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ABSTRACT 

Data interrogation methodologies are needed for identifying loads 
and faults in suspensions, tires, and other vehicle components to help 
design more durable systems and reduce the total cost of ownership. 
The application of passive and active data interrogation methodologies 
to passenger vehicle suspension systems is discussed here.  

For passive diagnostics, operating acceleration response data in 
conjunction with fundamental mechanics models are utilized. 
Mechanical faults in suspension components, e.g. degradation to 
shock, are identified using force state maps and transmissibility 
functions. First, it is shown that damage causes changes in the 
frequency characteristics of restoring forces, provided by the force 
state maps, which help to detect damage. Second, autoregressive 
nonlinear transmissibility models are used to locate faults and also 
characterize the degree to which faults alter nonlinear correlations in 
the response data. Force state maps are suited to narrow band inputs 
(e.g., sinusoidal) and transmissibility models are suited to broad-band 
inputs (e.g., random). This difference in preferential bandwidth for the 
two different data analysis methods motivates the selection of the 
diagnostic algorithm in an event-driven manner. 

For active diagnostics, experimental sensitivity functions, which 
are algebraic combinations of measured frequency response data, 
estimate the change in the forced response of the system with 
perturbation in stiffness or damping. By comparing the sensitivity 
functions to finite difference functions, faults can be detected, located, 
and quantified. The passive and active techniques are applied to 
experimental vehicle data and various issues (e.g., quantifying faults) 
are discussed. 
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NOMENCLATURE 
C          Damping 
K          Stiffness 
M         Mass 
MDOF   Multiple degrees of freedom 
A(ω)     Auto-regressive coefficient 
B(ω)     Exogenous coefficient 
F(ω)    Fourier transform of the measured force history 

)(ωjkH
   

Frequency response function (FRF) between j and k 

Kmn       Stiffness between m and n 
)]()(),(),([ 2121 txtxtxtxNk    Nonlinear forces 

iℜ        Set of Real numbers 

)( ωjX ,Y(k)  Fourier transform of measured time history 
)(tx        Measured acceleration time history  

j,k,m,n  Degrees of freedom 
 
 
1   INTRODUCTION 

There is a trend in the automotive industry towards the 
manufacture of integrated suspension systems in contrast to the 
historical approach where suspension components supplied by 
different manufacturers were assembled. The benefit is that integrated 
modules manufactured by one company, with design authority over all 
interconnected components, have higher performance and last longer. 
Integrated suspension modules incorporate subsystems including 
shock absorbers, struts, torsion bars, mounts, etc., leading to complex 
loading and degradation mechanisms.  These loads and forms of 
degradation lead to anticipated and unanticipated failure mechanisms 
in components and subsystems. The consequences of degradation are 
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undue warranty costs and overly aggressive maintenance schedules, 
which both lead to increased cost of vehicle ownership. These high 
costs warrant the development of data interrogation methodologies to 
identify loads and faults in vehicle suspensions (e.g., bushing rupture, 
joint preload, leaky shock, warped torsion bar).  This information in 
turn will help to design more durable suspension systems.  

Various vibration-based damage identification techniques have 
been developed. Doebling et al. [1,2] presented a literature review of 
methods based on changes in the vibration characteristics of 
mechanical systems. This paper presents three such vibrations-based 
methods.  

Rytter [3] defines four levels of damage identification, as follows: 
• Level 1: Determination that damage is present in the structure. 
• Level 2: Level 1 plus the determination of the geometric 

location of the damage. 
• Level 3: Level 2 plus quantification of the severity of the 

damage. 
• Level 4: Level 3 plus prediction of the remaining service life 

of the structure. 
The techniques presented here work up to level three, i.e. detect, 
locate and quantify damage. Both passive and active data interrogation 
methodologies are utilized. The passive methods utilize response 
acceleration data along with fundamental mechanics models.  One 
passive method is the restoring force technique, which was presented 
by Masri et al. [4,5], who used recursive least squares for linear 
parameter identification and a non-parametric method for expressing 
the nonlinear characteristics in terms of orthogonal functions. Haroon 
et al. [6] extended the technique to nonlinear characterization and 
system identification of mechanical systems in the absence of an input 
measurement. In this paper, the restoring force technique is used to 
characterize the internal forces in the components of a ground vehicle 
suspension system and to identify damage using changes in the 
internal forces caused by degradation. This technique is more suited to 
narrow-band inputs (e.g., sinusoidal). 

The second passive technique is based on the Discrete Frequency 
Domain Models presented by Adams and Allemang [7]. Adams [8] 
used these models to develop frequency domain auto-regressive 
exogenous input (ARX) models, which relate the response of a 
nonlinear system to the input and output at harmonics of the forcing 
frequency. These harmonic relationships indicate that the response of a 
nonlinear vibrating system at a particular frequency, ωk, X(ωk), is 
correlated with both the input(s) at that frequency, F(ωk), and the 
response at sub and super-harmonics of that frequency, X(ωk-i) and 
X(ωk+i). Adams and Farrar [9] applied frequency domain ARX models 
to damage identification. They developed features that can be used to 
detect changes in the linear and nonlinear behavior of structural 
systems with the onset of damage. Similar models are used here to 
detect and follow the progress of damage in a ground vehicle 
suspension system. When the transmissibility version of the ARX 
models is used, they can help to detect and locate damage. The reason 
for this dual capability is that transmissibility functions contain only 
the transmission zeros of the system and, hence, are sensitive to local 
changes in system characteristics [10,11]. This technique is more 
suited to broad-band inputs (e.g., random).  

The preferential frequency bandwidth of the two passive 
algorithms means that either of the two algorithms can be chosen in an 
event-driven manner. If the response measurements have narrowband 
frequency content, restoring forces can be used and if the frequency 
content is broadband, ARX (transmissibility function) models can be 
used. This frequency bandwidth requirement of these and other 
diagnostic algorithms can be used to select the algorithm best suited 
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for a particular observed/measured response, hence, the term event-
driven. 

The active technique uses experimental sensitivity functions 
developed by Yang et al. [12]. The technique involves experimentally 
estimating the sensitivity of a given vibration phenomenon to a system 
component parameter (mass, damping, stiffness). The sensitivity 
functions are algebraic combinations of measured frequency response 
function (FRF) data that determine how the forced responses of a 
structure change with perturbations in mass, damping, and stiffness. 
Johnson et al. [13] showed that these sensitivity functions can be used 
to detect, locate and quantify damage. By comparing the sensitivity 
functions with finite difference functions, level 3 damage 
identification can be performed. In this paper, experimental sensitivity 
functions are used to detect damage in a vehicle suspension system. In 
the absence of a force measurement, a fundamental mechanics model 
is used to estimate the force input to the spindle (unsprung mass) from 
the tire, using acceleration measurements at the tire patch. 

In the following sections, the three techniques described above 
are explained in more detail and then applied to experimental vehicle 
data with simulated damage.  

 
 
2   FRAMEWORK 

 
 

2.1   Passive Techniques 
 

 
2.1.1 Restoring Force. The restoring force is an internal force 

that opposes the motion of an inertial element within a system, i.e., the 
left hand side of Newton’s Second Law for a body with constant mass, 
m, and acceleration vector, a:  ΣF=ma. The stiffness and damping in a 
system resist the motion of a given inertia; consequently, the forces in 
the stiffness and damping elements are referred to as components of 
the restoring forces.  

The chief advantage of the restoring force technique is that it 
only requires that the output accelerations of a system be measured. 
Consider the two degree-of-freedom quarter car model shown in Fig. 
1. The equation for the sprung mass, M2, can be written using 
Newton’s Second Law to give the following expression for the 
restoring force in the suspension: 

 
 

          ( ) ( )
)](),(),(),([ 21211

2312212222

txtxtxtxN
xKxxKxxCxM

+
−−−−−=                (1) 

 
 

The relationships in the form of  plots between the acceleration of 
the sprung mass and the relative velocity or the relative displacement 
between the sprung mass and the unsprung mass allow the damping or 
stiffness restoring force, respectively, in the suspension to be 
estimated. There are two main features of restoring forces that make 
them suitable for damage detection:  

1) Restoring forces are determined by the damping and stiffness 
(linear or nonlinear) of a system. Structural damage often 
causes changes in these system parameters and, consequently, 
the restoring forces.  

2) Individual nonlinearities have distinct restoring forces and 
damage causes changes in the nonlinear characteristics, which 
can be indictors of damage.   
2 Copyright © 2005 by ASME 

e: http://www.asme.org/about-asme/terms-of-use



For example, Fig. 2 shows the damping and stiffness restoring 
force plots for a particular input amplitude and frequency showing the 
damping and stiffness nonlinearities observed in the strut of a 
suspension system of an experimental vehicle test bed. These plots 
illustrate the nature of nonlinear restoring forces. The frequency 
dependent nature of restoring forces dictate that the inputs be 
narrowband so that the characteristics, and changes in those 
characteristics, can be observed at particular discrete frequencies. Note 
that in experimental data analysis, acceleration measurements are the 
most convenient measurements to make and can also be integrated to 
estimate velocity and displacement time histories; therefore, restoring 
force methods are especially appropriate for experimental purposes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Quarter car model. 
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Fig 2: (a) Nonlinear shock damping showing saturation at a 

certain relative clearance velocity (Frequency 4.12 Hz) and (b) 
nonlinear hysteretic stiffness showing backlash characteristic 

(Frequency 4.5 Hz.); Input amplitude 0.5 mm. 
 

 
2.1.2 Frequency Domain Nonlinear ARX Models. The 

models, based on discrete frequency models (DFMs) developed in [7] 
and applied in [8,9], take the form 

 
 

(a) 

(b) 
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where k, r, s, (pr/qr)k, and (ps/qs)k are contained in iℜ , k is a simple 
frequency counter, U(k) is the input, and B(k) and Ar,s(k) are complex 
frequency coefficients. The first term is the exogenous component, 
which accounts for the nominal linear dynamics and the second term is 
the auto-regressive (AG) component, which accounts for the nonlinear 
frequency correlations. The rational number arguments, (pr/qr)k, are 
used to represent different harmonics of the excitation frequency. As 
stated earlier, Eq. (2) indicates that the harmonic response of a 
nonlinear system at each frequency is correlated with both the input 
and response at potentially all the harmonics of the input frequency. 
This multidimensional correlation is due to nonlinear feedback in the 
system. 

When the functions fr,s(.) are linear, they indicate in what 
frequency ranges the nonlinearity dominates but may not describe all 
of the nonlinear dependencies of the response on the input. Hence, Eq. 
(2) is a data model. When the fr,s(.) are nonlinear functions of the 
harmonics of the spectrum, Y(k), then the model can more fully 
describe different types of nonlinear behavior. In summary, the fr,s(.) 
determine the degree to which the nonlinear frequency domain ARX 
model is able to describe the behavior of the nonlinear system. 

As these models use frequency spectra of measured signals, and 
spectra are easier to obtain from signals with broad frequency content, 
this technique is suited to broad-band inputs (e.g., random). 

Equation (2) can be written as, 
 
 
                                  ( )Y k Dp=                                            (3) 

 
 
where p are the exogenous and auto-regressive coefficients and D 
contains the input and the terms fr,s(.). The optimum set of ARX 
coefficients, the ones that minimize the sum of the squared error, 
e(k).e(k), is given by the pseudo-inverse solution, p , to the over-
determined Eq. (3): 
 
 
                     1( ) ( ) ( )T Tp D Y k D D D Y k+ −= =                             (4) 
 
 
where D+ is the pseudo-inverse of D and TD is the transpose. 

The order of the nonlinear ARX model is determined by the 
number of auto-regressive (AG) terms that are included in the function 
fr,s(.), on one side of the frequency of interest, ωk. Two forms of the 
ARX model are used in this paper. 
 

 
1st Order, Linear: 
 
 
             1

1 0

( ) ( ) ( ) ( ) ( )j
j

Y k B k U k A k Y k j
=− ≠

= + −∑                         (5) 
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1st Order, Nonlinear: 
 
 
               3 3

1 1( ) ( ) ( ) ( ) ( ) (3 )
3
kY k B k U k A k Y A k Y k−

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

                (6) 

 
 

Equation (2) can easily be adapted for passive data (output-only) 
by using the transmissibility function formulation, where a measured 
output at a location different than that for Y(k) is used as the input 
term, U(k). 

The changes in the exogenous coefficients (related to nominally 
linear behavior) and auto-regressive coefficients (related to nonlinear 
behavior) can be used as indicators of damage, as damage causes 
changes in the linear/nonlinear behavior of a structural system. A 
number of other indicators can be used that signify the onset and 
progression of damage in a system. The features used in this paper 
are1 ( )jA ω− , which are like ordinary coherence functions, 

and1 d

un

j

j

A
A− , where ‘d’ indicates damaged and ‘un’  indicates 

undamaged. 
As stated earlier, the preferential bandwidth of the two passive 

techniques discussed here suggests that the selection of the diagnostic 
algorithm can be made on the basis of the frequency bandwidth of 
measured system response. Restoring forces can be used for 
narrowband response and ARX models can be used for broadband 
response. 

 
 
2.1.3 Limitations. The passive nature of the techniques means 

that there is no guarantee that the excitations are persistent enough to 
accentuate the damage, and as such small defects may be harder to 
find. In addition, the low frequency range inhibits the detection of 
small, incipient damage which is better accentuated by high frequency 
excitations. Quantification of faults is also difficult with these 
methods. Restoring forces, based on lumped parameter models, do not 
work well for structures which do not have discrete connecting parts, 
for example plates and shells. 

 
 

2.2   Active Technique 
 

 
2.2.1 Experimental Sensitivity Functions. Experimental 

sensitivity functions as defined by Yang et al. [12] are the partial 
derivatives of FRFs with respect to lumped system parameters (mass, 
damping or stiffness) as a function of frequency. The formula for 
calculating sensitivities in general multiple-degree-of-freedom 
(MDOF) linear systems was derived in this earlier work. 
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where 
                                         0 ( ) 0jH ω =                                            (7d) 

 
 

Equations (7b) and (7c) are just frequency multiples of Eq. (7a). 
In Eq. (7a), Hjk is the FRF between the input force degree-of-freedom 
(DOF) k and output response DOF j and Kmn is the stiffness element 
between DOF m and n. DOF 0 (zero) denotes a boundary condition. 
The right-hand side of Eq. (7a) is a function of four potentially 
different FRFs. The worth of the formulae in Eqs. (7a)-(7c) is that as 
each sensitivity can be calculated directly from FRFs, which are 
computed from measured data, full analytical models of a given 
structure are not needed because specific values of structural 
parameters are not required.  

Structural damage is often characterized by a change in one or 
more of the system parameters. These changes cause changes in the 
system FRFs, which can be compared to the experimental sensitivities 
of the baseline (healthy) system to determine which system 
parameter(s) caused the FRF to change. Johnson et al. [13] showed 
that experimental sensitivities also provide an absolute quantity of the 
change in the system parameters, by taking the ratio of the change in 
the system FRF with respect to the experimental sensitivity function 
corresponding to damage (change in stiffness, damping or mass). The 
variation in the FRF is approximated by a finite difference and, hence, 
is only accurate if the changes in the FRFs are relatively small. For 
small changes in the measured FRF, ( )jkH ω∆ , the corresponding 

change in stiffness is given by 
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[ ]
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Changes in damping or mass can be estimated in a similar manner.  

The procedure for applying experimental sensitivity functions for 
continuous structural health monitoring (SHM) was described by 
Johnson et al. [13]. In this paper, the sensitivity functions are used to 
identify simulated damage to a vehicle suspension system and 
quantify the change in a system parameter associated with the 
particular damage scenario. 

 
 
2.2.2 Limitations. A measurement of input force is required, 

which is difficult in many cases. Many nonlinear damage mechanisms, 
for example cracks, cannot be described by a local reduction in linear 
parameters, which makes such damage difficult to quantify. As the 
method is based on a finite difference approximation of the variation 
in the system FRFs, accurate estimates of stiffness, damping or mass 
reduction can only be obtained if the changes in the measured FRFs 
are small. The sensitivity of FRFs to global changes in structural 
parameters means this technique is not well-suited for cases with 
multiple damage locations. 
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3   EXPERIMENTAL DATA ANALYSIS 
The damage identification techniques presented in the previous 

section are applied to data from laboratory experiments on a full 
vehicle in this section. 

 
 

3.1   Experimental Setup 
Response data were taken on the front left suspension system of 

an Isuzu Impulse and a Lexus ES330 using a hydraulic shaker 
apparatus. A picture of the experimental setup is shown in Fig. 3. The 
MTS® hydraulic shaker, with a maximum dynamic pressure of 3000 
psi, an input frequency range of 0-100 Hz and a maximum stroke of 
approximately 8 inches, was used to excite the tire patch of the car 
with different types of inputs in the vertical direction. Tri-axial 
accelerometers of nominal sensitivity 1 V/g were attached at five 
locations on the suspension system, (a) bottom of the strut, )(1 tx  
(unsprung mass), (b) the upper strut connection with the body, )(2 tx , 
(sprung mass) (c) steering knuckle-control arm connection, )(3 tx , (d) 
control arm, )(4 tx  and (e) sway bar, 

5( )x t . It should be noted that the 
actual system has more DOF than the model in Fig. 1. Damage was 
introduced in the suspension system of both cars by loosening the bolt 
connecting the steering knuckle to the control arm, through a ball 
joint. 

 
 

 
 

Fig 3: Shaker testing setup. 
 
 
The acceleration signals were recorded with an IOTech® Portable 

Data Acquisition System and converted into ‘.mat’ files for further 
analysis in MATLAB®. The IOTech® system allowed a wide range of 
sampling frequencies and the application of high and/or low pass 
filters to remove noise and aliasing. 

 
 

3.2   Restoring Forces 
As mentioned before, restoring forces are easier to generate from 

narrowband responses. Hence, a very slow chirp input from 0-15 Hz, 
at a rate of 0.025 Hz/s, was used as the base excitation to the tire patch 
of the Isuzu. The acceleration response measurements were taken and 
then integrated offline to estimate the velocity and displacement 
responses. The signal processing parameters that were used are given 
in Tab. 1. A 100 Hz bandwidth low pass filter was used to reduce 
aliasing back into the frequency range of interest from approximately 
3 to 35 Hz. 
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Table 1: Signal Processing Parameters for the Chirp Input. 
Chirp Range 
(Hz) 

Chirp Rate 
(Hz/s) 

Number of 
time points, 
Nt 

Sampling 
Frequency, 
Fs (Hz) 

Low pass filter 
(LPF) cut-off 
(Hz) 

0-15 0.025 360,000 600 100 
 
Velocity (damping) and displacement (stiffness) restoring force 

curves were generated for different input amplitudes and frequencies, 
for the damaged and undamaged cases. Figure 2 shows two 
representative restoring force curves, in the vertical direction, for an 
input amplitude of 0.5 mm. The first curve, Fig. 2(a), shows the 
sprung mass acceleration versus the velocity difference between the 
unsprung and sprung mass and the second curve, Fig. 2(b), is a 
function of the displacement difference. The velocity curve (Fig. 2(a)) 
shows a nonlinear damping characteristic with both saturation 
(Coulomb friction damping curve) and hysteresis.  The displacement 
curve (Fig. 2(b)) shows a nonlinear stiffness characteristic with 
primarily hysterisis (i.e., backlash). These two types of nonlinearities 
are present to varying degrees across the entire amplitude and 
frequency range.   

The bolt connecting the steering knuckle to the control arm (Fig. 
4) was loosened from an initial torque of 400 lb-in to 250 lb-in, 100 
lb-in and finally it was removed completely. Restoring force curves 
were generated for the different cases to study the change in the 
internal forces with progression of damage. Figure 5 shows the 
frequency characteristic of the vertical damping restoring force 
between points x2 (body) and x3 (steering knuckle-control arm), for the 
undamaged case (400 lb-in bolt torque). This path is dominated by the 
forces in the strut and also contains the damage induced by loosening 
of the bolt. The damping force initially has a central hysterisis loop, 
and as the frequency increases, the force takes on the shape of a 
Coulomb friction curve and eventually a piecewise-linear 
characteristic. Figure 6 shows the characteristic of the same internal 
force as the damage progresses (bolt loosened).  

 
 

 
Fig 4: Damage location. 
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     Fig 5: Frequency characteristic of damping internal force in 

the strut (a) 4.05 Hz, (b) 4.09 Hz, (c) 4.17 Hz and (d) 4.37 Hz. 
Input amplitude 0.5 mm.  
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Dow
Figure 6 shows that damage causes changes in the frequency 
characteristic of the damping internal force. The system moves out of 
the hysterisis loop at different frequencies because of the damage. The 
intermediate cases (loosened bolts) change characteristic at higher 
frequencies compared to the undamaged case and the most severe 
damage case (bolt removed) changes characteristic at a lower 
frequency. For example, in Figs. 5(a) and 6(a) at 4.05 Hz, the restoring 
force corresponding to the case with no bolt has already taken on the 
shape of a Coulomb friction curve while the restoring forces for the 
other three cases only show a hysterisis loop. The undamaged 
restoring force assumes the Coulomb friction form at a later frequency 
of 4.09 Hz and the loosened bolt cases do not take this form until 4.17 
Hz. Hence, damage has caused a fundamental change in the internal 
damping force. This same behavior is observed for different input 
amplitudes and a similar behavior is observed in the stiffness restoring 
force.               
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Fig 6: Change in frequency characteristic of damping internal 

force in the strut with damage. Bolt torques: 250 lb-in (–––), 100 
lb-in (⋅⋅⋅⋅) and no bolt (– – –). Frequency: (a) 4.05 Hz, (b) 4.09 Hz, 

(c) 4.17 Hz and (d) 4.37 Hz. Input amplitude 0.5 mm. 
 
 

It appears that the loosened bolt restricts the relative velocity, and 
increases friction, which causes the system to stay in the central 
hysterisis loop longer in terms of frequency.  On the other hand, the 
lack of a bolt allows greater relative velocity and the characteristic of 
the force changes at a lower frequency. This fundamental change in 
the characteristic of the internal force of the system shows that 
restoring forces can be used as indicators of the presence of damage.  

 
 

3.3   Frequency Domain Nonlinear ARX Models 
Keeping the event-driven nature of the passive diagnostic 

algorithms in mind, the models were applied using random input data 
with a Gaussian distribution for various input amplitudes ranging from 
0.5 mm to 6.0 mm RMS displacements of the wheel pan (i.e., tire 
patch of the Isuzu).  The signal processing parameters are given in 
Tab. 2. 

 
Table 2: Signal Processing Parameters for Random Input. 

Time Points, 
Nt 

Sampling 
Freq., 

Fs (Hz) 

Number 
of 

Averages, 
Navg 

Over
-lap 

Window 
Type 

LPF cut-off 
(Hz) 

180,000 600 100 50% Hanning 100 
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First, the 1st order, linear model in Eq. (5) was applied to the data, 
and the complex coefficients and damage features were estimated. For 
the damage induced by loosening the bolt connecting the steering 
knuckle to the control arm, Figs. 7-9 show the estimated exogenous 
coefficients and auto-regressive coefficients, 

1 ( )jA ω− and1 d

un

j

j

A
A−  for the vertical motion data from points 

x2 and x3, with x3 taken as the input, U(k). 
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Fig 7: Exogenous and auto-regressive coefficients for linear model; 
Transmissibility function, T23 (–––), for undamaged system at 400 
lb-in torque; Coefficients for undamaged (⋅⋅⋅⋅) and damaged cases, 

100 lb-in (–.–.–) and no bolt (– – –). 
 
 

Figure 7 shows the baseline transmissibility function, T23, and the 
exogenous coefficients, B(ω), and auto-regressive coefficients, A1(ω), 
for different bolt torques (damage). There are clear differences, with 
the most obvious in the 40-55 Hz range, where the 100 lb-in torque 
case, has less linear correlation and more nonlinear correlation than 
the other two cases. It can be seen that the undamaged case, and the 
case with no bolt, have very similar behavior. Another thing to note is 
that the nonlinear correlation is consistently higher for the damage 
cases above 60 Hz. As stated earlier, the quantity 1 ( )jA ω−  is much 

like coherence. Figure 8 shows this quantity for the different bolt 
torques along with the ordinary coherence for the undamaged case. 
This quantity has the same form as the coherence and shows the same 
trend as highlighted before in the exogenous and auto-regressive 
coefficients, with the 100 lb-in torque case, showing greater 
nonlinearity in the 40-55 Hz range. 

Figure 9 shows the quantity1 d

un

j

j

A
A− . Any non-zero value 

shows a change in the auto-regressive coefficients and is an indicator 
of change in nonlinearity. It shows the same trend as before. The 
indicators discussed show that as the bolt is loosened, the nonlinearity 
in the path between x2 and x3 increases, due to the increased friction 
between the bolt and the ball joint caused by relative motion. The 
nonlinearity decreases when the bolt is removed as the source of the 
increased friction is no longer present. This is similar to the behavior 
observed in the restoring forces. The intermediate damage cases have 
different characteristics from the undamaged case and the most severe 
case (no bolt) behaves similar to the undamaged case.  
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Fig 8: Ordinary Coherence (–––) for undamaged system (400 lb-in 
torque); 1-Mag(A1(ω)) for linear model  at 400 lb-in (⋅⋅⋅⋅) torque, 

100 lb-in (–.–.–) torque and no bolt (– – –). 
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Fig 9: 1-Mag(A1d(ω)/ A1un(ω)) for linear model; 100 lb-in torque (–

.–.–) and no bolt (– – –). 
 
 
The lateral direction data exhibits the same pattern but to a lesser 

extent than the vertical direction. The longitudinal direction shows the 
least change. The bolt axis was in the longitudinal direction, causing 
motion in the x-z plane due to loosening of the bolt; hence, those two 
directions show damage more clearly. Data from points along the path 
on which no damage is found gave no indication of damage. Hence, 
the damage has been located. 

The 1st order, nonlinear model (Eq. (6)) was also applied to the 
data and the same trends were observed. The nonlinear correlations 
increase as the bolt is loosened and decrease when the bolt is removed 
completely. The auto-regressive coefficients show an interesting fact. 
Figure 10 shows that the super-harmonic frequency correlations are 
quite significant while there is almost no sub-harmonic correlation. 
This means that the third super-harmonic of the forced response of the 
system feeds back and acts as an internal input to the system (which is 
symptomatic of nonlinear behavior), while the third sub-harmonic 
does not. This is to be expected as these are forced harmonics rather 
than harmonic resonances, which would have sub- and supper-
harmonic correlations. In the nonlinear model we are assuming than 
the nonlinearity is cubic in nature, hence, if the forcing function is 
harmonic (e.g., cos(ωt)) the cube of the function gives frequency 
components at the forcing frequency and the third multiple. 

 
 

                 ( )( ) ( ) ( )3 3 1c o s c o s c o s 3
4 4

t t tω ω ω= +                  (9) 
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Equation (9) shows that there are no sub-multiple components. This 
equation explains why, in Fig. 10 there is no real correlation with the 
third sub-harmonic of the forcing frequency and extensive correlation 
with the third super-harmonic. 
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Fig 10: Auto-regressive coefficients A-1(ω) and A1(ω) for nonlinear 
model; 400 lb-in torque (⋅⋅⋅⋅), 100 lb-in (–.–.–) and no bolt (– – –). 

 
 

3.4   Experimental Sensitivity Functions 
The data for this technique was collected from the Lexus using 

broadband random inputs similar to those used for the ARX models. In 
the absence of load cells on the hydraulic shaker apparatus, the 
fundamental mechanics model, Fig. 1, was used to estimate the force 
input to the spindle from the tire. The equation of motion of the 
unsprung mass, M1, can be written as 

 
 

                

1 1 2 1 2 2 2 1 2 2

1 1 2 1 2

2 1 1

1 1 1 1

[ ( ), ( ), ( ) ( )]
[ ( ), ( ), ( ) ( )]
( ) ( )

b b

b b

M x C x C x K x K x
N x t x t x t x t
N x t x t x t x t
C x x K x x

+ − + −
+
+
= − + −

                    (10) 

 
The terms on the right hand side can be thought of as the inputs to the 
spindle (unsprung mass), F1, due to the motion of the tire patch. In 
order to estimate the force, an accelerometer was placed at the wheel 
pan of the shaker to estimate the acceleration of the tire patch, 

bx . The 
stiffness of the tire, K1, was estimated using a static deflection test. 
The stiffness was estimated to be about 1000 lb/in, which is the value 
for a typical passenger car in the USA. The damping, C1, was assumed 
to be 1/100th of the stiffness, i.e., 10 lb-s/in, although it was observed 
that damping did not have a significant effect on the results. In order 
to estimate the sensitivity of H11 (driving point FRF of unsprung mass) 
to the stiffness between locations x1 and x3, K13, Eq. (7a) was used. 

 
 

                                [ ]211
11 13

13

H H H
K
∂

= − −
∂

                         (11) 
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Do
Then Eq. (8a) was used to estimate the change in the stiffness K13 with 
each incremental change in preload. It should be noted that the 
experimental sensitivity, Eq. (11), has to be evaluated for each 
different preload because the system parameter, K13, has changed. 

For each change in bolt torque (preload), the finite difference, 
∆H11, and the experimental sensitivity, Eq. (11), was estimated and the 
change in stiffness was estimated from Eq. (8a). The location of the 
bolt on the Lexus suspension was such that it could not be accessed 
with a torque wrench and, hence, the torque could not be measured. 
The bolt was first loosened by half a turn, then three turns and finally 
removed completely. Figure 11 shows the estimates of experimental 
sensitivity (Eq. (11)), ∆H11 and ∆K13 for the first change in bolt 
preload, half turn. The experimental sensitivity and finite difference 
have a similar shape and, hence, ∆K13 is reasonably constant over most 
of the frequency range of interest. The estimated value of ∆K13, from 
the 5-10 Hz range, is 5,373 lb/in. Figure 12 shows the estimated values 
of ∆K13 for the different bolt preloads, showing fairly constant values 
over the 5-15 Hz range. The change in stiffness for loosening of the 
bolt by three further turns is 12,613 lb/in and the change for removing 
the bolt completely is 2,134 lb/in. Thus, the damage has been 
quantified as it progresses. 
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Fig 11: Experimental Sensitivity (–––), finite difference, ∆H11, (⋅⋅⋅⋅) 
and estimated change in stiffness, ∆K13, (– – –), for loosening of the 

bolt by a half turn. 
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Fig 12: ∆K13 for changes in bolt preloads, half turn (–––), three 

turns (⋅⋅⋅⋅) and no bolt (– – –). 
 
 

4   CONCLUSIONS 
Two passive methods and one active vibration-based method for 

damage identification were presented in this paper. The two passive 
techniques are restoring forces and transmissibility-based frequency 
domain ARX models, which use response acceleration measurements 
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to detect and locate damage. Restoring force curves map changes in 
internal restoring forces caused by changes in system parameters 
(linear and nonlinear) due to damage, while ARX models track the 
changes in linear and nonlinear frequency correlations with the 
progression of damage. The use of transmissibility (output-only) 
formulation allows the damage to be located, due to the increased 
sensitivity to local system dynamics as compared to global dynamics. 
The preferential frequency bandwidth of the two passive techniques, 
narrowband for restoring forces and broadband for ARX models, 
motivates the selection of the algorithms in an event-driven manner 
based on the observed frequency bandwidth of the response.  

The active technique uses experimental sensitivity functions to 
detect, locate and quantify damage by comparing the sensitivity 
functions to finite difference approximations of the change in system 
FRFs due to damage. The techniques were applied to experimental 
vehicle data, and the damage introduced by loosening of bolts was 
detected, located and quantified. 

 
 

ACKNOWLEDGMENTS 
The authors would like to thank ArvinMeritor and the Center for 

Advanced Manufacturing at Purdue for their technical and financial 
support of this research. 
 

 
REFERENCES 
[1] Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W., 

1996, “Damage Identification and Health Monitoring of 
Structural and Mechanical Systems from Changes in Their 
Vibration Characteristics: A Literature Review,” Los Alamos 
National Laboratory Report, LA-13070-MS. 

[2] Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W., 
1998, “Review of Damage Identification Methods that Examine 
Changes in Dynamic Properties,” Shock and Vibration Digest, 
30(2). 

[3] Rytter, A., 1993, “Vibration Based Inspection of Civil 
Engineering Structures,” Ph.D. Dissertation, Department of 
Building Technology and Structural Engineering, Aalborg 
University, Denmark. 

[4] Masri, S.F., Caughey, T.K., Miller, R.K., and Saud, A.F., 1987, 
“Identification of Non-Linear Vibrating Structures: Part I – 
Formulation,” Journal of Applied Mechanics, 54, pp. 918-922.  

[5] Masri, S.F., Caughey, T.K., Miller, R.K., and Saud, A.F., 1987, 
“Identification of Non-Linear Vibrating Structures: Part II – 
Applications,” Journal of Applied Mechanics, 54, pp. 923-929.  

[6]  Haroon, M, Adams, D.E., Luk, Y.W. and Ferri, A.A, 2005, “A 
Time and Frequency Domain Approach for Identifying Non-
Linear Mechanical System Models in the Absence of an Input 
Measurement,” Journal of Sound and Vibration, 283, pp. 1137-
1155. 

[7] Adams, D.E. and Allemang, R.J., 2001, “Discrete Frequency 
Models: A New Approach to Temporal Analysis,” Journal of 
Vibration and Acoustics, 123, pp. 98-103. 

[8]  Adams, D.E., 2002, “Frequency Domain ARX Model and Multi-
Harmonic FRF Estimators for Non-Linear Dynamic Systems”, 
Journal of Sound and Vibration, 250(5), pp.935-950. 

[9] Adams, D.E. and Farrar, C.R., 2002, “Classifying Linear and 
Non-Linear Structural Damage Using Frequency Domain ARX 
Models,” Structural Health Monitoring, 1(2), pp.185-201. 

[10]Zhang, H., Schulz, M. J., Naser, A., Ferguson, F., and Pai, P.F., 
1999, “Structural Health Monitoring Using Transmittance 
8 Copyright © 2005 by ASME 

se: http://www.asme.org/about-asme/terms-of-use



Downlo
Functions,” Mechanical Systems and Signal Processing, 13(5), 
pp. 765-787. 

[11]Johnson, T. J. and Adams, D. E., 2002, "Transmissibility as a 
Differential Indicator of Structural Damage", American Society 
of Mechanical Engineering Journal of Vibration and Acoustics, 
124(4), pp. 634-641. 

[12]Yang, C., Adams, D.E., Yoo, S.-W., Kim, F.-J., 2003, “An 
Embedded Sensitivity Approach for Diagnosing System-Level 
Vibration Problems,” Journal of Sound and Vibration, 269(3-5), 
pp. 1063-1081. 

[13]Johnson, T.J., Yang, C., Adams, D.E. and Ciray, S., 2005, 
“Embedded Sensitivity Functions for Characterizing Structural 
Damage,” Smart Materials and Structures, 14, pp. 155-169.   
 9 Copyright © 2005 by ASME 

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use


