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Abstract. We demonstrate that eigenvalue problems for ordinary differential equations

can be recast in a formulation suitable for the solution by polynomial collocation. It is

shown that the well-posedness of the two formulations is equivalent in the regular as well

as in the singular case. Thus, a collocation code equipped with asymptotically correct

error estimation and adaptive mesh selection can be successfully applied to compute

the eigenvalues and eigenfunctions efficiently and with reliable control of the accuracy.

Numerical examples illustrate this claim.
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1. INTRODUCTION

We discuss the numerical solution of eigenvalue problems for singular ODEs. To keep

the presentation simple, we will focus on linear first order problems

z′(t) − A(t)z(t) = λz(t), t ∈ (0, 1], (1)

B0z(0) + B1z(1) = 0. (2)

The problem is to determine the eigenvalues λ ∈ C such that a nontrivial vector-

valued eigenfunction z ∈ C[0, 1], z(t) ∈ C
n, satisfying (1) and (2) exists. For the

uniqueness of the eigenfunctions the normalization condition

1
∫

0

|z(τ)|2 dτ = 1 (3)
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is imposed, which serves the purpose in the case that the eigenspace associated with λ

has dimension one. We will restrict ourselves to problems satisfying this assumption,

which are most common in applications, see also Section 2.

Our main interest is in singular problems, where

A(t) = M(t)/tα, α ≥ 1. (4)

In the case of α = 1, the problem has a singularity of the first kind, while for α > 1

we speak of an essential singularity or singularity of the second kind. For a discussion

of the eigenvalue problem (1), (2), particularly in the singular case, see Section 2.

For the numerical computation of the eigenvalues and eigenfunctions, we rewrite

the problem by introducing the following auxiliary quantities: We formally interpret

λ as a function of t and add the auxiliary differential equation

λ′(t) = 0. (5)

We define

x(t) :=

t
∫

0

|z(τ)|2 dτ, (6)

we obtain a further differential equation involving a quadratic nonlinearity, and two

additional boundary conditions:

x′(t) = |z(t)|2, x(0) = 0, x(1) = 1. (7)

The resulting augmented system is a boundary value problem in standard form for

the set of unknowns z(t), λ(t) and x(t) without any further unknown parameters,

see also Section 2. This system is subsequently solved by polynomial collocation.

In this way, at some extra cost, we can make use of the elaborate theory and

practical usefulness of these methods, particularly for singular problems, and use

a code developed by the authors featuring asymptotically correct error estimation

and adaptive mesh selection for an efficient solution of the problem, see Section 3.

Numerical results demonstrating the success of this approach are given in Section 4.

Remark. Our treatment can easily be extended to Sturm–Liouville problems of second

order,

y′′(t) − A1(t)y
′(t) − A0(t)y(t) = λg(t)y(t), t ∈ (0, 1], (8)

B0(y(0), y′(0))T + B1(y(1), y′(1))T = 0. (9)

Transformation to a first order system yields a problem with a more general dependence

on λ. Our approach naturally incorporates such problems as well, in fact the approach

is applicable without modification to any problem with an unknown parameter,

z′(t) = f(t, z(t);λ), t ∈ (0, 1], (10)
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b(z(0), z(1)) = 0. (11)

Since the sufficient conditions backing application of our solution approach are most

readily formulated for the linear eigenvalue problem (1), (2) with normalization (3),

we will restrict our attention to this case. However, numerical examples in Section 4

also comprise more general situations, particularly (8), (9).

2. EIGENVALUE PROBLEMS IN ODEs

There is an abundant literature on the theory and numerical solution of eigenvalue

problems for ODEs, particularly for the practically relevant case of Sturm–Liouville

problems (8), (9). For a comprehensive overview, see for example the monograph

[17], which also includes a discussion of the singular case. We do not attempt to give

a complete picture here, but rather cite two results which apply directly to first order

problems (1), (2) with singularity (4). In [11, Theorem 10.1] and [12, Theorem 7.1],

the following result is proven for a generalized eigenvalue problem with a singularity

of the first and of the second kind, respectively:

Theorem 2.1. Consider the generalized eigenvalue problem

Lz = z′(t) − M(t)/tα = λG(t)z(t), t ∈ (0, 1], (12)

B0z(0) + B1z(1) = 0, (13)

where the matrices M(0) and B0, B1 are such that Lz = 0 has a unique, smooth

solution. Then:

— The spectrum Λ has no finite limit point. For λ 6∈ Λ, (L − λG)−1 exists and is

compact.

— Let us define

Pλ0
:= −

1

2πi

∫

Γ

(L − λG)−1G dλ,

where λ0 ∈ Λ, Γ = {λ : |λ − λ0| = δ} and δ is so small that there is no λ1 ∈ Λ

with |λ1 − λ0| ≤ δ. Then Pλ0
is a projection with a finite-dimensional range

which is invariant under the mapping (L − λG)−1G, λ 6∈ Λ.

Remarks:

— The formulation as generalized eigenvalue problem (12) also includes cases re-

sulting from the transformation of eigenvalue problems of higher order like (8),

(9) to the first order form, see [11].

— The Fredholm theory for the operator L and smoothness results for the solutions,

depending on the eigenvalues of M(0), are derived in [11] and [12]. Also, cor-

responding smoothness results for the eigenfunctions are formulated. We do not

give details here.

Collocation methods for the solution of eigenvalue problems (. . . ) 231



— The result for the spectral projection Pλ0
means that the linear space of genera-

lized eigenfunctions associated with the eigenvalue λ0 has finite dimension. The

more restricted assumption that this space has dimension one, which underlies

normalization condition (3) yielding a unique eigenfunction, cannot be concluded

from Theorem 2.1. Rather, this has to be verified separately for each particular

problem. However, some results are available for particular problem types, see for

instance Theorem 2.2 below.

— In [11], the numerical solution of singular eigenvalue problems (12), (13) is also

discussed, and matrix methods based on finite difference schemes as described

and analyzed in [15] are considered, see also [17]. It is shown representatively

for the box scheme that the eigenvalues of the discrete system converge to the

solution of the analytical system.

As an example of a theoretical result backing our approach, consider the following

assertion which readily follows from the results cited in Section 4 of [9] (see also [16]):

Theorem 2.2. Consider the self-adjoint Sturm–Liouville problem with real coefficient

functions and separated boundary conditions,

(Ly)(t) = −(py′)′(t) + q(t)y(t) = λg(t)y(t), t ∈ (0, 1], (14)

a0y(0) + b0(py)′(0) = 0, a1y(1) + b1(py)′(1) = 0, (15)

a2
0+b2

0 > 0, a2
1+b2

1 > 0. Assume that p, q > 0 on (0, 1] and 1/p, q and g are continuous

functions satisfying 1/p, q, g ∈ L1[0, α) for some α > 0. Then there exists an infinite,

countable set of isolated real eigenvalues λk, and the associated eigenfunctions yk(t)

are unique to constant multiples, i.e., each eigenspace has dimension one.

Theorem 2.2 describes a standard situation where the coefficient functions are

admitted to show a weakly singular behavior, such that t = 0 is a ‘regular endpoint’

in the terminology of [9]. For p(t) = 1 and q(t) = t−α, for instance, 0 is a regular

endpoint for α < 1. For the case of singular endpoints, the corresponding theory

involves additional assumptions and a distinction of different types of boundary

conditions. For details we refer the reader to [8]–[10].

3. AUGMENTED SYSTEMS AND COLLOCATION METHODS

We propose to solve eigenvalue problem (1)–(3) by using the augmented system (1),

(2), (5), and (7). This is a first order, explicit, nonlinear boundary value problem.

We will first demonstrate that this problem is well-posed if and only if the original

eigenvalue problem is well-posed. We first consider the regular case. To this end, we

show that the solution of eigenvalue problem (1)–(3) is isolated in the sense of [13]

if and only if the solution of the augmented system has this property. This means

that the numerical solution can be safely computed for sufficiently accurate starting

values. Clearly, since the solutions of the two formulations are equivalent, we conclude
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that the augmented system represents a valid alternative for the computation of the

eigenvalues and eigenvectors of (1), (2).

To discuss whether the solutions of the original and the augmented problem are

isolated, we show that unique solvability of the linearization is equivalent for the two

formulations [13]. We first rewrite the problems as operator equations

F (z, λ) = 0, (16)

where

F : B1 → B2,

F
(

z(·), λ
)

(t) =

















z′(t) − (A(t) + λI)z(t)
∫ 1

0
zT (τ)z(τ) dτ − 1

B0z(0) + B1z(1)

















,

B1 = C1[0, 1] × C, B2 = C[0, 1] × C×C
n,

and

F̂ (z, λ, x) = 0, (17)

where

F̂ : B̂1 → B̂2,

F̂
(

z(·), λ(·), x(·)
)

(t) =









































z′(t) − (A(t) + λ(t)I)z(t)

λ′(t)

x′(t) − zT (t)z(t)

B0z(0) + B1z(1)

x(0)

x(1) − 1









































,

B̂1 = C1[0, 1] × C1[0, 1] × C1[0, 1],

B̂2 = C[0, 1] × C[0, 1] × C[0, 1] × C
n ×C×C .

It is readily observed that the corresponding homogeneous linearized equations are

given by

DF
(

z(·), λ
)









h(·)

µ








(t) =

















h′(t) − (A(t) + λI)h(t) − µz(t)
∫ 1

0
2 Re

(

(zT (τ)h(τ)
)

dτ

B0h(0) + B1h(1)

















= 0, (18)

and

DF̂
(

z(·), λ(·), x(·)
)

















h(·)

µ(·)

v(·)

















(t) =









































h′(t) − (A(t) + λ(t)I)h(t) − µ(t)z(t)

µ′(t)

v′(t) − 2 Re
(

zT (t)h(t)
)

B0h(0) + B1h(1)

v(0)

v(1)









































= 0, (19)
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respectively. It is easy to see that the question of unique solvability of the linearized

equations is equivalent for both formulations.

The argument also applies to the singular case. This is also reflected when we

consider the sufficient conditions given in [11, Theorem 3.1] and [12, Theorem 3.2],

respectively, for the Fredholm alternative of the involved operators. We do not carry

out the argument in detail to avoid overboarding notation, but sketch the proof

for the case of a singularity of the first kind. Let S denote the projection onto

the invariant subspace associated with the eigenvalues with positive real part of

the matrix M(0) from (4), R the projection onto the nullspace of that matrix, and

P = S + R. If

rank[B0R,B1] = rank(P ), (20)

then boundary value problem (1), (2) has a unique solution for every fixed λ (note

that with slight abuse of notation the linearized problem (18) has a similar structure).

In the augmented system for DF̂ , the matrix [B0R,B1] is augmented by two linearly

independent rows. Likewise, the rank of P is increased by two, and thus the relation

corresponding to (20) is equivalent to its original version for DF . A similar argument

applies for the condition formulated in [12, Theorem 3.2].

To solve problem (1), (2), (5), and (7) numerically, we use polynomial collocation.

This is a common and well-established solution method for boundary value problems

in ODEs, see for example [2]. Collocation means that the solution is approximated

by a continuous, piecewise polynomial function p(t) satisfying the augmented ODE

system in a pointwise sense at a certain number of collocation nodes ti,j ∈ (0, 1],

together with the associated boundary conditions. Many standard implementations

of these methods exist on different platforms [1, 3, 18].

The collocation approach is particularly suited for the solution of singular pro-

blems [5, 6, 14]. In the implementation which we use for the purpose of solving

eigenvalue problems [3], the efficient and reliable approximation of the solution is

guaranteed by adaptive mesh selection [7] based on asymptotically correct estima-

tion of the global error [4, 6, 14]. From the theoretical results it is clear that this

solution approach will work well for boundary value problem (1), (2), (5), and (7).

We will demonstrate in Section 4 that with this approach we are able to compute

the eigenvalues and eigenfunctions of problem (1)–(3) efficiently and reliably to high

accuracy given by prescribed tolerance requirements.

4. NUMERICAL RESULTS

In this section we illustrate the performance of our approach. As proposed in Sec-

tion 3, we solve the original eigenvalue problem (1)–(3) by computing the solution

of the augmented system (1), (2), (5), and (7). For the numerical treatment we used

our Matlab code sbvp, see [3], which is available from http://www.mathworks.com

/matlabcentral/fileexchange. This code was designed to solve efficiently bounda-

ry value problems with singular endpoints of the type arising in all model problems

discussed in this section.
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For our tests we have selected some model problems discussed in the relevant

literature, cf. in particular [9], [19]. We first consider the well-known Bessel equation,

−y′′(t) +
c

t2
y(t) = λy(t), t ∈ (0, π], (21)

y(0) = 0, y(π) = 0, (22)

with c ∈ R. For c = 0, the exact solution reads λ⋆
k = k2, yk(t) = sin(kt), k ∈ N. For

c 6= 0, the Bessel equation is singular with a singularity of the first kind. In order to

derive the associated first order system we apply the standard transformation (z1(t),

z2(t))
T := (y(t), y′(t))T to (21). This, together with z3(t) := λ(t) and z4(t) := x(t),

cf. (5) and (7), respectively, yields the augmented system in first order form,

z′(t) =
1

t2

























0 t2 0 0

c 0 0 0

0 0 0 0

0 0 0 0

























z(t) +

























0

−z1(t)z3(t)

0

z2
1(t)

























, t ∈ (0, π], (23)

























1 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

























z(0) +

























0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 1

























z(π) =

























0

0

0

1

























. (24)

Note that this first order system is essentially singular. The numerical results for

different values of c are given in Tables 1– 3 and Figure 1. In all tables we use λ
(0)
k

to denote the starting value for the approximation λk. Moreover, Nk is the number

of points in the final grid which was necessary to satisfy the prescribed tolerance

requirements. The approximations for the eigenvalues λk and eigenfunctions
1) yk(t)

were computed using default tolerances absTOL = 10−6 and relTOL = 10−3. For

c = 0, the exact solution has been used for the calculation of the absolute and relative

errors. In order to determine the errors in case of c = 3 and c = 4, we also computed

related reference solutions using stricter tolerances, absTOL = relTOL = 10−8. Here,

Nref
k is the respective number of grid points in the final mesh.

Table 1. Bessel equation, c = 0

λ
(0)
k

λk λ⋆
k

abs. error rel. error Nk

2.00 9.99999979 e−01 1.00000000 e+00 2.086878 e−08 2.0869 e−08 32

5.00 4.00000001 e+00 4.00000000 e+00 6.622438 e−09 1.6556 e−09 32

10.00 9.00000041 e+00 9.00000000 e+00 4.145668 e−07 4.6063 e−08 32

20.00 1.60000002 e+01 1.60000000 e+01 1.702868 e−07 1.0643 e−08 32

30.00 2.50000010 e+01 2.50000000 e+01 9.929543 e−07 3.9718 e−08 32

1) Note that the eigenfunction yk(t) is the first component of the vector z(t) associated with
the eigenvalue λk, so the more precise notation would be z1,k(t).
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Table 2. Bessel equation, c = 3

λ
(0)
k

λk λ
ref
k

abs. error rel. error Nk N
ref
k

5.00 2.41710617 e+00 2.41710621 e+00 3.955774 e−08 1.6366 e−08 32 766

8.00 6.72365318 e+00 6.72365302 e+00 1.534105 e−07 2.2817 e−08 32 513

20.00 1.30275016 e+01 1.30275009 e+01 7.543607 e−07 5.7905 e−08 32 663

30.00 2.13307309 e+01 2.13307282 e+01 2.609459 e−06 1.2233 e−07 32 819

Table 3. Bessel equation, c = 4

λ
(0)
k

λk λ
ref
k

abs. error rel. error Nk N
ref
k

5.00 2.75408474 e+00 2.75408479 e+00 4.798895 e−08 1.7425 e−08 32 339

10.00 7.32285253 e+00 7.32285252 e+00 8.971130 e−09 1.2251 e−09 32 820

20.00 1.38865475 e+01 1.38865474 e+01 9.957818 e−08 7.1708 e−09 32 600

26.50 2.24490247 e+01 2.24490241 e+01 6.039615 e−07 2.6904 e−08 32 765

Fig. 1. Eigenfunctions for the Bessel equation, c = 3: y1 – solid line, y2 – dotted line,

y3 – dashed-dotted line, y4 – dashed line

The next model equation, cf. [19], has the form

̺′′(r) +
n − 1

r
̺′(r) = λ̺(r), r ∈ [0, a], (25)

̺(a) = 0, ̺′(0) = 0, (26)

with n = 3 and a = 1. Here, the exact eigenvalues are known to satisfy λ⋆
k = −(kπ)2,

k ∈ N. The problem is singular with a singularity of the first kind. In order to

derive the associated first order system we apply the so-called Euler transformation

(z1(r), z2(r))
T :=

(

̺(r), r̺′(r)
)T
to (25). Together with z3(r) := λ(r) and z4(r) :=
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x(r) we obtain the augmented first order system,

z′(r) =
1

r

























0 1 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

























z(r) +

























0

r z3(r)z1(r)

0

z2
1(r)

























, r ∈ (0, 1],

























0 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

























z(0) +

























1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

























z(1) =

























0

0

0

1

























.

The approximations for the eigenvalues are displayed in Table 4, the associated

eigenfunctions can be found in Figure 2.

Table 4. Model problem from [19]: a = 1, n = 3

λ
(0)
k

λk λ⋆
k

abs. error rel. error Nk

−10.00 −9.86960440 e+00 −9.86960440 e+00 9.848122 e−12 9.9782 e−13 32

−39.48 −3.94784177 e+01 −3.94784176 e+01 1.010882 e−07 2.5606 e−09 32

−90.00 −8.88264376 e+01 −8.88264396 e+01 2.052493 e−06 2.3107 e−08 32

−158.00 −1.57913672 e+02 −1.57913670 e+02 1.179932 e−06 7.4720 e−09 32

−245.00 −2.46740123 e+02 −2.46740110 e+02 1.255438 e−05 5.0881 e−08 32

Fig. 2. Eigenfunctions for the model problem from [19]: y1 – solid line, y2 – dotted line,

y3 – dashed-dotted line, y4 – dashed line, y5 – fine dotted line

The final test problem is the so-called Boyd equation, see [9],

−y′′(t) −
1

t
y(t) = λy(t), t ∈ (0, 1], (27)

y(0) = 0, y(1) = 0. (28)
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The augmented first order formulation now reads:

z′(t) =
1

t

























0 1 0 0

−t 1 0 0

0 0 0 0

0 0 0 0

























z(t) +

























0

−t z3(t)z1(t)

0

z2
1(t)

























, t ∈ (0, 1],

























1 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

























z(0) +

























0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 1

























z(1) =

























0

0

0

1

























.

The numerical results are very similar to those given before, cf. Table 5 and

Figure 3.

Table 5. Boyd equation

λ
(0)
k

λk λ
ref
k

abs. error rel. error Nk N
ref
k

1.00 7.37398502 e+00 7.37398502 e+00 3.559406 e−09 4.8270 e−10 32 153

40.00 3.63360196 e+01 3.63360196 e+01 5.270783 e−08 1.4506 e−09 32 267

80.00 8.52925811 e+01 8.52925821 e+01 9.478771 e−07 1.1113 e−08 32 425

155.00 1.54098619 e+02 1.54098624 e+02 4.293315 e−06 2.7861 e−08 32 583

250.00 2.42705545 e+02 2.42705559 e+02 1.420079 e−05 5.8510 e−08 32 741

Fig. 3. Eigenfunctions for the Boyd equation: y1 – solid line, y2 – dotted line,

y3 – dashed-dotted line, y4 – dashed line, y5 – fine dotted line

Finally, in Table 6 we list the empirical order of convergence obtained for a

collocation solution of order p = 4, collocating at equidistant collocation points. In

this case the eigenvalues and eigenfunctions were computed on equidistant grids with

decreasing stepsizes h. To obtain a reference solution, we executed our program using

the tolerances absTOL = relTOL = 10−10, utilizing error estimate and grid adaptivity.
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Table 6. Convergence order for the collocation solution to the Boyd equation

h
˛

˛λh − λref
˛

˛

‚

‚yh − yref
‚

‚

∆
cλ pλ cy py

λ ≈ 7.3740
2.50 e−01 1.029 e−03 1.213 e−04

1.25 e−01 4.854 e−05 9.160 e−06 2.983 e−03 4.41 2.986 e−04 3.73

6.25 e−02 2.317 e−06 6.388 e−07 2.936 e−03 4.39 3.322 e−04 3.84

3.13 e−02 5.944 e−08 4.279 e−08 1.262 e−02 5.29 3.652 e−04 3.90

1.56 e−02 5.992 e−08 3.017 e−09 5.786 e−08 −0.01 3.078 e−04 3.83

7.81 e−03 6.667 e−08 1.283 e−09 3.767 e−08 −0.15 1.242 e−07 1.23

λ ≈ 36.334
2.50 e−01 8.215 e−02 2.638 e−03

1.25 e−01 4.744 e−03 1.934 e−04 2.220 e−01 4.11 6.558 e−03 3.77

6.25 e−02 2.476 e−04 1.691 e−05 2.544 e−01 4.26 5.169 e−03 3.52

3.13 e−02 1.146 e−05 2.767 e−06 3.369 e−01 4.43 1.189 e−03 2.61

1.56 e−02 1.128 e−06 1.886 e−06 2.697 e−02 3.35 9.988 e−06 0.55

7.81 e−03 1.839 e−06 1.853 e−06 1.350 e−07 −0.70 2.034 e−06 0.03

λ ≈ 85.293
2.50 e−01 6.566 e−01 1.304 e−02

1.25 e−01 5.976 e−02 1.102 e−03 1.514 e+00 3.46 3.086 e−02 3.56

6.25 e−02 3.453 e−03 9.645 e−05 2.793 e+00 4.11 2.947 e−02 3.52

3.13 e−02 1.967 e−04 7.432 e−06 2.888 e+00 4.13 3.969 e−02 3.70

1.56 e−02 1.193 e−05 5.062 e−07 2.341 e+00 4.04 5.997 e−02 3.88

7.81 e−03 3.675 e−06 7.690 e−08 1.999 e−03 1.70 1.834 e−03 2.72

λ ≈ 154.10
2.50 e−01 6.702 e−01 1.853 e−01

1.25 e−01 3.205 e−01 3.934 e−03 8.667 e−01 1.06 7.099 e−01 5.56

6.25 e−02 2.097 e−02 3.270 e−04 1.267 e+01 3.93 1.126 e−01 3.59

3.13 e−02 1.231 e−03 2.659 e−05 1.634 e+01 4.09 1.186 e−01 3.62

1.56 e−02 7.127 e−05 2.349 e−06 1.716 e+01 4.11 8.983 e−02 3.50

7.81 e−03 2.202 e−05 2.110 e−06 1.177 e−02 1.69 3.743 e−06 0.15

λ ≈ 242.71
2.50 e−01 4.800 e+00 1.264 e−01

1.25 e−01 1.058 e+00 9.736 e−03 8.132 e+00 2.18 3.089 e−01 3.70

6.25 e−02 8.186 e−02 8.353 e−04 3.336 e+01 3.69 2.671 e−01 3.54

3.13 e−02 5.005 e−03 7.005 e−05 5.798 e+01 4.03 2.817 e−01 3.58

1.56 e−02 3.031 e−04 8.057 e−06 5.991 e+01 4.05 9.784 e−02 3.12

7.81 e−03 2.051 e−05 4.462 e−06 3.695 e+01 3.89 1.052 e−04 0.85

The norm of the absolute error for an eigenfunction yh(t),
∥

∥yh − yref
∥

∥

∆
, has been

calculated by taking a discrete maximum of
∣

∣yh(t) − yref(t)
∣

∣ from its evaluation at

1,000 equidistantly spaced points in the interval of integration. In order to estimate

the error constant c and the convergence order p, we have assumed that the stepsize

h is small enough to justify the following asymptotic behavior:

|λh − λ⋆| = cλhpλ , ‖yh − y⋆‖
∞

= cyhpy .

Using the data associated with two consecutive grids, we were able to provide the

approximations for the values cλ, pλ and cy, py. In Table 6, the order p = 4 both

for the convergence towards the eigenvalues and the eigenfunctions can be clearly
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observed. Note that the accuracy of the reference solution constitutes a limitation

for the range of observability of the convergence order.
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