m and s+ t + u=0, then

|s ln 2 + t ln 3 + u ln(�+ 1)|¿ m−c;

where c depends only on �.

Theorem 12. Computing Go#(G; �) is #P-complete for �¿2.

Proof. Membership of #P is clear. To begin with, suppose �¿3. It is then known that
computing P(G; �) is #P-complete. We show that there is a polynomial time Turing
reduction from P(G; �) to Go#(G; �).
Let G=(V; E) be any graph, with n vertices and m edges, whose �-colourings we

want to count. Let k1 = �mc(n ln(�+1)+ln((m+1)(m+2)=2))�, where c is the constant
from Lemma 11. Let k2 = �(n+mk + 1) ln(1 + �)= ln(1 + �−1)�. (The exact values of
k1 and k2 are unimportant. They need to be suMciently large for purposes explained
below, yet polynomially bounded in m and n.)

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 15

We will construct a graph G′(k1) from G, and then construct a graph G′′(k1; k2)
from G′(k1). We will use the Go polynomial Go#(G′′(k1; k2); �) to compute P(G; �).
The graph G′(k1) is constructed as follows. For each edge e= v1v2 of G, add k1

new vertices we;1; : : : ; we; k1 joined only to v1 and v2. So all new vertices have degree
2, and G′(k1) has n+ mk1 vertices and m+ 2mk1 edges.
Now form G′′(k1; k2) by adding a copy of Kk2 , disjoint from G

′(k1), and then adding
all possible edges between vertices in that copy and vertices of G. (So vertices in
V (G′(k1))\V (G) still have degree 2.)
The free partial �-assignments of G′′(k1; k2) can be divided into two sets: those

that leave some vertex in the Kk2 uncoloured, and those that give colours to all those
vertices. Let the number of these be g1 and g2, respectively. Now it is easy to see that
g26�k2 (�+ 1)n+mk1 . Furthermore, g1 = ((�+ 1)k2 − �k2)Go#(G′(k1)[V (G)← S]; �).

Our oracle gives us Go#(G′′(k1; k2); �)= g1 + g2. Our choice of k2 ensures that
g2¡(�+ 1)k2 − �k2 , so it is easy to work out Go#(G′(k1)[V (G)← S]; �). It remains to
compute P(G; �) from this.
Let b(k1)st be the number of partial �-assignments that are free in G′(k1)[V (G)← S]

and that induce a partial �-assignment of G with s bad edges, t good edges, and
u=m − s − t edges with at least one endpoint uncoloured. Let ast be the number of
partial �-assignments of G that have s bad edges and t good edges.
Due to the safety of the vertices of G, a partial �-assignment is free in G′(k1)[V (G)

← S] if and only if it gives each vertex in V (G′(k1))\V the same colour as one of its
two neighbours or no colour at all. Hence

b(k1)st = ast(2s3t(�+ 1)m−s−t)k1 :

Now let the quantities 2s3t(� + 1)m−s−t be arranged in decreasing order, and rename
them hj, 16j6(m+1)(m+2)=2, where h1¿ · · ·¿h(m+1)(m+2)=2. It is easy to show that
i �= j implies hi �= hj, so they are actually in strictly decreasing order. Consider the ratio
between two successive hj. Suppose hj =2sj3tj (� + 1)uj and hj+1 =2sj+13tj+1(� + 1)uj+1

(16j¡(m+ 1)(m+ 2)=2). Then this ratio

'j = hj=hj+1 = 2sj−sj+13tj−tj+1(�+ 1)uj−uj+1

= exp((sj − sj+1) ln 2 + (tj − tj+1) ln 3 + (uj − uj+1) ln(�+ 1))

¿ em
−c
; (4)

for some c¿ 1 depending only on �, by Lemma 11.
We know (from earlier) the value

Go#(G′(k1)[V (G)← S]; �) =
(m+1)(m+2)=2∑

j=1
b(k1)sj tj

=
(m+1)(m+2)=2∑

j=1
asjtj h

k1
j :

16 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

Observe that

hk1j = 'k1j h
k1
j+1

¿ ek1m
−c
hk1j+1 (by (4))

¿ (�+ 1)n((m+ 1)(m+ 2)=2)hk1j+1 (by choice of k1)

¿ (�+ 1)n
∑

l¿j+1
hk1l

¿
∑

l¿j+1
asltlh

k1
l :

It is therefore straightforward to work out the ast , much as one works out representa-
tions of numbers to some base. Once this is done, we know a0m=P(G; �), which is
what we wanted.
The procedure takes polynomial time. Thus, we have a polynomial time Turing

reduction from the chromatic polynomial to the polynomial Go#, so the latter is
#P-complete.
We sketch the proof for �=2, which uses reduction from counting 3-colourings.

Given a graph G, form G′(k1) as above, except that each pair of vertices adjacent
in G is now linked by k1 paths of length 3 (instead of length 2), disjoint except at
their endpoints, in addition to the edges of G. Then form G′′(k1; k2) as above. Make
k1 and k2 suMciently large yet polynomially bounded. The oracle gives the number
of free partial 2-assignments of G′′(k1; k2), and from this one can easily obtain the
number of free partial 2-assignments in G′(k1)[V (G)← S]. Let ast be the number of
partial 2-assignments of G with s bad edges and t edges that are either good (both
endpoints coloured) or have exactly one endpoint uncoloured. These have u=m− s− t
edges with both endpoints uncoloured. Let b(k)st be the corresponding number of free
partial 2-assignments in G′(k1)[V (G)← S]. Show that b(k)st = ast6s8t9m−s−t . Appeal to
a lemma similar to Lemma 11 (with ln 2; ln 3 and ln(�+1) replaced by ln 6; ln 8 and
ln 9, respectively). Reasoning as in the previous proof, we can 5nd the ast . This yields
a0m=P(G; 3).

The polynomial transformation used in this proof for �=2 could have been used to
deal with all �¿2 together, at the cost of a longer proof. Not only is the construction
(and associated counting arguments) for �=2 a bit more complex, but when using
that technique for �¿3 it is necessary to consider four kinds of edges instead of three,
and more care is needed in ensuring that the resulting linear forms in logarithms have
the required properties.

Acknowledgements

I am grateful to Rod Worley and the referees for their helpful comments.

G.E. Farr / Theoretical Computer Science 306 (2003) 1–18 17

References

[1] J.L. Arocha, B. Llano, Mean value for the matching and dominating polynomial, Discuss. Math. Graph
Theory 20 (2000) 57–69.

[2] A. Baker, Transcendental Number Theory, Cambridge University Press, Cambridge, 1975.
[3] A. Baker, The theory of linear forms in logarithms, in: A. Baker, D.W. Masser (Eds.), Transcendence

Theory: Advances and Applications, Academic Press, London, 1977, pp. 1–27.
[4] E.R. Berlekamp, Introductory overview of mathematical Go endgames, in: R.K. Guy (Ed.),

Combinatorial Games, Proc. Symp. Appl. Math., Vol. 43, Columbus, Ohio, 6–7 August 1990, American
Mathematical Society, Providence, RI, 1991, pp. 73–100.

[5] E.R. Berlekamp, Y. Kim, Where is the “Thousand-Dollar Ko”? in: R.J. Nowakowski (Ed.), Games of
No Chance, Math. Sci. Res. Inst. Publ., Vol. 29, Berkeley, Ca, 11–21 July 1994, Cambridge University
Press, Cambridge, 1996, pp. 203–226.

[6] E.R. Berlekamp, D. Wolfe, Mathematical Go: Chilling Gets the Last Point, A. K. Peters, Wellesley,
MA, 1994.

[7] B. Bouzy, T. Cazenave, Computer Go: an AI oriented survey, Artif. Intell. 132 (2001) 39–103.
[8] T.H. Brylawski, J.G. Oxley, The Tutte polynomial and its applications, in: N. White (Ed.),

Matroid Applications, Encyclopedia Mathematical Applications, Vol. 40, Cambridge University Press,
Cambridge, 1992, pp. 123–225.

[9] M. CrâXsmaru, J. Tromp, Ladders are PSPACE-complete, in: T.A. Marsland, I. Frank (Eds.), Computers
and Games: Second International Conference, CG 2000, Hamamatsu, Japan, 26–28 October 2000,
Lecture Notes in Computer Science, Vol. 2063, Springer, Berlin, 2001, pp. 241–249.

[10] G.E. Farr, A correlation inequality involving stable set and chromatic polynomials, J. Combin. Theory
(Ser. B) 58 (1993) 14–21.

[11] G.E. Farr, A generalization of the Whitney rank generating function, Math. Proc. Cambridge Philos.
Soc. 113 (1993) 267–280.

[12] G.E. Farr, Some results on generalised Whitney functions, Adv. Appl. Math., to appear.
[13] N.I. Fel’dman, An improvement of the estimate of a linear form in the logarithms of algebraic numbers

(Russian), Mat. Sbornik 77 (1968) 423–436 (English translation: Math. USSR Sbornik 6 (1968)
393–406).

[14] T. Helgason, Aspects of the theory of hypermatroids, in: Hypergraph Seminar, Lecture Notes in
Mathematics, Vol. 411, Springer, Berlin, 1974, pp. 191–213.

[15] K. Iwamoto, Go for Beginners, Ishi Press, 1972, and Penguin Books, Harmondsworth, 1976.
[16] F. Jaeger, D.L. Vertigan, D.J.A. Welsh, On the computational complexity of the Jones and Tutte

polynomials, Math. Proc. Cambridge Philos. Soc. 108 (1990) 35–53.
[17] J.P.S. Kung, The RYedei function of a relation, J. Combin. Theory (Ser. A) 29 (1980) 287–296.
[18] D. Lichtenstein, M. Sipser, GO is polynomial-space hard, J. Assoc. Comput. Mach. 27 (1980)

393–401.
[19] L. LovYasz, M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, Vol. 29, North-Holland

Mathematical Studies, Vol. 121, North-Holland, Amsterdam, 1986.
[20] C. McDiarmid, On a correlation inequality of Farr, Combin. Probab. Comput. 1 (1992) 157–160.
[21] M. MOuller, Review: computer Go 1984–2000, in: T.A. Marsland, I. Frank (Eds.), Computers and Games:

Second International Conference, CG 2000, Hamamatsu, Japan, 26–28 October 2000, Lecture Notes in
Computer Science, Vol. 2063, Springer, Berlin, 2001, pp. 405–413.

[22] M. MOuller, Computer Go, Artif. Intell. 134 (2002) 145–179.
[23] S.D. Noble, D.J.A. Welsh, A weighted graph polynomial from chromatic invariants of knots, in:

Symposium Za la MYemoire de FranXcois Jaeger (Grenoble, 31 August–4 September 1998), Ann. Inst.
Fourier (Grenoble) 49 (1999) 1057–1087.

[24] J.G. Oxley, D.J.A. Welsh, The Tutte polynomial and percolation, in: J.A. Bondy, U.S.R. Murty (Eds.),
Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 329–339.

[25] J.G. Oxley, G.P. Whittle, Tutte invariants for 2-polymatroids, in: N. Robertson, P.D. Seymour (Eds.),
Graph Structure Theory, Contemporary Mathematics, Vol. 147, Seattle, 1991, American Mathematical
Societ, Providence, RI, 1993, pp. 9–19.

18 G.E. Farr / Theoretical Computer Science 306 (2003) 1–18

[26] J.G. Oxley, G.P. Whittle, A characterization of Tutte invariants of 2-polymatroids, J. Combin. Theory
(Ser. B) 59 (1993) 210–244.

[27] R.P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math.
111 (1995) 166–194.

[28] R.P. Stanley, Graph colorings and related symmetric functions: ideas and applications: a description of
results, interesting applications, & notable open problems, Discrete Math. 193 (1998) 267–286.

[29] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (1979)
410–421.

[30] D.J.A. Welsh, Matroid Theory, London Mathematical Society Monograph No. 8, Academic Press, New
York, 1976.

[31] D.J.A. Welsh, Complexity: Knots, Colourings and Counting, in: London Mathematical Society Lecture
Note Series, Vol. 186, Cambridge University Press, Cambridge, 1993.

[32] G.P. Whittle, Characteristic polynomials of weighted lattices, Adv. Math. 99 (1993) 125–151.
[33] G.P. Whittle, The critical problem for polymatroids, Quart. J. Math. Oxford Ser. (2) 45 (1994)

117–125.

	The Go polynomials of a graph
	Introduction
	Partial lambda-assignments and Go polynomials
	Relations based on local changes
	Intermediate graphs
	A four-term relation
	Relations that eliminate joining edges
	Relations based on removal of vertices and lifelines
	Counting colourings again
	Recursive computation of Go polynomials

	Complexity
	Acknowledgements
	References

