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Thin-walled cylinders of various constructions are widely used in simple or 
complex structural configurations. The round cylinder is commonly found in 
tubing and piping, and in offshore platforms. Depending on their use, these 
cylinders are subjected (in service) to individual and combined application of 
external loads. In resisting these loads the system is subject to buckling, a failure 
mode which is closely associated with the establishment of its load-carrying 
capacity. Therefore, the system buckling and postbuckling behavior have been 
the subject of many researchers and investigators both analytical and experimen­
tal. The paper is a state-of-the-art survey of the general area of buckling and 
postbuckling of thin-walled, geometrically imperfect, cylinders of various con­
structions, when subjected to destabilizing loads. The survey includes discussion 
of imperfection sensitivity and of the effect of various defects on the critical 
conditions. 

I. INTRODUCTION 

Thin-walled cylinders of various constructions find wide uses 
as primary structural elements in simple and complex structural 
configurations. The round cylinder is popular in column design, 
in tubing and piping, and in offshore platforms. Stiffened and 
unstiffened metallic and laminated composite thin (large diame­
ter to thickness ratios) shells are used extensively in underwater, 
surface, air, and space vehicles as well as in the construction of 
pressure vessels, storage bins, and liquid storage tanks. 

During their service, thin-walled cylinders are often sub­
jected to individual and combined application of external loads. 
In resisting these loads, the system is subject to buckling, a 
physically observed failure mode, which is closely associated 
with the establishment of its load-carrying capacity. Therefore, 
the buckling strength of thin shells along with knowledge of its 
postbuckling behavior have been the subject of many researches 
and investigations both analytical and experimental. The 
knowledge derived from these studies is very essential in the 
safe design of such configurations. It is not surprising then that 
several hundreds of papers and reports have been written on the 
subject. Moreover, several review articles have found their way 
into the open literature, and through these reviews the inter­
ested readers and, more importantly, the potential designers are 
informed of the several specific questions that the reviewed 
articles address. In particular, attention was paid to the degree 
of approximation involved in the use of various kinematic 
relations (which led to several linear and nonlinear shell theo­
ries), to the reasons for the discrepancy between classical (linear 
theory), theoretical predictions for critical loads, and experi­
mentally obtained buckling loads, to the use of stiffening for 
improving resistance to buckling, and to the effect of cutouts of 
various shapes, of foreign rigid inclusions and other defects. 
Moreover, as the complexity of shell-like structures increased 
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and as the computational capability improved, efficient com­
puter codes became necessary for the stability analysis of these 
configurations. Furthermore, in the more recent years, the con­
stant demand for lightweight efficient structures led the struc­
tural engineer to the use of nonconventional materials, such as 
fiber-reinforced composites. The correct and effective use of 
these materials requires more complex analyses in order to 
achieve good understanding of the system response characteris­
tics to external causes. 

Finally, one should mention that designers of thin cylinders 
have always strived towards achieving the best possible design 
(lightest, most reliable, fail safe, most economical, easiest to 
maintain and repair, etc). An effort has been exerted in the last 
15 years or so to accomplish this in a formal manner. Many 
refer to this effort as structural optimization. 

The purpose of the present paper is twofold: (1) to review 
the entire field of buckling and postbuckling, which is primarily 
accomplished by referring to pertinent reviews, books, and 
recent technical articles, and (2) to provide a state-of-the-art 
accounting of the effect of imperfections on the response char­
acteristics of thin cylindrical shells. The imperfections include 
initial geometric imperfections (out-of-roundness, load ec­
centricities and/or load misalignments), as well as construc­
tional and material defects, such as small holes, cutouts, rigid 
inclusions, delaminations, and others. 

II. BRIEF HISTORICAL REVIEW 

Because of the tremendous and continuous interest in shell 
buckling and because of the multitude of the reported theoreti­
cal and experimental investigations, a short, historical sketch is 
presented. For the sake of brevity, this sketch takes rather giant 
steps in moving through time. 

The reader, who is interested in smaller steps and more 
details on every addressed aspect of the problem, is referred to 
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reviews and surveys that have appeared in the open literature 
since the 1950s.1"11 Moreover, he may also refer to the proceed­
ings of several symposia12"14 addressing shell buckling prob­
lems and to tests15"18 that present a collection of papers on 
various topics of shell buckling. In addition, the reader is also 
referred to three recent books.8'19,20 Yamaki's book19 deals very 
thoroughly with the buckling and postbuckling behavior of 
elastic and isotropic cylindrical shells, while the books by 
Bushnell8 and Kollar and Dulacska20 include several shell 
geometries (cylindrical, conical, spherical, etc) and various con­
structions (stiffened, sandwich, corrugated, etc); and touch upon 
influences of plasticity, creep, and residual stresses. Finally, 
mention should be made of chapter 13, Circular tubes and 
shells, of Ref. 21, primarily for the benefit of a large class of 
practicing engineers. 

The first theoretical investigations on the subject dealt with 
axially loaded configurations, and they were performed by 
Lorenz,22,23 Timoshenko,24'25 and Southwell.26 The first ex­
perimental studies are those of Lilly (see Ref. 27), Robertson,28 

Flugge,29 Wilson and Newmark,30 Lundquist,27 and Donnell 
(his experimental results are reported in Ref. 27). The initial 
theoretical investigations were based on many simplifying as­
sumptions, and they reduced the mathematical model to a 
linear eigen-boundary-value problem (classical bifurcation ap­
proach). Comparison between theoretical predictions (critical 
loads) and experimental results (buckling loads) revealed dis­
crepancy of unacceptable magnitude. A tremendous effort was 
made in order to explain the discrepancy both analytically and 
experimentally. 

From the analytical point of view, the initial simplifying 
assumptions were later reevaluated and removed. This led to 
studies which attempted to attribute the discrepancy to (a) 
effect of prebuckling deformations,29,31"33 (b) effect of in-plane 
boundary conditions,34"37 and (c) effect of initial geometric 
imperfections. 

Initially, the imperfection sensitivity of the system was 
established through strict postbuckling analyses of the perfect 
configuration.38"43 In addition, some of these investigators ex­
plained that the minimum postbuckling equilibrium load is a 
measure of the load carrying capacity of the system. This latter 
thinking came to an end when Hoff, Madsen, and Mayers44 

concluded from their calculations that the minimum postbuck­
ling load tends towards zero with increasing number of terms in 
the series expansion of the transverse displacement component 
and with diminishing thickness. In this limiting case the 
Yoshimura buckle pattern45 can be achieved. 

Another approach for imperfection sensitivity studies is to 
deal directly with the imperfect configuration and employ non­
linear kinematic relations. The first attempt is Donnell's.46 

Efforts reported in Refs. 47-52 fall into this category, but with 
varied success. Koiter53 was the first to question the use of the 
minimal postbuckling load as a measure of the load carrying 
capacity. He also dealt directly with the imperfect configura­
tion. His theory is limited to the neighborhood of the classical 
bifurcation load (immediate postbuckling), and therefore to 
small initial imperfections. Many researchers adopted this ap­
proach, and most of their investigations are reported in Ref. 4. 

The single and most important conclusion of all the theoreti­
cal investigations of cylindrical shells is that the primary reason 
for the discrepancy between (linear) theoretical critical loads 
and buckling loads is that the system is extremely sensitive to 
initial geometric imperfections. 

In parallel to the above analytical investigations, many ex­
perimental studies were performed with the same objective in 
mind (explain the discrepancy). While the old buckling loads 
fell in the range of 15-50% of the classical critical load, the new 

ones,54"58 with use of carefully manufactured specimens, fall in 
the range of 40-90% of the classical critical load. Note that Ref. 
54 obtained also postbuckling curves for both axially and 
pressure loaded cylinders. Moreover, Thielemann and 
Esslinger59,60 extended their research to include theoretical 
postbuckled state calculations on the basis of observed experi­
mental results. The theoretical predictions are based on a 
Galerkin procedure with the emphasis on post-lirnit point equi­
librium positions. The theoretical study of these two papers 
belongs to the group of postbuckling analyses of perfect con­
figurations. 

A similar development was followed for the case of buckling 
under lateral loading (pressure). The first analysis is attributed 
to von Mises.61 Several investigations based on linear analyses 
appear in the literature. The interested reader is referred to 
Yamaki's19 book for a complete review. Only a few of them are 
mentioned here in order to discuss certain distinguishing fea­
tures. The reader must also consider their cited references. 
Batdorf62 used simplified Donnell-type63 of shell equations to 
predict critical loads. Soong64 employed Sanders' shell theory.65 

Simitses and Aswani66 compared critical loads for the entire 
range of radius to thickness and length to radius ratios and for 
various load behaviors during the buckling process (true pres­
sure, constant directional pressure, and centrally directed pres­
sure) for a thin cylindrical shell, employing several linear shell 
theories: Koiter-Budiansky,67,68 Sanders,65 Flugge,69 and 
Donnell.63 Sobel70 studied the effect of boundary conditions on 
the critical pressure. 

Postbuckling and imperfection sensitivity analyses appear in 
the literature, as in the case of axial compression. These studies 
follow the same pattern and include strictly postbuckling 
analyses,71,72 and Koiter-type of analyses.4 

Orthotropic, stiffened, and other constructions were consid­
ered by several researchers, including Becker and Gerard,73 

Meek,74 Hutchinson and Amazigo,75 and Simitses, Sheinman, 
and Giri.76 

Buckling analyses for torsion started with the work of 
Donnell.63 Several studies followed with the emphasis on differ­
ent considerations. Hayashi77 dealt with orthotropic cylinders, 
and Lundquist78 and Nash79 are two of several that reported 
experimental results. Hayashi and Hirano80 and Budiansky81 

are among those who reported on postbuckling analyses. 
Before closing this section, mention should be made of at 

least a few studies, which consider the simultaneous application 
of two or more destabilizing loads. For a fairly complete list, 
the reader is referred to chapter 5 of Yamaki's book.19 Some of 
these references deal with nonisotropic constructions. Hess,82 

Reese and Bert,83 Sheinman and Simitses,84 and Simitses, Shaw, 
and Sheinman85 also included multiple loads in their work. 

III. BOUNDARY CONDITIONS AND PREBUCKLING 
DEFORMATIONS 

The discrepancy between theoretical predictions based on 
classical buckling analyses and experimental results9,71,72,78"80 

is greater for the case of axial compression than for the case of 
either pressure or torsion. This was first established for cylin­
drical shells of isotropic construction. When the comparison is 
extended to stiffened configurations, the discrepancy is still 
present but less pronounced. 

In trying to explain this discrepancy, three sets of simplify­
ing assumptions were identified in connection with the classical 
approach. These are: (a) effect of prebuckling deformations, (b) 
effect of boundary conditions, especially of the in-plane ones, 
and (c) the effect of initial geometric imperfections. The first 
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two of these are discussed with some detail in this section, and 
the last one in the next section. 

III.l. Prebuckling state 

First, one of the assumptions in the classical theory is that 
the prebuckling state is one of a pure membrane. This means 
that in the case of compression the ends of the cylinder are free 
to expand, and a constant transverse displacement takes place 
throughout, which corresponds to zero hoop stresses. Similarly, 
in the case of lateral pressure the ends are free to contract or 
expand radially, thus resulting in a uniform radial displacement 
and constant in-plane stresses. The axial stress may or may not 
be zero, depending on whether the ends experience pressure and 
whether they are free to move axially. 

In the real and practical case, the ends are not completely 
free to expand or contract. Therefore, the prebuckling state has 
both membrane and bending stresses. 

For the case of uniform axial compression, Stein31'33 and 
Fisher32 independently showed that, by providing complete 
fixation against radial translation, the critical load is reduced by 
approximately 10% from the classical value. This effect by itself 
then cannot totally explain the discrepancy. Similar results are 
reported by Yamaki19 for axial compression and for pressure. 

III.2. Boundary conditions 

The other possible source for the discrepancy is the effect of 
boundary conditions, especially the in-plane type. 

In the classical approach, the linearized buckling equations 
can be obtained by employing the perturbation technique. 
Small additional quantities are added to the primary membrane 
state in order to take us to the buckled state. Since, through this 
approach, one seeks the existence of a bifurcation point, the 
buckled state can be assumed as close to the primary state as 
desired. Therefore, the additional quantities can be made infi­
nitesimal. This yields a linearized set of buckling equations 
(three partial differential equations) in the additional but small 
longitudinal, circumferential, and radial displacement compo­
nents, u", v", and w". These buckling equations are subject to 
radial and in-plane boundary conditions. The radical boundary 
conditions that have received most attention are those corre­
sponding to simply supported ends and to fixed or clamped 
ends. Moreover, for each case of radial or transverse boundary 
conditions, four sets of in-plane boundary conditions exist. By 
employing the standard notation of Nxx, Nrv,Nxy for stress 
resultants and Mxx, Mvy, Mxv for moment resultants, the 
boundary conditions can be written as SS-/' or CC-/', with 
/' = 1,2,3,4, where 

Transverse: 

SS: 

CC: 

w" = AfA°v = 0, 

w" = w" = 0. (1) 

In-plane: 

N!' 

N". = i 
(2) 

' = W",. = °. 
: v" = 0, 

! = v" = 0. 

The in-plane boundary conditions have been arranged (1-4) 
according to Hoff.2 The numbering is different in Ref. 19. 
According to Hoffs2 and Ohira's34 results, the order of Eqs. (2) 
corresponds to depicting a move from the weakest configuration 

(/' = 1) to the strongest (/' = 4). Please note, however, that 
their2,34 results were obtained by using a linear buckling analy­
sis. 

According to Hoff,2 the effect of in-plane boundary condi­
tions for infinitely (very) long cylinders is such that for SS-1 
and SS-2 the critical load is approximately half of the classical 
load, while for all other cases it is approximately equal to the 
classical load. 

Simitses et al,86 in investigating the imperfection sensitivity 
of laminated thin cylindrical shells, studied numerous effects 
including the effect of in-plane boundary conditions and the 
effect of eccentricity in axial load. The nonlinear solution 
scheme used accounts for prebuckling effects and initial geo­
metric imperfections of specified amplitude and shape. Results 
were generated for an isotropic configuration with the following 
structural geometry: 

E = 12 A GPa (10.5 X 106 psi), J> = 0 . 30 , 

R = 10.16 cm (4 in.), L/R = l, R/t = 1000, 
(3) 

where L, R, and / denote the length, radius, and skin thickness, 
respectively. 

The imperfection shape was taken to be (almost) axisymmet-
ric and the imperfection amplitude parameter £ (= W^/t, 
maximum imperfection amplitude/shell thickness) was varied 
from 0 to 2. The results are shown on Fig. 1. Note that for small 
£ values the results support the trend suggested by Hoff2 and 
Ohira,34 ie, the weakest configuration corresponded to SS-1, the 
next one to SS-2, and then SS-3 and SS-4. Moreover, the results 
at £ = 0 (obtained through extrapolation as | -»0) agree well 
with those of Hoff.2 For SS-1 the ratio of critical load to 
classical load is 0.55, for SS-2, 0.68, and for SS-3 and SS-4, 0.98. 

4 -

7 *" 

X 
• X 

1 -

0.5 1.0 

FIG. 1. Effect of in-plane boundary conditions on the imperfection 
sensitivity of isotropic geometry (SS-/). 
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There are two important observations in connection with the 
results of Fig. 1. First, for low values of £ (imperfection 
amplitude), the v" = 0 boundary conditions (SS-3 and SS-4) 
yield stronger configurations than the N"y — 0 boundary condi­
tions (SS-1 and SS-2). For this same range u" = 0 yields a 
stronger configuration in comparison to N"x = 0 (SS-2 stronger 
than SS-1 and SS-4 stronger than SS-3). For higher values of 
the imperfection amplitude (£), the u" = 0 boundary conditions 
yield stronger configurations (SS-4 and SS-2) than the N°x = 0 
conditions (SS-3 and SS-1). The only difference is that the 
u" = 0 effect is not the same for the two sets. The order in going 
from the weakest to the strongest configuration for £ > 0.7 
appears to be SS-3, SS-1, SS-2, and SS-4. On the other hand, for 
the clamped case (not shown herein) the order of going from 
the weakest to the strongest configuration is the same for the 
entire range of £ values considered (0 < £ < 2) and it is CC-1,3 
to CC-2 to CC-4. The CC-1 and CC-3 results are indistinguisha-
bly close, while the CC-2 results are slightly smaller than the 
CC-4 ones. Moreover, the CC-4 results are slightly (2-5%) 
higher than the SS-4 results, and the CC-1,3 results are con­
sistently smaller than the CC-4 results by approximately 12%. 
Thus, for the clamped case, the u" = 0 boundary conditions 
(CC-1 and CC-2) yield stronger configurations than the N"x = 0 
conditions, for all £ values considered. 

The second important observation is that the initially (low £ 
values) weak configurations (SS-1 and SS-3) are not as sensitive 
to initial geometric imperfections by comparison to the stronger 
one (SS-4 and SS-2) (see Fig. 1). For the clamped boundary 
conditions, it appears that all cases (CC-;, / = 1,2,3,4) are as 
sensitive as the SS-4 (and SS-2) configuration. 

Similar conclusions are drawn from the results on an asym­
metric laminated geometry.86 

Although these observations are based on results from only 
a few geometries, they suggest that a substantial part of the 
discrepancy may be attributed to various ways of experimen­
tally supporting a thin cylinder in a laboratory experiment. 
These results cannot fully account for the tremendous scatter in 
experimentally obtained critical loads, nor can they explain the 
large discrepancy, in some cases by a factor of 4, between 
classical theoretical predictions and experimental results. 

The above statements suggest that the primary reason for the 
discrepancy must lie elsewhere. Indeed, this is the case, as 
discussed in the next section. 

IV. IMPERFECTION SENSITIVITY 

As already mentioned, it is the generally accepted conclusion 
that most of the discrepancy between classical theoretical pre­
dictions and experimental results can be attributed to the 
presence of small initial geometric imperfections. 

There exist several types of imperfections and defects that 
affect the response of the configuration. They are generally 
grouped into two broad categories: (a) initial geometric imper­
fections and (b) material or constructional defects. The first 
group is addressed in this section, and the second group in the 
next. 

The phrase "imperfection sensitivity" means to sensitivity of 
response of the configuration, because of initial geometric im­
perfections. There exist two types of initial geometric imperfec­
tions: initial geometric shape imperfections and load eccentrici­
ties. 

IV. 1. Initial geometric shape imperfections 

These imperfections refer to deviations in shape of the 
structural configuration. Examples of these imperfections in­
clude a local bubble in a thin circular cylindrical shell, which 

makes the geometry locally nonsymmetric; a global out-
of-roundness, which may or may not be dependent on axial 
position, that makes the geometry globally noncircularly cylin­
drical; or a small initial curvature in a flat plate or rod. 

As already mentioned in the introduction, several ap­
proaches have been used to establish the imperfection sensitiv­
ity of circular cylindrical shells and to predict critical conditions 
for these configurations. The approach that seems to have a 
better chance for accomplishing both is the one that deals 
directly with the imperfect configuration.47"52 In this approach 
nonlinear shell theory is employed. The shell is subject to limit 
point instability. The limit point is a measure of the critical 
condition. Several analytical investigations exist. They are based 
on different kinematic approximations, different solution 
schemes, and various computer codes. It is reasonable to expect 
that this approach could and should yield critical loads which 
compare well with the experimentally obtained buckling loads, 
provided that one has complete knowledge of the initial geo­
metric shape imperfections and that this knowledge is accom­
modated in the mathematical model. Unfortunately, this is a 
virtually impossible task, especially for commercially manufac­
tured shells. 

It has been suggested and efforts have been made towards 
the establishment of an International Initial Imperfection Data 
Bank87,88 with a dual purpose89: first, to present all available 
imperfection data in identical form, and, second, to make these 
data available to future potential users, who may devise 
improved computer codes based on nonlinear shell analyses, 
free of many currently used simplifying assumptions. Along 
these lines Elishakoff90 proposes a method for incorporating 
experimentally obtained imperfection distributions into a statis­
tical imperfection-sensitivity analysis. The feasibility of this 
approach has been demonstrated91 for axially loaded imperfect 
cylindrical shells. 

The effort to establish an Imperfection Data Bank can be 
traced to the experimental buckling program reported by Singer, 
Arbocz, and Babcock.92 In particular, the no. AS-2 stringer-
stiffened specimen, for which carefully measured imperfection 
data are reported, has been used extensively as a benchmark in 
correlating theoretical results with experimentally obtained 
buckling loads.92 ~96'89 In these efforts several solution method­
ologies were used (Koiter-type Mactor analyses, STAGS-code, 
etc), and a comparison with the experimentally obtained value 
(226.3 N / c m 9 2 ) was presented.96 The best numerical prediction 
listed in these references is 243.8 N/cm,9 3 and it was obtained 
by using the STAGS code (30-modes model). The difference 
between this and the experimental value is only 7%, a margin 
that is well within the accuracy that can be expected for 
imperfection-sensitive buckling load calculations. However, as 
was pointed out in Ref. 93, the initial geometric imperfection 
shape, recalculated by using 30 Fourier coefficients (30-modes 
analysis) does not physically resemble the measured initial 
imperfection shape. In order to remove this restriction, Arbocz96 

tried various fitting methods to recompute the imperfection 
shape, and he also employed the STAGS code to calculate the 
corresponding critical loads. His new computations96 did not 
improve the best numerical prediction.93 It is indeed surprising 
to see that computations using 74 modes, 132 modes, and cubic 
spline fit are not as close to the experimental results as the 30 
modes analysis.93 The imperfection shapes in Ref. 96 are much 
closer to the true imperfection than the shape used in the 
30-modes model. All of these calculations employed CC-4 
boundary conditions. In view of the results two questions can 
be raised: (1) Do we need to apply so complicated a shape for 
the imperfection in order to accurately predict critical loads? (2) 
Do CC-4 boundary conditions accurately describe the physical 
boundary conditions for shell AS-2 of Ref. 92? 
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These questions were addressed by Simitses and Shaw.97 In 
so doing, they employed a solution procedure developed 
earlier,52 in which the imperfection can be expressed as a 
Fourier series in the circumferential direction with " axial coor­
dinate" dependent coefficients. They employed several im­
perfection shapes from the measured data for the AS-2 shell 
(converted into double Fourier series). In each one of these, 
though, only one circumferential wave shape of measured im­
perfection is used. Moreover, they used two simplified, one 
axisymmetric and one symmetric, imperfection shapes, in order 
to study the possibility of simplification of imperfection shape. 

In the first group, the imperfection shape is taken as: 

N 

k = 0 

kmx kirx / ny ny 
)cos — h cos —y~\Akl cos h Bkl sin — 

where Akl and Bkl 

(4) 

are Fourier series coefficients of measured 
imperfection shape, corresponding to wave number /. The val­
ues of Akl and Bkl are part of Table 3 of Ref. 95. Moreover, 
Eq. (4) implies that, only one / value is used. In Table 3 of Ref. 
95, the Au and Ba terms are shown for several / values, but 
only one column is used in the imperfection shape of Eq. (4). 
The solution procedure52 employs a single / representation, and 
/ is computed by requiring both minimum potential energy 
response and lowest limit point load. This implies that the 
response has a single / representation and the imperfection 
shape is similar to the response shape (transverse displacement; 

The second group employs a virtually axisymmetric im­
perfection which has the form 

2ITX mx ny 
W" = £t\ cos —— + 0.1 sin — cos — (5) 

The third group employs a symmetric imperfection of the 
form 

•nx ny 
W° = £t sin — cos — . (6) 

In Eqs. (5) and (6), £ is a measure of the imperfection 
amplitude. Note that for the symmetric imperfection, £ = 
I f ^ / / . While for the virtually axisymmetric imperfection, 
£ = W^/l.lt. Two kinds of boundary conditions were used in 
calculating buckling loads, CC-3 and CC-4. The conclusions is 
that a simple axisymmetric or symmetric imperfection shape 
can be employed, and the actual imperfection data are only 
used to establish the maximum amplitude of the /-dependent 
(circumferential, l = n) imperfection data. Moreover, from the 
description of the experiments CC-3 is a better boundary condi-
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FIG. 2. Critical load for axisymmetric imperfection (CC-3). 
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FIG. 3. Critical load for symmetric imperfection (CC-3). 

tion than CC-4. Two figures (Figs. 2 and 3) are shown herein to 
support their findings of Ref. 97. From the imperfection data, 
when converted to Fourier series coefficients95 the maximum 
amplitudes corresponding to / = n = 9,10, and 11 are W^/t = 
0.052, 0.062, and 0.079, respectively. The critical loads corre­
sponding to calculations based on simplified shapes, Eqs. (5) 
and (6), are 228 and 223 N/cm. Both of these are extremely 
close to the experimental value of 226.3 N/cm. 

These findings support the contention of several resear­
chers21,98 that the critical load degradation is most significant 
when the imperfection shape is similar to the buckling mode 
shape. 

In spite of these findings, agreements, and observations, 
more concrete proof is needed to fully assess the effect of initial 
geometric shape imperfections. 

IV.2. Load eccentricities 

Another important class of initial geometric imperfections 
consist of load eccentricities. Such imperfections have been 
used to establish the imperfection sensitivity99 or insensitivity100 

of structural elements. 
In the case of cylindrical shells, it is possible to apply the 

in-plane destabilizing loads (axial compression and shear) with 
an eccentricity relative to the neutral surface for metallic con­
figurations. Since, for axial compression, buckling is followed 
by a predominantly inward lateral deflection, it has been sug­
gested by some to stabilize the shell by applying the load 
eccentrically, so that an outward prebuckling deformation is 
present. This effect was studied and reported in Ref. 86 for 
shells of various construction, isotropic, orthotropic, and 
laminated. The findings reported in Ref. 86 do not support the 
above suggestion. According to Ref. 86 for small eccentricities 
(minus half to plus half the isotropic shell thickness), the 
response seems to be insensitive to the eccentric application of 
the load. For very large eccentricities (+10, or more times the 
skin thickness), positive eccentricity, which induces outward 
prebuckling motion, has a stabilizing effect, and this observa­
tion supports the contention. Similarly negative eccentricities 
have a relatively small destabilizing effect. In the intermediate 
range of load eccentricities (±0.5-10 times the skin thickness) 
an irregularity is observed. It is suspected that one possible 
reason for this behavior (stabilizing effect for large positive 
eccentricities) may be associated with the Poisson effect. As the 
load is applied quasistatically, the cylindrical shell moves out­
ward, because of the Poisson effect; it reaches a maximum 
expansion at the critical load, and then an inward motion takes 
place; finally, at and after collapse, this inward motion con­
tinues. This sequence of events and the corresponding stabiliza-Downloaded From: https://appliedmechanicsreviews.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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tion or destabilization is heavily affected by the value of the 
Poisson ratio or the Al2 term in the extensional stiffness matrix 
[Ajj]. The smaller the Au term (low value of v for isotropic 
construction or placing the strong axis along the cylinder axis 
for an orthotropic construction), the greater the stabilization 
effect of the positive eccentricity.86 

In stringer-stiffened configurations, the load eccentricity 
effect is more complex because it ties boundary effects (mo­
ments induced at the boundaries) with the effect of stiffener 
eccentricity. This effect was addressed by Stuhlman, DeLuzio, 
and Almroth101 in the 1960s. Moreover, in the early 1970s102 

parametric studies and many tests were carried out at the 
Technion, for evaluating this important interaction. Their102 

studies showed that differences in buckling load of up to 50% 
can be attributed to this effect in some practical configurations. 

Before closing this section, I should mention another loading 
effect, such as nonuniform axial compression. Many have viewed 
this as a combined bending-axial compression loading. The 
interested reader is referred to the work of Libai and Durban103 

and their cited references. 

V. MATERIAL OR CONSTRUCTIONAL DEFECTS 

This group consists of small holes or cutouts, small rigid 
inclusions, cracks, nonmonolithic skin-stiffener connections, de-
laminations in laminated configurations, and others. Most of 
the emphasis in the past has been on establishing stress con­
centrations and local stress distributions in order to predict 
material failures. 

For metallic materials, one can find several studies which 
deal with the effect of material imperfections on the fatigue life 
of the structural component. Moreover, there exists a number of 
investigations that deals with the effect of small cutouts on the 
stress and deformation (local) response of thin, circular, cy­
lindrical shells.104"108 Savin109 has provided an extensive bibli­
ography on the subject, and it covers various shapes of holes 
(circular, square, elliptic, and triangular) for both cylindrical 
and spherical thin shells. Furthermore, there exists a small 
number of publications,110"115 which deals with the effect of 
small and large cutouts on the buckling characteristics of cy­
lindrical shells. The problem is extremely difficult and use of 
linear buckling theory is highly questionable. Finally, as far as 
the effect of small holes on the response of shells and plates of 
nonmetallic construction is concerned, the reader is referred to 
the work of Hoff116 and Shnerenko.117 

Another material imperfection is the small rigid inclusion. 
The effect of rigid inclusions on the stress field of the medium 
in the neighborhood of the inclusion has received limited atten­
tion in the past 25 years.118"122 As far as this author knows, the 
effect of rigid inclusion on buckling characteristics has not been 
studied. 

The effect of delamination is receiving more attention espe­
cially for fiber-reinforced composite construction. Very few 
efforts are reported in the literature that deal with delamination 
buckling of cylindrical configurations. All of them123"125 use 
special construction and linear classical buckling analysis. Be­
cause of the importance of the effect of this material type of 
imperfections, more work will soon appear. 

VI. CLOSURE 

Very little has been mentioned, so far, for buckling of 
laminated configurations. With the advent of fiber-reinforced 
composites, metallic configurations are continuously being re­
placed by laminated configurations with or without stiffening. 
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As expected then, all of the problems and questions related to 
buckling of metallic structures are subjected to reexamination 
in view of the new construction. Questions of shell theory 
approximation126 and imperfection sensitivity86'L27,128 are as 
important a consideration for composites as for metallic con­
struction. The interested reader is also referred to a recent 
review by Tennyson.129 

Because of the complexity of the problem, several finite 
element algorithms have been developed for the nonlinear buck­
ling and postbuckling analysis of shells, including cylindrical 
configurations. For a fairly extensive review, the interested 
reader is referred to Bushnell's8 book. 
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