
INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 ISSN:1083-4346

A Study of If-Then-Else Structures in End User
Programming

 Houn-Gee Chen

 Information technology assumed a role of growing importance in organizations during

the 1980s. It is no longer used exclusively by small groups of computer specialists;
but, rather, office automation and end user computing (EUC) are used by workers at
all levels and in all areas of an organization. This study attempts to gain an
understanding of factors associated with the use of EUC. The present study is an
empirical study, using one end user programming construct (IF-THEN-ELSE). The
major findings are: 1) the constraint of human short-term memory has a significant
impact on the use of a programming construct, 2) the individual aptitude and
personality traits are strongly related to the use of IF-THEN-ELSE constructs, and 3)
the format of the construct could also affect the user's performance.

I. INTRODUCTION

Steven Anderson, the head loan officer of a mid-sized bank, has 15 senior and junior
loan officers reporting to him. Steven has a strong computer background and plans to
develop a step-by-step computer program, which could be used by all lending officers
to evaluate loan applications. Although anxious to develop such a program, Steven is
not certain about how to structure the program, given the various levels of computer
knowledge in his department. The case of Steven Anderson is just one example of end
user computing (EUC), one of the today's fastest-growing computer applications
[8,29,39,40] in information technology.
 Rockart and Flannery [40] were among the first to address fundamental issues
concerning EUC. They classified end users into six distinct classes, according to the
degree of programming effort. Up to 75% of end users were ranked in the End-User
Programming Mode--those users who develop, implement, maintain, and utilize their
own computer applications, using high-level procedural languages, fourth generation
languages (4GL), or a language that is part of a software package. Evidence has shown
that easy-to-use programming constructs can not only enhance EUC's productivity
[1,15] and satisfaction [12] but also keeps the learning barriers low, which encourages
the flow of applications from one department to another [40].
 Although EUC has been seen in various applications from sophisticated
decision support systems to structured operating systems [11], the nature and
determinants of EUC's success, however, have not yet been investigated [5,8,10,40].
An investigation on human cognitive skills, information processing capacity, and
programming constructs is necessary for improving the use of EUC [8,39].
 One often-addressed end user programming construct is the IF-THEN-ELSE,
Houn-Gee Chen, Graduate Institute of Information Mnagement, National Chung-Cheng
University, Chia-Yi, Taiwan, R.O.C.
Copyright1997 by SMC Premier Holdings, Inc. All rights of reproduction in any form reserved.

 88 Chen

which allows a statement or a group of statements to be selected for execution on the
basis of meeting prescribed conditions. If the testing condition is true, statements after
THEN are executed. Otherwise, statements after ELSE are executed. Nested IF-
THEN-ELSE is a construct in which an IF-THEN-ELSE is set inside another IF-
THEN-ELSE construct. Nested IF-THEN-ELSE provides a way to program multi-
level decision problems and has often been applied for complicated decision processes
in which one condition depends on another condition. The nesting may occur at any
desired level. This construct has been applied to represent knowledge in recent
expert/knowledge-based system implementations. Sets of IF-THEN-ELSE constructs
are used to define the knowledge source—the knowledge base. The reasoning process
of these IF-THEN-ELSE statements will support the problem solving in deriving the
final solution.
 This paper presents the results of an empirical study that identifies factors
associated with the use of the nested IF-THEN-ELSE structure in EUC applications. It
also addresses the effects of individual differences, cognitive limits, and programming
constructs.

 II. RELATED STUDIES

Through a study of business information systems, Lucas [25] identified five main
determinants for voluntary use of computerized systems: user attitudes and perception,
situational and personal factors, technical supporting quality of the system, user
decision style, and management support. Among those factors, user attitudes and
personal/situational factors were reported to be strongly related to implementation
success of most systems, followed by decision styles (quantitative or qualitative
styles), supporting quality of the system, and management support. In a similar study
[54], the difficulty in implementing management information systems has also been
reported to be the result of cognitive style mismatches between user and information
design. For a better use of information system design, Zmud [54] suggested research
into user aspiration level, anxiety, risk-taking propensity, self-esteem, and individual
attitudes and values. Studies by Bariff and Lusk [2,3] confirmed the suitability of
inclusion of these behavior profiles into the design guidelines and implementation
procedures of information systems. Other studies for the EUC of information systems
are summarized as follows:

User Attitudes

Several studies have demonstrated that user attitudes can dramatically impact the
learning and performance of interactive information systems [28,34,36,48]. Novices
with negative attitudes towards computers learned editing tasks more slowly and made
more errors [50]. Anxiety, generated by fear of failure, may reduce short-term memory
capacity and inhibit performance. If users are insecure about their ability to use the
system, worried about destroying files or the computer itself, overwhelmed by a
volume of details or pressured to work rapidly, their anxiety will lower performance
[37]. Programmers who must meet a deadline tend to make more errors as they
frantically patch a program in a desperate attempt to finish the job. Of course, mild
pressure can act as a motivator; but if the pressure becomes too strong, then the

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 89

resultant high levels of anxiety could interfere with competent work [37]. In recent
related studies, computer anxiety was found to be closely related to the success of
EUC [19,23] and microcomputer usage [22]. Chen and Vecchio [7], however,
concluded that individual difference and programming attitudes are important when
determining the use of IF-THEN-ELSE constructs.

Situational Factors

Situational factors cover a broad spectrum of personal characteristics, such as
experience, training, sex, age, professional orientation, and organizational level. They
were reported to have a significant influence on a user's problem-solving activities.
Rivard and Huff [39] found that computer background had significant effects on the
success of EUC. Other results also indicated that computer experience and training
were positively related to system usage [8,10,23]. Although some studies found no
gender differences in attitudes toward computer systems [19], others reported that
women and older individuals tended to have unfavorable attitudes [9].

Personal Factor and User Cognitive Styles

Important factors related to the success of an information system may include locus of
control, ambiguity, and extroversion/introversion [18,28,42,54]. Extroverted subjects
were found to retrieve information stored in their own minds more quickly and to
retain information better over short intervals, but not for long intervals, when
compared with introverts [14]. However, in another study, the aggressive/humble
dimension and introversion/extroversion did not significantly affect the subject's grade
in an introductory programming course nor the subject's perceived ability in
programming [32]. Personality was reported to be a major factor in determining results
on a simulated man-machine decision information system [53].
 Many studies have revealed [25,26,27,54] that cognitive style is one of the
important factors affecting the success of MIS/DSS. Soloway [45] showed that a
programming construct that has a closer "cognitive fit" with an individual preferred
cognitive model is easier to be used effectively. Cognitive style represents the
characteristic mode of functioning, shown by individuals in their perceptual and
intellectual response. Perception involves the input, filtration, and condensation of
cues from the environment. Intellect involves analyzing and reaching a conclusion
based on what is received. Although such responses are dependent on tasks and
situational elements, many individuals exhibit pervasive tendencies toward particular
cognitive functioning, and consistent individual differences can be observed. For
example, subjects with a higher level of intelligence may be observed to process
information faster, select information more effectively, retain information better, make
decisions faster [46], and organize information better [21]. Subjects with higher
quantitative abilities utilize more short-term memory than those subjects with lower
quantitative abilities [21], and subjects with greater verbal abilities possess enhanced
short-term memory when compared with subjects having lesser verbal skills [20].

Cognitive Limitation (short-term memory)

 90 Chen

Studies [6,42,51] have also suggested a cognitive model of long-term/short-term
memory to explain human information processing. Information from the outside world
(e.g., a description of the problem) first enters the human cognitive system via short-
term memory. The information is then integrated with existing information to form the
basis of the problem solution. EUC, however, can be viewed as a cognitive process in
which end users develop their own applications via a mapping between the input
problem description and supporting programming constructs. Since the human
cognitive process is often constrained by the size of the short-term memory [42,51],
the effective and/or efficient use of programming constructs may be confined by this
limitation. A well-known research finding [30] revealed that human short-term
memory can handle about seven, plus or minus two, "chunks" of information at any
given time. This implies that the human information processing capacity is extremely
small [42].

Formats of IF-THEN-ELSE Constructs

Researchers have attempted to study the effects of various formats to improve the
readability of the IF-THEN-ELSE construct. Works by Sime, Green, and Guest
[43,44] and Green [16,17] were the pioneering studies on the IF-THEN constructs.
Across several experiments, they found evidence to support the nested IF-THEN-
ELSE (used in ALGOL, PL/I and PASCAL) versus IF-GOTO (used in FORTRAN and
BASIC). Among the nested constructs, their results seemed to support the superiority
of the negation of the condition (NOT A=B). Nested IFs may be better when the tested
items are unrelated and when forward comprehension questions are asked. Deeply
nested IF-THEN-ELSE statements are difficult to comprehend, but the alternative use
of complex Boolean conditions is not necessarily more appealing [44]. In a later study,
Vessey and Weber [49] found no clear-cut evidence favoring nested IF-THEN-ELSE
over IF-GOTO. One important conclusion derived from these results is that the
suggested superiority of the nested IF-THEN-ELSE over the IF-GOTO is equivocal.
 The CASE construct has received much attention in recent years [49]. The
advantage of the CASE statement is that a multiple branch is accomplished in a single
well-organized statement that has an explicit END statement. Shneiderman [42]
showed that, in some instances, the multi-level decision logic of nested IF-THEN-
ELSE is not easily represented by a CASE statement. Embley [13] proposed a hybrid
construct by combining the CASE and iteration in a simple manner. In an empirical
experiment, the groups working with Embley's construct resulted in a significantly
better comprehension question than those questions of the groups working with CASE
and IF-THEN-ELSE. The differences between CASE and IF-THEN-ELSE were not
significant.
 In fact, two different forms of nested IF-THEN-ELSE exist: bushy and thin. It
has been frequently and persuasively argued that we should avoid the "bushy" form
[4]; instead, the "skinny" form is the appropriate form to use [24,38,47]. The reason
for this is that the skinny form "seems to more closely reflect how we think." Green
[17], along with other researchers [33], examined reasoning for programming
statements expressed in different forms. He used a set of conditionals in the thin forms,
while only one conditional was applied in the bushy structure. The results indicated
that for the forward questions (given a conditional to induce the actions), there was no

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 91

significant difference between thin and bushy forms. For the backward questions
(given actions to identify the conditionals), the thin form was slightly better than the
bushy form.
 While these conflicting results have existed in previous studies, we argue that
there are some important factors (e.g., individual characters and cognitive limitation)
that may make these results equivocal. In addition to the measurement of performance
(e.g., syntax errors, debugging efforts) that had been the primary concern in the above
studies, our goal was to examine the individual difference factors on the use of nested
IF-THEN-ELSE constructs. This study attempts to do so by examining four often-
addressed nested IF-THEN-ELSE formats: bushy, long thin, GOTO, and revised-long
thin.

 III. A MODEL

The above discussion suggests that end user programming ability is at least partially a
function of three important sets of variables: individual differences, cognitive
limitations, and formats of language construct (Fig. 1). The individual difference
consists of important factors, such as individual personality traits and programming
aptitude. The programming aptitude is believed to be comprised of several important
aptitudes, including abstract reasoning, ability to follow computer language, and
ability to deduce an appropriate outcome from information presented in a serial form.
In terms of personality, previous research suggests that there are two important
attributes: introversion-extroversion and computer anxiety. Introversion is now
generally seen as being related to computer programming ability, as a consequence of
introverted individuals, being better able to focus their attention on demanding tasks
than extroverted individuals are able to do. Computer anxiety should be related to
programming ability in that higher levels of anxiety will interfere with the
programming ability to focus on a demanding task.
 This study argues that the programming ability is likely constrained by the
limitation of human short-term memory. This suggests that there exists an upper limit
of nesting levels on an effective use of nested IF-THEN-ELSE constructs. In addition,
we argue that an end user should have comparative advantages in developing EUC
applications when he/she is supported by easy-to-use programming constructs.

Figure 1

A Model of End User Programming

 92 Chen

 In addition to testing more general propositions, the present study seeks to
address the following questions concerning nested IF-THEN-ELSE constructs:

(1) What is the appropriate nesting level in designing nested IF-THEN-ELSE
constructs?

Since three-level and four-level IF-THEN-ELSE constructs carry up to 8 (23) and 16
(24) chunks of information, respectively, the following hypothesis is tested:

Hypothesis: When the nesting level is larger than three, the end user's programming
ability will decrease significantly.

(2) Under a reasonable nesting level, which IF-THEN-ELSE formats are easy-to-use?
and

(3) What are the important individual difference factors associated with the effective
use of various IF-THEN-ELSE constructs?

 IV. RESEARCH METHODOLOGY

The following research methodology was used.

Testing Problem

A simple credit-evaluation example was chosen as the testing problem. A department
store offered credit cards for its customers. The credit limits were determined
according to the applicants' incomes. The following table summarizes the income
categories, credit limits, and the corresponding monthly incomes.

 Category Credit limit Monthly Income
 (1) 0 $ 500 or less
 (2) $ 100 $ 501-750
 (3) $ 200 $ 751-1000
 (4) $ 300 $1001-1250
 (5) $ 400 $1251-1500
 (6) $ 600 $1501-2000
 (7) $1000 $2001-3000
 (8) $1500 $3001-4000
 (9) $2000 $4001-5000
 (10) $2500 $5001 or more

 Performance was assessed by tallying the number of correct answers and
The credit limits were displayed using various IF-THEN-ELSE formats. This
experiment studied the way that subjects received information from the displays.
Subject the response times given to the various types of programming construct

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 93

presentations.

Experimental Prototype

An interactive menu-driven computer program was developed to conduct the
experiments. This prototype was running in the network and was accessed through a
file server. Three sections were included. In the first section, subjects registered by
entering geographical data. This was followed by a tutorial section where subjects
went through several menu-driven examples to familiarize themselves with various
keystroke functions and locations. A question-and-answer section was the third
section. Here information was presented using various IF-THEN-ELSE formats on the
left side of screen while the possible solutions were summarized in a menu on the right
side of screen. Each time, a number was given to indicate an applicant's monthly
income. Subjects were asked to determine the credit limit and to perform an
appropriate keystroke by looking up the information. A sample display is given in Fig.
2.

Figure 2
Display of Thin Format (I: Income)

 A monitor was built in to trace the individual subject's responses. This
monitor
was activated to record the individual subject's answers and response times once a
question was posted. The detailed step-by-step instructions were also incorporated so
that subjects could control the pace of the experiment. This prototype was run on a PC.

Subjects

 94 Chen

Subjects were students in a required, sophomore-level introductory business computer
course taught in a university. This course introduced the basic concepts of computer
systems and computer applications software such as spreadsheet, data base
management, and computer programming languages. The subjects possessed several
characteristics in common; that is, they anticipated a continuing involvement with
computers while not being experts in programming.

Experiment Design

Experiments were conducted during the middle of the semester; and, by then, the
subjects had been introduced to basic concepts of the computer. A lecture regarding
the content of the experiments was given. A computer lab was reserved for conducting
the experiments. Participation in those experiments was a course requirement.
 In a regular class meeting, all subjects completed booklets containing
questions related to demographic data (gender, age, prior computer coursework,
college-entrance exam scores) and the following instruments.

(a) The extroversion scale from the Myers-Briggs Type Indicator [31]. Two different
item formats are represented in the scale: force-choice responses for activities and self-
descriptive adjectives and true-false responses to self-descriptive statements;

(b) A 10-item computer anxiety scale created by modifying items of the Mathematics
Attitude Inventory [41] to reflect computer anxiety rather than math anxiety (sample
items: "It scares me to have to study computers." and "Solving a computer problem is
fun." (Reversed); Responses: 4=strongly agree, 3=agree, 2=disagree, 1=strongly
disagree.);

(c) The programming language questions (problem set 3) from the Wolfe
Programming Aptitude Test-Form W [52]. These questions require that the respondent
translate a number of language-like,symbolic expressions into simplified values
(answers) based on a set of given definitions of terms and operations;

(d) The series completion aptitude scale from the CALIP (Computer Aptitude, Literacy
and Interest Profile form [35]). The series task, which requires completion of a number
and/or letter sequence, identifies individuals who can detect internal and highly
structured order (sample item: Complete the following, A,1,D,4,J,10,M,_).

 One hundred forty-three students participated in the experiments. Most
subjects were first-time users of computers.

Nesting Level

Four IF-THEN-ELSE constructs were designed (Fig. 3) in this experiment. Among
them, Seven IF-THEN-ELSES and Eight IF-THEN-ELSES were three-levels
constructs; Nine and Ten IF-THEN-ELSES were four-levels constructs. Subjects were
equally assigned to each sequence. At each construct, five cases (634, 5373, 1212,

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 95

2736, 3879) were generated and tested. At each test, subjects were asked to determine
the credit limit by referring to a presented IF-THEN-ELSE construct.

Figure 3
Nested IF-THEN-ELSE Structures

Figure 4
Various Nested IF-THEN-ELSE Formats (I: Income; Y: Yes; N: No)

 96 Chen

Display Formats

Four display formats were designed (Fig. 4) in this experiment. In the long thin
format (Thin), all of the nesting occurred within a THEN block or an ELSE block.
The revised long thin format was similar to the long thin format except that it
explicitly stated conditions for each IF statement. The bushy format (Bushy) was
opposite to the long thin format in a way that an IF-THEN-ELSE might be
contained within either a THEN block or an ELSE block. In the GOTO format,
jump (GOTO) constructs were incorporated into the THEN or ELSE blocks such
that the program logic flow didn't necessarily follow a "sequential" fashion.

At each construct, five cases (2687,1341,5054,3742,712) were generated and tested.
Subjects were asked to determine the credit limit by referring to a presented IF-THEN-
ELSE construct for each test. A sample display is given in Fig. 5.

Figure 5
Display of Cond Format (I: Income)

 V. RESULTS

A breakdown on the subject's demographic information (Table 1) indicated that the
college-entrance exam scores were close to the university's average. Although most of
the students had taken college-level mathematics courses in their freshman year, very
few had learned computer programming before so that most subjects were computer

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 97

novices.

Table 1
Demographic Data
Number of Subjects
male 84
females 59
total 143

College-entrance Exam Scores

verbal(mean) 69.72
 math(mean) 58.02

Computer courses taken before

 number count percentage
 0 9 6.3
 1 89 62.2
 2 22 15.4
 3 16 11.2
 4 4 2.8
 5 3 2.1

Effects of Short-Term Memory

The subjects' performances, using various nesting-levels of IF-THEN-ELSE
constructs, were tallied (Figure 6). The quality of answers measures the correctness of
subjects' answers, and the “response time” is the time for the subject to answer all of
the questions. The results indicate that the quality of answers has a significant 4.8%
(p=. 05) drop from Eight to Nine. The drops from Seven to Eight and Nine to Ten are
2.5% (p=. 27) and 3.6% (p=. 15), respectively. In addition, the response time increases
significantly from Eight to Nine and Nine to Ten (a 20% and 4.4% increase,
respectively). These results confirm that there exists a significant performance
difference between Eight IF-THEN-ELSES (a three-level construct) and Nine IF-
THEN-ELSES(a four-level construct) and suggest that for a better use of IF-THEN-
ELSE construct the nesting levels should be lim d to three .

4.05
3.95

3.77

3.643.7
3.8
3.9

4
4.1

Quality of
Answersite levels

Figure 6

Performance Measure of IF-THEN-ELSE Structure (Nesting Levels) 3.4
Seven Eight Nine TenSeven Eight Nine Ten

3.5
3.6

 98 Chen

Effects of IF-THEN-ELSE Formats

Figure 7 depicts the subjects' performances on various IF-THEN-ELSE formats. Table
2 presents the results of an analysis of variance test for the performance (i.e.,
comparing the average level of performance across four nested IF-THEN-ELSE
formats). This result was followed by paired comparison tests contrasting each of the
types of nesting formats. The order of quality of answers followed the sequence of
"Cond-Thin-GOTO-Bushy" with Cond having the highest quality. The order of
response times followed the same sequence of "Cond-Thin-GOTO-Bushy". With the
exception of the Thin-Cond contrast, all contrasts yielded significantly different results
(p<.01). The results suggest that Cond and Thin are less complex formats than GOTO
and Bushy.

Figure 7
Performance Measure of IF-THEN-ELSE Structures (Display Formats)

Table 2

ANOVA of IF-THEN-ELSE Formats

Source

Sum of
Squares

Degree of
Freedom

Mean
Squares

F p>F

Between
formats

200.76

3

66.92

27.71

0.000

Error

1371.85

568

2.42

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 99

Total

1572.61

571

Effects of User Attributes

To further understand the effects of individual differences on various IF-THEN-ELSE
formats, bivariate correlations of individual difference measures with the dependent
measures (i.e. nested IF-THEN-ELSE formats) were calculated (Table 3). The results
indicate that the computer anxiety (inversely), lang test, and series aptitude were
consistently related with performance on the programming ability (i.e., quality of
answers). The computer anxiety and series aptitude were also related with performance
on the response time. As the present study was most centrally concerned with the issue
of whether personality and aptitude uniquely predicated programming ability, a
hierarchical multiple regression approach was adopted. With this approach, the unique
effect of each independent variable (in terms of incremental criterion variance
accounted for) is calculated and tested for statistical significance, following
comparisons of the R2 value for an equation that contains all five independent
variables and the R2 for an equation that excludes the independent variable of interest.
The results of such tests for each dependent measure of programming ability are
displayed in Table 4.

Table 3
Intercorrelations Among Variables (decimal points omitted)

 100 Chen

Table 4
Results of Tests for Unique Effects of Independent Variables

 Rresults in Table 4 suggest that each independent variable does contribute to
explaining the performance (i.e.,quality of answers) in the programming test. Among
the independent variables, computer anxiety, series aptitude, and lang test have the
most significant impacts. The evidence for explaining the response time is partially
supported by the lang test and computer anxiety. In addition, extroversion subjects
perform extremely well on GOTO format.
 Another question concerns whether personality traits and aptitudes have
separate effects. In order to test this issue, multiple regression equations were created
for each dependent measure for the set of personality tests (extroversion and computer
anxiety) and the set of aptitudes (language aptitude and series aptitude). The unique
effects of each set were then calculated by calculating the R2 for the complete
equation (which included both the personality and aptitude measures) with equations
that included only the set of personality measures or the set of aptitude measures. The
results of statistical tests of significance and changes in R2 are reported in Table 5.
These results suggest that the unique effects of each set of independent variables do
explain the performance on programming ability tests (i.e., quality of answers). The set

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 101

of aptitudes also contributes to the explanation of performance on the response time
tests.

Table 5
Results of Tests for Unique Effects of Personality and Aptitude Variables

 VI. DISCUSSIONS

The present study confirms the importance of aptitude and personality factors in
influencing performance (i.e, quality of answers) on programming tasks. For example,
individuals who are lower on computer anxiety generally achieved a higher score on
the programming tasks. Specific aptitudes were also positively correlated with
performance across tasks as well. Similarly, individuals who were low on extroversion
tended to perform better than the more extroverted individuals on certain programming
tasks.
 From a practical perspective, these results suggest that prospective end users
might be assessed for both personality and aptitude characteristics. Certain of these
characteristics are not likely to be amenable to modification via training. However,
computer anxiety may be responsive to hands-on experience and education. Given
available evidence that computer anxiety may play a key role in influencing
managerial attitude toward using microcomputers [23], the targeting of computer
anxiety for "treatment" seems warranted. Thus, in the case introduced at the start of
this paper, Steven Anderson should request more computer training programs to assist

 102 Chen

end users in exploring productive applications.
 In addition, this study confirms that the constraint of human short-term
memory has a notable impact on programming ability. To ensure the success of EUC,
Steven should be aware of this and avoid any "overload" misconduct in programming.
 The differential results for the types of "nesting" suggest that performance
(quality of answers) in the Cond format was the highest of the four formats. Formal
contrast of the means of the four formats revealed that performance with the Cond and
Thin formats was significantly higher than performance for each of the remaining
formats. These differential results suggest the relative superiority of the long thin and
revised-long thin formats for instructional purposes. However, the continuous
supporting of easy-to-use programming constructs will be a goal for future information
systems development.
 Because the present study employed a sample of college students, the results
cannot be readily generalized to programmers in general. However, the present sample
offers the potential advantage that broader ranges were likely to be observed on the
variables of interest, as individuals seeking a career in programming may represent
only a limited portion of the possible ranges. In short, the sample enabled an
establishment of the probable upper limit of likely associations among variables.
 In conclusion, the results suggest that programming ability can be predicted
from personality and aptitude measures. The demonstration that programming ability
is sensitive to individual differences further strengthens a growing perspective that
programming ability is not an independent trait.

 ACKNOWLEDGEMENTS

The author would like to thank Drs. Sing-Ling Lee, Nai-Wei Lin, Dong-Her Shih, and
D. T. Zhang for their supports in conducting the experiments.

 REFERENCES

[1] Baily, J. and S. W. Pearson, (1983). "Development of a Tool for Measuring

and Analyzing Computer User Satisfaction," Management Science, 29(5),
530-545.

[2] Barriff, M. L. and E. J. Lusk, (1977). "Cognitive and Personality Test for the
Design of Management Information Systems," Management Science, 23(8),
820-829.

[3] Barriff, M. L. and E. J. Lusk, (1978). "Designing Information System for
Organizational Control: The Use of Psychological Tests," Information and
Management, 1 (3), 113-121.

[4] Barron, D. W. (1977). An Introduction to the Study of Programming
Languages, Cambridge: Cambridge University Press.

[5] Benson, David (1983). "A Field Study of End User Computing: Findings and
Issues," MIS Quarterly, (December), 35-45.

[6] Brooks, R. (1977). "Towards a Theory of the Cognitive Processes in
Computer Programming," International Journal of Man-Machine Studies, 9,
737-751.

[7] Chen, H. G. and R. Vecchio, (1992). "Nested IF-THEN-ELSE Constructs in

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 103

End-User Computing: Personality and Aptitude as Predicators of
Programming Ability," International Journal of Man-Machine Studies, 36,
843-859.

[8] Cheney, P. H., R. I. Mann, and D. L. Amoroso, (1986). "Organizational
Factors Affecting the Success of End-User Computing," Journal of
Management Information Systems, 3(1), 65-80.

[9] Dambrot, F. H., M. A. Watkin-Malek, M. S. Silling, R. S. Marshall, and J. A.
Garver, (1985). "Correlates of Sex Differences in Attitudes Toward and
Involvement with Computers," Journal of Vocational Behavior, 27(1), 71-86.

[10] DeLone, W. H. (1988). "Determinants of Success for Computer Usage in
Small Business," MIS Quarterly, 12(1), 51-61.

[11] Dickson, G. W., R. L. Leitheiser, J. C. Wetherbe, and M. Nechis, (1984).
"Key Information Systems Issues for the 1980's," MIS Quarterly, 8(3), 135-
159.

[12] Doll, W. and G. Torkzadeh, (1988). "The Measurement of End-User
Computing Satisfaction," MIS Quarterly, (June), 259-274.

[13] Emply, D. W. (1978). "Emperical and Formal Language Design Applied to a
Unified Control Structure," International Journal of Man-Machine Studies,
10, 197-216.

[14] Eysenck, M. W. (1977). Human Memory: Theory, Research and Differences,
Oxford: Pergamon Press.

[15] Goodwin, N. C. (1987). "Functionality and Usability," Communications of the
ACM, 30(3), 229-233.

[16] Green, T. R. G. (1977). "Conditional Program Statements and Their
Comprehensibility to Professional Programmer," Journal of Occupational
Psychology, 50, 205-216.

[17] Green, T. R. G. (1980). "IFs and THENs: Is Nesting Just for the Birds?'
Software-Practice and Experience, 10, 373-381.

[18] Helander, M. Ed. (1988). Amsterdam: North-Holland. Handbook of Human-
Computer Interaction

[19] Howard, G. S. and R. Smith, (1986). "Computer Anxiety in Management:
Myth or Reality?," Communications of the ACM, 29(7),611-615.

[20] Hunt, E., N. Frost, and C. Lunneborg, (1973). "Individual Differences in
Cognition: A New Approach to Intelligence," in G. H. Bower,(ed.) The
Psychology of Learning and Memory, New York: Academic Press.

 [21] Hunt, E., and M. Lansman, (1975). "Cognitive Theory Applied to Individual
Differences," in W. K. Estes,(ed.) Handbook of Learning and Cognitive
Processes, Hillsdale, N. J: Lawrence Erlbaum Associates.

[22] Igbaria, M., F. N. Pavri, F. N. and Sid L. Huff, (1989). "Microcomputer
Applications: An Empirical Look at Usage," Information and Management,
16, 187-196.

[23] Igbaria, M. and S. Parasuraman, (1989). "A Path Analytic Study of Individual
Characteristics, Computer Anxiety and Attitudes Toward Microcomputers,"
Journal of Management, 15(3), 373-388.

[24] Kernighan, B. W. and P. M. Plauger, (1974). "Programming Style:Examples
and Counter-examples," Computer Surveys, 6, 303-319.

[25] Lucas, H. C. (1978). "Empirical Evidence for a Descriptive Model of

 104 Chen

Implementation," MIS Quarterly, 2(2),27-41.
[26] Lucas, H. C. and N. Nielsen, (1980). "The Impact of the Mode of Information

Presentation on Learning and Performance," Management Science, 26(10),
982-993.

[27] Mason, R. O. and I. I. Mitroff, (1973). "A Program for Research on
Management Information System," Management Science, 19(5), 475-487.

[28] Matta, K. M. and G. Kern, (1991). "Interactive Videodisc Instruction: The
Influence of Personality on Learning," International Journal of Man-Machine
Studies, 35, 541-552.

[29] Mclean, E. R. (1979). "End User as Application Developers," MIS Quarterly,
(December), 37-46.

[30] Miller, G. A.(1956). "The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information," Psychol. Rev., 63, 81-97.

[31] Myers, I. B. and M. H. McCaulley, (1988). Manual: A Guide to the
Development and Use of M.B.T.I. Palo Alto, CA: Consulting Psychologists
Press.

[32] Newsted, P. R. (1975). "Grade and Ability Prediction in an Introductory
Programming Course," ACM SIGLSE Bulletin, 7(2), 87-91.

[33] Ormerod, T. C., K. I. Manktelow, E. H. Robson, and A. P. Steward, (1986).
"Content and Representation Effects with Reasoning Tasks in Prolog Form,"
Behavior and Information Technology, 5 (2), 157-168.

[34] Pask, G. (1976). "Styles and Strategies of Learning," British Journal of
Educational Psychology, 46, 128-148.

[35] Poplin, M. S., D. E. Drew, and R. S. Gable, (1984). CALIP-Computer,
Aptitude, Literacy, and Interest Profile, Austin, TX: Pro-ed.

[36] Pracht, W. E. and J. F. Courtney, (1988). The Effects of an Interactive
Graphics-Based DSS to Support Problem Structuring, Decision Science,
19,598-621.

[37] Raub, A. C. (1981). Correlates of Computer Anxiety in College Students.
Unpublished Ph.D. Dissertation, University of Pennsylvania, PA.

[38] Richards, M. (1976). "Programming Structure, Style and Efficiency", in
Structured Programming: An Infotech State-of-the-Art Report, 13-28,
Maidenhead: Infotech.

[39] Rivard, S. and S. L. Huff, (1988). "Factors of Success for End-User
Computing," Communications of the ACM, 31(5), 552-561.

[40] Rockart, J. F. and L. S. Flannery, (1983). "The Management of End User
Computing," Communications of the ACM, 26(10), 776-784.

[41] Sandman, R. S. (1979). Mathematics Attitude Inventory, Minnesota: Research
and Evaluation Center, University of Minnesota.

[42] Shneiderman, B. (1980). Software Psychology Little, Brown and Company.
[43] Sime, M. E., T. R. G. Green, and D. J. Guest, (1973). "Psychological

Evaluation of Two Conditional Constructions Used in Computer Languages,"
International Journal of Man-Machine Studies, 5, 123-143.

[44] Sime, M. E., T. R. G. Green, and D. J. Guest, (1977). "Scope Marking in
Computer Conditionals-- A Psychological Evaluation," International Journal
of Man-Machine Studies, 9, 107-118.

[45] Soloway, E., J. Bonar, and K. Ehrlich, (1983). "Cognitive Strategies and

INTERNATIONAL JOURNAL OF BUSINESS, 2(2), 1997 105

Looping Constructs: An Empirical Study," Communications of the ACM,
26(11), 853-860.

[46] Taylor, R. N. and M. D. Dunnette, (1974). "Relative Contribution of
Decision-Maker Attributes to Decision Process," Organizational Behavior
and Human Behavior, 12, 286-298.

[47] Tracz, W. J. (1979). "Computer Programming and Human Thought Process,"
Software-Practice and Experience, 9, 127-137.

[48] Van der Veer, G. and Wolde J. van der Veer (1983). "Individual Differences
and Aspects of Control Flow Notation," in T. R. G. Green, S. J. Payne and van
der Veer (Eds.) The Psychology of Computer Use, London: Academic Press.

[49] Vessey, I. and Ron Weber, (1984). "Research on Structured Programming: An
Empiricist's Evaluation," IEEE Transactions on Software Engineering, SE-
10(4), 397-407.

[50] Walthner, G. H. and H. F. O'Neil, (1974). "On-Line User-Computer Interface:
The Effects of Interface Flexibility, Terminal Type, and Experience on
Performance," Proceedings of the National Computer Conference, AFIPS
press, Montuale, NJ.

[51] Weinberg, G. M. (1971). The Psychology of Computer Programming, Van
Nostrand Reinhold Company.

[52] Wolfe, J. M. (1982). Wolfe Programming Aptitude Test, Oradell, NJ: Wolfe
Testing Ltd.

[53] Wynne, B. E. and G. W. Pickson, (1976). "Experienced Managers'
Performance in Experimental Man-Machine Decision System Simulation,"
Academy of Management Journal, 18(1), 25-40.

[54] Zmud, R. (1979). "Individual Differences and MIS Success: A Review of the
Empirical Literature," Management Science, 25(10),966-979.

	User Attitudes
	Situational Factors
	Formats of IF-THEN-ELSE Constructs
	Testing Problem
	Experimental Prototype
	Effects of Short-Term Memory

