
The Degree of Masking Fault Tolerance vs. Temporal Redundancy

Nils Müllner and Oliver Theel
Department of Computer Science

Carl von Ossietzky Universität Oldenburg
26111 Oldenburg, Germany

Email: {nils.muellner|oliver.theel}@informatik.uni-oldenburg.de
Phone: +49-441-798-2364

Fax: +49-441-798-2756

Abstract—Self-stabilizing systems, intended to run for a long
time, commonly have to cope with transient faults during their
mission. We model the behavior of a distributed self-stabilizing
system under such a fault model as a Markov chain. Adding
fault detection to a self-correcting non-masking fault tolerant
system is required to progress from non-masking systems
towards their masking fault tolerant functional equivalents. We
introduce a novel measure, called limiting window availability
(LWA) and apply it on self-stabilizing systems in order to
quantify the probability of (masked) stabilization against the
time that is needed for stabilization. We show how to calculate
LWA based on Markov chains: first, by a straightforward
Markov chain modeling and second, by using a suitable
abstraction resulting in a space-reduced Markov chain. The
proposed abstraction can in particular be applied to spot fault
tolerance bottlenecks in the system design.

Keywords-Distributed Algorithms, Fault Tolerance, Masking,
Non-masking, Self-Stabilization

I. INTRODUCTION

We distinguish four classes of fault tolerance: 1) intol-
erant, 2) failsafe, 3) non-masking, and 4) masking fault
tolerant systems (cf. Table I) as proposed in [4, p.8].

safe not safe
live masking non-masking

not live failsafe intolerant

Table I
FAULT TOLERANCE CLASSES OF SYSTEMS BASED ON THEIR LIVENESS

AND SAFETY PROPERTY SPECIFICATIONS [4, P.8]

Live systems generally utilize correctors and safe systems
employ detectors [1]. Detectors on the one hand enable the
system to tell whether it is – wrt. a subsystem the detector
supervises – currently working according to its specification
or not. Hence, the failsafe property allows a system to
trigger a safe standstill, preventing it from working unsafe
by compromising liveness and potentially causing trouble.

Correctors on the other hand give a system the ability to
repair certain errors (i.e., re-establish safety). Like detectors,
correctors may be explicitly implemented. But in some
systems, the corrector functionality is somehow “inherently”
given like in most self-stabilizing systems. Those non-
masking systems can repair themselves without explicitly
knowing that they violate their safety property (and without
knowing that they currently repair errors). Masking fault
tolerant systems employ both, detectors as well as correctors,
either implicitly or explicitly or in any combination thereof.

In this paper, we focus on long running (live) systems
that are already capable of correcting themselves in order to
re-establish the safety property. Until now, the methods in-
troduced in literature enhanced an intolerant system towards
non-masking fault tolerance by adding correctors. Subse-
quently, the addition of detectors allowed those systems to
become masking fault tolerant [1], [5], [6], [7]. Yet, the
fault tolerance specification was given wrt. a certain fault
model and the systems were required to completely mask all
the mishaps specified by the fault model. These approaches,
though, did not analyze probabilistic masking of otherwise
non-masking fault tolerant systems. They only stated the
conditions under which a system was (perfectly) masking
or not.

In the approach presented here, we also amend live (non-
masking) systems to become maskingly fault tolerant up to
a certain probability (or degree). We focus on the addition
of a detection layer called fault masker [10]. But instead
of specifying, which faults can be masked under certain
preconditions, we introduce a method that allows for the
exact calculation of the probability distribution with which
faults are masked in relation to the efforts spent for error
correction. The approach can straightforwardly be used in
settings where subsystems supervised by the fault masker
can fail and can be repaired or exchanged.

We restrict ourselves to only use time, i.e. temporal
redundancy, as form of redundancy for error correction
in order to – as purely as possible – pin-point temporal
redundancy vs. the “degree of masking.” Although also
possible, we do not exploit forms of spatial redundancy to
be used by the corrector, as, for example, adopted in error
correcting codes (ECC)1. Clearly, both, temporal and spatial
redundancy, are resources that can be used to increase the
“degree of masking” of an otherwise non-masking system.

We illustrate our approach by an example: a self-
stabilizing and hence non-masking distributed system. In
order to evolve from non-masking towards masking, we
require a detector. We deploy a detector module called
fault masker [10] on the (self-stabilizing) system so that
we can measure to which extent the system masks faults.
As we increase the amount of time that a system is allowed

1Even self-stabilization requires “a little” spatial redundancy (e.g., space
for additional code) to actually utilize time for achieving fault tolerance.
Here, we distinguish between functional space redundancy as used for
additional code, and information redundancy, as used for example by ECC
in terms of dynamically assignable additional parity bits.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357584153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to utilize for correction of errors, we compute a measure
that expresses the cost/benefit relation between time granted
for correction (i.e., stabilization) and probability of correct
system functioning (i.e., system availability). We call this
measure limiting window availability (LWA). It is an ex-
tension to the instantaneous window availability measure
presented in [10].

LWA relates the (feasible) amount of time a system is
granted to deliver correct system service to its environ-
ment to the probability mass increase for doing so: having
more time to deliver correct system service allows for
the successful masking of otherwise observable error or
failure scenarios with a higher probability. Calculating this
time/probability relation allows for finding those favorable
parameter setting that feature the least amount of time
required for a maximal probability increase. Furthermore,
LWA allows to compare different system implementations
and select the most suited ones.

The contribution of our work is 1) the definition of
limiting window availability, 2) the introduction of a method
for calculating limiting window availability by means of
Markov chains, and 3) an abstraction-based method for
achieving state space reduction of those Markov chains.

II. RELATED WORK

In this section, we review relevant notions of self-
stabilization and associated aspects. Then, we discuss previ-
ous work, related to the practical as well as to the theoretical
background for using Markov chains for modeling system
behavior of distributed systems as required in the scope of
this paper.

A. Self-Stabilization
We use self-stabilizing systems examplarily for non-

masking systems. They are suitable for motivating our
approach as they primarily use time as redundancy resource.

This allows us to focus on the relation between the
redundancy resource time and fault tolerance. In [3], self-
stabilization is defined by means of closure and convergence
properties:
Definition 1 (Self-Stabilization [3])

A system is self-stabilizing wrt. a safety predicate P iff:
1) Starting from any state, it is guaranteed that the

system will eventually reach a state that satisfies the
safety predicate P (convergence property), provided
that no fault happens.

2) Given that the system satisfies the safety predicate,
it is guaranteed to stay in a state that satisfies the
safety predicate P (closure property), provided that
no fault happens.

Common to the fault models mostly used in the scope
of self-stabilizing systems are the following assumptions:
Code and constants cannot be corrupted by faults but any
program variable can. Faults are assumed to be transient, i.e.,
non-permanent in nature. Faults can happen anytime and the
number of faults though, is not restricted. Clearly, when the
temporal separation between faults is large enough wrt. a
certain self-stabilizing system, it can stabilize. We adopt the

above fault model with the exception that we restrict faults
1) to only happen when a process executes a computational
step and 2) to only impact (but arbitrarily alter) the variables
of this particular process.

There exist several notions of self-stabilization, some of
which are determined by the choice of the scheduler out
of several scheduler classes. A scheduler “drives system
execution” by selecting sets of processes allowed to take
the next computational step. For our analysis, since we
model self-stabilizing systems in terms of Markov chains
and computational steps as state transitions, we adopt a
probabilistic scheduler. A probabilistic scheduler selects any
process with a particular, non-zero probability. As a conse-
quence, the proper stabilization notion of our systems under
consideration is probabilistic self-stabilization as categorized
by Devismes et al. [2] in contrast to deterministic self-
stabilization assumed in the earlier discussions. Probabilistic
self-stabilization guarantees system convergence with prob-
ability 1, only.

B. Towards Limiting Window Availability

In [9], a Monte Carlo simulation of self-stabilizing dis-
tributed algorithms was introduced that calculated a measure
relating the amount of time spent for stabilization to the
gain of probability that a fault could be masked (i.e., the
increase in system availability). The analytic framework
of this relation, presented in [10], was supported by the
notion of instantaneous window availability as a suitable
measure. The term instantaneous implicitly assumes that the
self-stabilizing system is granted a sufficient but still finite
number of execution steps to settle.

Yet, we extend this notion by transiting from a finite
number of execution steps as settling phase towards the
system’s steady state distribution (which holds in the limit).
This extension allows us to more easily analyze a sub-
stract system avoiding quite complicated analytic terms or
plain simulation. Computing the limiting window avail-
ability (in contrast to instantaneous window availability)
uses the steady state probability distribution of the system
under consideration over the state space as initial system
state distribution for the analysis. From there, LWA allows
to “observes” the convergence behavior towards the states
satisfying the system’s safety predicate time-stepwise.

C. Towards Masking Fault Tolerance

The gradual composition of a fault intolerant algorithm
via a non-masking functional equivalent towards a fully
masking tolerant solution (with respect to a given fault
model) has been discussed by Arora and Kulkarni [1],
[5], [6], [7]. We apply their method in our example: a
non-stabilizing broadcast algorithm that is amended with a
self-stabilizing spanning tree algorithm to provide a self-
stabilizing broadcast algorithm (cf. the example algorithm
in Figures 2 and 3). Furthermore, Arora and Kulkarni based
their approach on the distinction between intolerant, non-
masking fault-tolerant, and masking fault-tolerant systems.
We propose a bridge over the gap between non-masking
systems and their masking functional equivalents, using time
redundancy.



D. Markov Chains
Over the past decades, in the areas of reliability en-

gineering, be it software engineering or integrated circuit
engineering, three model types have proven to be practical
in general. Reliability block diagrams (RBD), fault trees,
and Markov chains are among the options mostly used
to quantify a system’s fault tolerance. As self-stabilizing
systems are inherently prone to fault propagation, the system
components are not independent of each other. Therefore,
RBDs do not suffice here. Fault trees comply with the
requirements neither, as they cannot cope with failures and
repairs (nor errors and correction). Thus, we model the
reachable system states as states of a Markov chain and
calculate the transitions in between. The system behavior
model results in an ergodic Markov chain.

The reduction of Markov chains has been discussed
broadly. Here, we review a selection of relevant papers.
In [12] Markov chains representing the behavior of pro-
duction systems are reduced by identifying and excluding
unreachable states. Qureshi et al. [11] reduce Markov chains
that model the behavior of wireless local area networks and
wireless sensor networks to cope with the exponential state
space explosion problem. This reduction is solely based on
the Hamiltonian circuit property,2 a requirement we do not
see as granted in our setting. In [14] a bounding reduction
technique for finite discrete-time Markov chains is intro-
duced. Although this work is valuable for the decomposition
of Markov chains in order to cope with state space explosion,
the reduction we propose is an exact abstraction and not
a decomposition. Another valuable approach to tackle state
space explosion has been presented in [8], but it also focuses
on decomposition but not on exact abstraction.

III. DEFINITIONS

After the basic system specifications in Section III-A, we
state the definition of limiting availability in Section III-B
and define limiting window availability (LWA) and related
notions required in the remainder of the paper in Section
III-C.
A. Basic System Definitions

A system Π comprises n processes πi with Π =
{π1, . . . , πn}. Each process πi has a register reg i to store
information in. The configuration ct of a system at time t is
the particular instantiation of values of reg i, i = 1, . . . , n, at
time t. We assume a global safety predicate P ≡ P1 ∧ . . .∧
Pn that comprises n local predicates. Each local predicate Pi

specifies the set of legal configurations of the register of its
corresponding process πi. We say the system is operational
or in a legal state (or legal configuration) at time t, if the
current system configuration satisfies the global predicate,
denoted by ct |= P . We abstract the state of a process that
satisfies its predicate with 0 (labeled true in an algorithm)
and the dissatisfaction of its predicate with 2 (labeled false
in an algorithm). In the next section, we present a self-
stabilizing broadcast algorithm that is based on a three-
value system. The third value which represents don’t know
is abbreviated by 1 (and by “dk” in an algorithm).

2The Hamiltonian circuit property states that there exists a path which
visits every vertex exactly once.

In Section IV-C, we group configurations into so-called
compounds 0, . . . ,n. In our example, a compound contains
the same number of processes which dissatisfy their local
predicates as given by the compound’s name numerical
value. Hence, compound 0 contains those configurations
that satisfy the global predicate. Compound n comprises
all configurations where each process dissatisfies its local
predicate. Consequently, the number of possible compounds
is equal to the number of processes in the system plus one.
We denote an execution step as a transition from ct to ct+1

by −−−−→ct, ct+1.
As indicated above, we use a probabilistic scheduler

that selects prior to each computation step one process
to execute. We consider the probability p > 0 that the
executing process πi works according to its specification
(i.e., correctly). q = 1−p is the probability that the executing
process suffers from a fault, thus, makes a fault step and
stores false in its register reg i. We also refer to process πi
with π(reg i) as the process containing register reg i.

B. Limiting Availability
Limiting availability can be used to analyze systems that

are supposed to run infinitely long. We denote the (instan-
taneous) availability of a system (which is the probability
that the system works according to its specification) at time
t with At.
Definition 2 (Limiting Availability)

Limiting availability is the the probability that a system
works according to its specification at time instant t as t
approaches infinity: Alim := lim

t→∞
At.

C. Limiting Window Availability, its Vector, and its Gradient
A self-stabilizing system, even if not available at a certain

point in time, might become available some time later.
Suppose the system is not available, then how long does it
take until it is operational again? We rephrase this question
as: What is the probability increase per time step that we
wait for the system to work according to its specification
again? To give a quantitative answer to this question, we
require a proper measure.

Definition 3 (Limiting Window Availability)
Assume that at time t = 0, an initial system state distribu-
tion holds that corresponds to the steady state distribution
of a system. Then, Limiting Window Availability of win-
dow size i (of this system), denoted by li, i ≥ 0, is the
probability that the system has at least once reached a state
satisfying P within the following i time steps:

li :=
i∑

j=0

p(∀k, 0 ≤ k < i : ck 6|= P ∧ ci |= P),

i is called window size.

Note, that l0 = Alim.
Definition 4 (Limiting Window Availability Vector)

The limiting window availability vector of size i (of a
system), denoted by LWA, is an i-dimensional vector of
probabilities. The element in the ith position is the limiting



window availability of window size i− 1 of that system,
LWA := 〈l0, l1, . . . , li−1〉.

The mission goal is to wait for the system to work
according to its specification again. Informally speaking,
once the system has reached a legal state, we do not care
anymore whether the system is compromised or not during
its ongoing operation for the calculation of the LWA. Hence,
the sequence of li ∈ LWA is monotonically not decreasing.

Definition 5 (Limiting Window Availability Gradient)
The Limiting Window Availability Gradient, (or synony-
mously LWA Differential), denoted by LWAgrad, of a
given limiting window availability vector of size i is an
(i− 1)-dimensional vector of probabilities with
LWAgrad := 〈l1 − l0, . . . , li−1 − li−2〉.

The elements of LWAgrad represent the increase of prob-
ability per time step that a system will have satisfied its
predicate. Note, that the gradient is undefined for LWA
vectors of size 1.

We are particularly interested in the maximal elements
of LWAgrad, since they present time points with the largest
increase in system availability. Such a time point determines
the window size that is most reasonable to grant the system
for stabilization. As it turned out, systems might exhibit
multiple local maxima.

D. Fault Masker
We already introduced the fault masker [10], an additional

software layer over a non-masking system. It provides the
ability to exploit time in order to increase the degree of
masking fault tolerance of the system underneath it. The
fault masker, when called from an upper software layer,
monitors the system for two purposes. First, it is able to
detect if the system is not responding according to its
specification. Secondly, in such a case, the fault masker 1)
waits a time step (corresponding to an execution step), 2)
retries the inquiry and 3) checks whether the new system’s
response is correct. After a certain number of unsuccessful
“retries” (corresponding to the LWA window size m), it
reports the system failure to the upper layer.

IV. CALCULATION OF LIMITING WINDOW
AVAILABILITY

We present our approach in four steps. Each step begins
with the description of the general method followed by a
short example. First, we specify a system and the problem
specification according to Section IV-A. Second, we con-
struct a Markov chain that models the system behavior in
Section IV-B. Third, we reduce the Markov chain losslessly
in Section IV-C. Fourth, we use the reduced Markov chain
to calculate the limiting window availability of window size
20 for a given system in Section IV-D.

A. Problem Specification
The specification of a system consists of three major parts:

1) the specification of a system structure (processes and
communication channels), 2) a self-stabilizing algorithm,
and 3) a fault model. As we compute our measures and since

1 2 3 4π π π π

Figure 1. The Four Process Example System, π1 being the Root Process

a self-stabilizing system is employed, we do not need to care
about an initial state. Furthermore, we use serial execution
semantics (i.e., in each time step, exactly one process is
elected for execution). As we have discussed earlier, we
assume a probabilistic scheduler.

Method We specify a distributed system according to
Section III-A. A self-stabilizing algorithm is executed on
such a system. We use the fault model as described earlier.

Example The system comprises four processes Π =
{π1, . . . , π4}. In our example, the distributed algorithm
requires one distinguished root process π1. The processes
are connected as shown in Figure 1. Figure 2 shows a
self-stabilizing version of a simple broadcast algorithm for
the root process. Non-root processes execute the algorithm
shown in Figure 3.

1 const id := 0,
2 var reg,
3 repeat{
4 reg := true}

Figure 2. Broadcast Sub-Algorithm for the Root Process

1 const neighbors := {πi, . . .},
2 const id := min{id(πi), . . .}+ 1,
3 var reg,
4 var set := {regi, π(regi) ∈ neighbors|∀i :id(πi) =id−1}
5 repeat{
6 ¬((∃ regi : π(regi) ∈ set ∧ regi = false) xor
7 (∃ regi : π(regi) ∈ set ∧ regi = true))→
8 reg:=dk
9 � ∃ regi : π(regi) ∈ set ∧ regi = true → reg := true

10 � ∃ regi : π(regi) ∈ set ∧ regi = false → reg := false}
Figure 3. Broadcast Sub-Algorithm for Non-Root Processes

Each process is configured along a spanning tree algo-
rithm. As result, each process knows its distance from the
root process, stored in the constant id . The root process
π1, having id = 0, constantly writes a true value into its
register. Each non-root process takes those processes into
account for the computation of its value, that belong to a
process that is one step closer to the root process than itself.
The registers reg i of those neighbors that are closer to the
root process are referred to in the set structure. Computing
its value, a non-root process obtains one of three values.
When the registers in set 1) contain both true and false , or
exclusively dk values, the executing process stores dk in its
register. Otherwise, if 2) true is read in a register of the set
and false is not, true is stored. In case a register reads 3)
false but not true , then the executing process stores false in
its register. Obviously, fault propagation follows from root
towards the leafs, and the structure of a spanning tree in the



initialization phase is mandatory for stabilization. We say
that Pi |= true if reg i = true .
Theorem 1

The proposed broadcast algorithm is probabilistically self-
stabilizing under a probabilistic scheduler.

Proof 1
Anchor: In the absence of faults, the limiting probability
that the root process executes is 1. Then, the root process
writes true to its register and satisfies P1.
Step: In the absence of faults, the limiting probability for
each process πi, 1 < i ≤ n, to execute after all neighbors
have already stabilized is 1. Then, the process writes true
to its register and satisfies Pi.
Closing: In the absence of faults, only the correct value is
stored, since the root process always executes line 4 and
non-root processes (eventually) always execute line 8 in
Figures 2 and 3 respectively. This proves closure. Thus,
the algorithm is probabilistically self-stabilizing.

When a transient fault perturbs the registers of the exe-
cuting process, it fails to store the computed value (cf. lines
6 − 9 in Figure 3) and instead, stores false . We abbreviate
true with 0, dk with 1 and false with 2. We use the system
shown in Figure 1 with n = 4. The system state at time t is
the quadruple ct = 〈reg1, reg2, reg3, reg4〉. Consequently,
the transition probabilities between the states result in a
matrix that comprises 54 × 54 entries. Fortunately, we can
disregard those states that are unreachable: Note that the
serially connected processes and the root process can only
store either true or false . Furthermore, due to the serial
nature of the topology, each non-root process has exactly one
successor. Thus, states in which at least one process stores a
dk value, are unreachable (as the dk value is only required
by the algorithm on non-serial topologies.) This, luckily,
reduces the transition table of the example to a 16 × 16
matrix.

B. Markov Model
Method We use the resulting 16 relevant system states as

vertices of a Markov chain. Then, we calculate the transition
probabilities between each pair of states.

Example The probabilistic scheduler is assumed to poten-
tially select every process prior to every computation step
with an equal probability of pexec(πi) = 1

n . We abbreviate
pexec(πi) with ei hereafter. Transient faults are assumed to
occur with a probability of q = 1 − p. In the example, we
set q = 0.01. A process that is working correctly will fail to
compute the correct value for its register, if it is not provided
with correct information by the neighbors’ registers specified
in set (fault propagation, i.e., faults are strictly propagated
from processes closer to the root process towards processes
closer to the leaf processes). The probability that a process
executes and is – while executing – corrupted by a fault is
ei · q = 0.25 · 0.01 = 0.0025 (analogously defined for the
counter probability p that no corruption occurs).

The transition probabilities can be calculated as shown
in Tables II - IV. In the tables, we group the states into
compounds 0 to 4 as described in Section III-A. Due to

serial execution semantics, states from group 0 can only
reach states from group 0 and 1 with one computation step,
states from group 1 can only reach states from groups 0,
1 and 2, and so on. Table II shows all transitions from
groups 0, 1 and 2 into groups 0 and 1. Table III shows
all transitions from groups 1, 2 and 3 into group 2. Table
IV, finally, shows the remaining transitions. We calculate the
steady state probability distribution of this Markov chain as
described in [13, p.351] and present the results in Table V.
As we are interested in long-running system services, the

Compound State Steady State Probability
0 〈0, 0, 0, 0〉 0.936254913358677
1 〈0, 0, 0, 2〉 0.020767040703947
1 〈0, 0, 2, 0〉 0.006443085000445
1 〈0, 2, 0, 0〉 0.005896554367512
1 〈2, 0, 0, 0〉 0.004721801275921
2 〈0, 0, 2, 2〉 0.011734460936930
2 〈0, 2, 0, 2〉 0.000103249069863
2 〈0, 2, 2, 0〉 0.003596242185866
2 〈2, 0, 0, 2〉 0.000101514623954
2 〈2, 0, 2, 0〉 0.000028052478081
2 〈2, 2, 0, 0〉 0.002411422793886
3 〈0, 2, 2, 2〉 0.005204454376759
3 〈2, 0, 2, 2〉 0.000049131622044
3 〈2, 2, 0, 2〉 0.000042503806239
3 〈2, 2, 2, 0〉 0.001243938539611
4 〈2, 2, 2, 2〉 0.001401634860264

Table V
STEADY STATE PROBABILITY DISTRIBUTION

steady state distribution as the initial distribution is required
for the calculation of LWA. By definition, once the system
works according to its specification, the mission goal is
accomplished regardless whether the system is perturbed
by faults afterwards or not. Hence, we design the state
〈0, 0, 0, 0〉 as a sink that cannot be left once reached. For
doing so, the transition probability p(

−−−−−−−−−−−−−−→〈0, 0, 0, 0〉, 〈0, 0, 0, 0〉)
is set to 1. The probability mass belonging to state 〈0, 0, 0, 0〉
after i iterations then corresponds to the limiting window
availability li. The LWA vector with a maximal limiting
availability window size of 5 is shown in Table VI.

l0 l1 l2 l3 l4 l5
0.93626 0.94562 0.95266 0.95824 0.96282 0.96668

Table VI
THE LWA OF THE EXAMPLE SYSTEM WITH MAXIMAL WINDOW SIZE 5

Next, we reduce the Markov chain in order to investigate
the relation between the compounds.

C. Preparations for the Reduced Markov Chain
The purpose to reduce a Markov chain is to reduce the

number of states (and transitions) and to be able to observe
the relation between compounds of interest. There might be
multiple objectives of interest. One example that we show in
this paper is the probability distribution of the compounds as
specified in Tables II - IV. In these tables, we have grouped
the states according to the number of processes that fail
to satisfy their specification. Hence, the number of each
compound corresponds to the minimal number of execution



0 1

↓from/to→ 〈0, 0, 0, 0〉 〈0, 0, 0, 2〉 〈0, 0, 2, 0〉 〈0, 2, 0, 0〉 〈2, 0, 0, 0〉
0 〈0, 0, 0, 0〉 p(e1 + e2 + e3 + e4) qe4 qe3 qe2 qe1

1

〈0, 0, 0, 2〉 pe4 p(e1 + e2 + e3) + qe4
〈0, 0, 2, 0〉 pe3 p(e1 + e2) + qe3
〈0, 2, 0, 0〉 pe2 p(e1 + e4) + qe2
〈2, 0, 0, 0〉 pe1 p(e3 + e4) + qe1

2

〈0, 0, 2, 2〉 pe3
〈0, 2, 0, 2〉 pe2 pe4
〈0, 2, 2, 0〉 pe2
〈2, 0, 0, 2〉 pe1 pe4
〈2, 0, 2, 0〉 pe1 pe3
〈2, 2, 0, 0〉 pe1

Table II
TRANSITIONS GROUPED BY NUMBER OF OPERATIONAL PROCESSES 1/3

2

↓from/to→ 〈0, 0, 2, 2〉 〈0, 2, 0, 2〉 〈0, 2, 2, 0〉 〈2, 0, 0, 2〉 〈2, 0, 2, 0〉 〈2, 2, 0, 0〉

1

〈0, 0, 0, 2〉 qe3 qe2 qe1
〈0, 0, 2, 0〉 e4 qe2 qe1
〈0, 2, 0, 0〉 qe4 e3 qe1
〈2, 0, 0, 0〉 qe4 qe3 e2

2

〈0, 0, 2, 2〉 p(e1 + e2) + qe3 + e4
〈0, 2, 0, 2〉 pe1 + q(e2 + e4)
〈0, 2, 2, 0〉 pe1 + qe2 + e3
〈2, 0, 0, 2〉 q(e1 + e4) + pe3
〈2, 0, 2, 0〉 q(e1 + e3)
〈2, 2, 0, 0〉 qe1 + e2 + pe4

3

〈0, 2, 2, 2〉 pe2
〈2, 0, 2, 2〉 pe1 pe3
〈2, 2, 0, 2〉 pe1 pe4
〈2, 2, 2, 0〉 pe1

Table III
TRANSITIONS GROUPED BY NUMBER OF OPERATIONAL PROCESSES 2/3

3 4

↓from/to→ 〈0, 2, 2, 2〉 〈2, 0, 2, 2〉 〈2, 2, 0, 2〉 〈2, 2, 2, 0〉 〈2, 2, 2, 2〉

2

〈0, 0, 2, 2〉 qe2 qe1
〈0, 2, 0, 2〉 e3 qe1
〈0, 2, 2, 0〉 e4 qe1
〈2, 0, 0, 2〉 qe3 e2
〈2, 0, 2, 0〉 e4 e2
〈2, 2, 0, 0〉 qe4 e3

3

〈0, 2, 2, 2〉 pe1 + qe2 + e3 + e4 qe1
〈2, 0, 2, 2〉 q(e1 + e3) + e4 e2
〈2, 2, 0, 2〉 q(e1 + e4) + e2 e3
〈2, 2, 2, 0〉 qe1 + e2 + e3 e4

4 〈2, 2, 2, 2〉 pe1 qe1 + e2 + e3 + e4

Table IV
TRANSITIONS GROUPED BY NUMBER OF OPERATIONAL PROCESSES 3/3

steps the system must take to stabilize. Another goal could
be to group those states together where a specific node fails.
Doing so would allow to find dependability bottlenecks in
the system design.

Method Reducing the Markov chain consists of three
steps: 1) calculation of the steady state probability for each
state (cf. Table V), 2) building subsets of states (compounds)
as desired, and 3) calculating the transition probabilities
between the subsets.

Example We label the Markov chain presented in Tables
II - IV as M . After calculating the steady state probability
distribution of M we build a new Markov chain M in which
a state represents a compound (of states) of M . In our
example, we identify the compounds 0, 1, 2, 3 and 4. Third,
we calculate the transition probabilities between the states

of M, that is, between the compounds.
Steady State Probability Distribution: Table V shows

the steady state probability distribution derived from M .
Vertex Abstraction: We divide the states from M into

compounds. We build a new Markov chain M in which each
compound is represented by a single state. The motivation
is to check, whether probability mass is ”withheld” in a
compound. If so, using additional time steps for stabilization
is reasonable. The Markov chain M, in our case, consists of
n+ 1 states. The initial probability of a compound state in
M is set to the sum of the steady state probabilities of the
states it comprises.

Transition Abstraction: Similar to building compound
states, we group all those transitions together that have in
common i) a source in the same compound and ii) a target



v1 v2 v3
v

Figure 4. Example Reduction: Compound v of v1, v2 and v3

in the same compound. An important part is to correctly
consider the weighting of the transitions into the transition
abstraction.

To differentiate between source and target state of a
transition, we label the source state v and the target state w.
The reduced transitions are calculated using the following
formula:

p(−−→v,w) =

n∑
i=0

m∑
j=0

p(−−−→vi, wj) · p(vi)

n∑
i=0

p(vi)
(1)

with v,w ∈ {0, 1, 2, 3, 4} in our example.
Here, the number of transitions with the source state in

compound v and the target state in compound w is n. The
number of transitions with a target state in compound w is
m. The transition probability from one state of compound
v to one state in compound w is denoted by p(−−−→vi, wj). Its
particular weight (i.e., the probability mass in the particular
state) is denoted by p(vi). Tables II - IV show the source
states v as rows and the target states w as columns, both
grouped by their particular number of operational processes.

When folding transitions, three cases can occur: 1) a
transition from a state within a compound to itself, 2)
a transition from a state within a compound to another
state of the compound, and 3) a transition from one state
within a compound to another process outside the compound
as depicted in Figure 4. Our example does not exhibit
compounds of all three cases that possibly can occur in the
reduction. As we employ only serial execution semantics, the
system state can change at most in one digit per execution
step. The transition −−−→v1, v2 can hence not occur as two states
that have the same number of functional processes must
at least differ in two digits. To show all possibilities, we
briefly discuss the example depicted in Figure 4. We reduce
vertices v1, v2 and v3 into one compound v and calculate
the transition probability −→v, v exemplarily:

p(−→v, v) =
p(
−−−→
v1, v1) · p(v1) + p(

−−−→
v1, v2) · p(v1)

p(v1) + p(v2) + p(v3)
(2)

We return to the reduction of M to M and exemplarily
calculate the transition probability p(

−→
1,1). The transition

probabilities we need are given in Table II. The steady state
probabilities are given in Table V. Then, p(−→1, 1) calculates
as follows:

p(
−→
1, 1) = 0.745·0.0208+0.4975·0.0064

0.0208+0.0064+0.0059+0.0047+
0.4975·0.0059+0.4975·0,0047

0.0208+0.0064+0.0059+0.0047

= 0.6333722949242 (3)

Reduced Markov Chain: As described, we require five
states labeled 0 to 4. Then, we calculate their initial state
probabilities as sums of the respective probabilities of the
states the compounds comprise (shown in Table VII), and the
transition probabilities (shown in Table VIII). Note, that the
information which is abstracted away only concerns transi-
tion probabilities within the compounds. As a consequence,
the abstracted Markov chain M delivers exact results of the
probability distribution between the compounds over time.

Vertex Initial Probability
0 0.936254913358678
1 0.037828481347825
2 0.017974942088580
3 0.006540028344653
4 0.001401634860264

Table VII
INITIAL PROBABILITY DISTRIBUTION FOR M

↓from/to→ 0 1 2 3 4

0 1 0 0 0 0
1 0.2475 0.6334 0.1191 0 0
2 0 0.2507 0.6580 0.0913 0
3 0 0 0.2510 0.6960 0.0530
4 0 0 0 0.2475 0.7525

Table VIII
TRANSITION PROBABILITIES OF THE REDUCED MARKOV CHAIN

D. The Limiting Window Availability Gradient

In the previous section, we have shown how to calculate
LWA by an example using Markov chain M . The results are
shown in the column labeled 0 (representing a functioning
system) of Table IX for window sizes of 0 to 20. The
LWA results for the reduced example M are also given in
Table IX: here, the different columns show the probabilities
on a compound-basis. After calculating the LWA and the

0 1 2 3 4

0 0.93626 0.03783 0.01798 0.00654 0.00140
1 0.94562 0.02847 0.01798 0.00654 0.00140
2 0.95266 0.02254 0.01686 0.00654 0.00140
3 0.95824 0.01850 0.01542 0.00644 0.00140
4 0.96282 0.01558 0.01397 0.00624 0.00140
5 0.96668 0.01337 0.01261 0.00596 0.00138
6 0.96999 0.01163 0.01139 0.00564 0.00136
7 0.97286 0.01022 0.01029 0.00530 0.00132
8 0.97539 0.00905 0.00932 0.00496 0.00127
9 0.97764 0.00807 0.00846 0.00462 0.00122

10 0.97963 0.00723 0.00768 0.00429 0.00116
11 0.98142 0.00651 0.00699 0.00397 0.00110
12 0.98303 0.00588 0.00637 0.00368 0.00104
13 0.98449 0.00532 0.00582 0.00340 0.00098
14 0.98580 0.00483 0.00531 0.00314 0.00092
15 0.98700 0.00439 0.00486 0.00290 0.00086
16 0.98808 0.00400 0.00445 0.00267 0.00080
17 0.98907 0.00365 0.00407 0.00246 0.00074
18 0.98998 0.00333 0.00373 0.00227 0.00069
19 0.99080 0.00305 0.00342 0.00209 0.00064
20 0.99156 0.00279 0.00314 0.00193 0.00059

Table IX
PROBABILITY DISTRIBUTION DEVELOPMENT OF M ON A

COMPOUND-BASIS WITH INCREASING WINDOW SIZE



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-0,015

-0,010

-0,005

0,000

0,005

0,010

0,015

Limiting Window Availability Gradient
for all compounds

0
1
2
3
4

Calculation Step

LW
A

 G
ra

di
en

t

Figure 5. LWAgrad of the Example

computation of compounds in our interest, we calculate the
LWAgrad. Results are presented in Figure 5 (discrete results
are connected by straight lines for better visibility).

E. Discussion
An interesting characteristic of the example we used is

given by the columns 1 to 4 in Table IX: note that the
probability mass in these states is constant for o steps where
o is the label of the compound (the last column shows
one step to many due to rounding). This means, that the
probability mass income equals the probability mass outgo
for the first o steps. This fact relies on the steady state
probability distribution which is used as initial distribution,
as well as on the transition probabilities. We call the effect
that compounds do not loose probability mass over the first
steps probability mass retention. When calculating larger and
non-serial systems (with trees and cycles), this effect is even
stronger. The probability mass in states other than 0 can
temporarily even increase. The evolution of the probability
mass within the compounds is a valuable indicator whether
stabilization can be expected soon or whether the probability
mass ”is stuck in a compound that is far from stabilization.”
Such an analysis represents a valuable observation in the
discovery of bottlenecks in the system design.

V. CONCLUSION

We presented the notion of limiting window availability.
We showed how to use Markov models for calculating LWA
and quantified the trade-off between time and an increased
degree of masking fault tolerance using an example. We
showed how to group states to compounds and observed the
effect of probability mass retention.

Small systems, like the example we used, have a strictly
monotonic LWAgrad. Larger systems do not necessarily
comply with this behavior [9]. We presented an abstraction
method capable of computing the precise LWA of fault
tolerant systems.

In the future, we will use this abstraction for the decom-
position of systems (i.e., the decomposition of the Markov
chains modeling the system’s behavior). This will allow us
to also compute the LWA for larger systems, as we currently
are unable to, due to the state space explosion of their
respective Markov chains.

ACKNOWLEDGMENTS

N. Müllner was supported by the German Research Foun-
dation (DFG) under grant DRK 1076/1 TrustSoft. O. Theel
was supported by the DFG under grant SFB/TR 14 AVACS.

REFERENCES

[1] A. Arora and S. S. Kulkarni. Designing Masking Fault-
Tolerance via Nonmasking Fault-Tolerance. IEEE Transac-
tions on Software Engineering, 24(6):435–450, 1998.

[2] S. Devismes, S. Tixeuil, and M. Yamashita. Weak vs. Self
vs. Probabilistic Stabilization. In ICDCS ’08: Proceedings of
the 2008 The 28th International Conference on Distributed
Computing Systems, pages 681–688, Washington, DC, USA,
2008. IEEE Computer Society.

[3] S. Dolev. Self-Stabilization. MIT Press, Cambridge, MA,
USA, 2000.

[4] F. C. Gärtner. Fundamentals of Fault-Tolerant Distributed
Computing in Asynchronous Environments. ACM Computing
Surveys, 31(1):1–26, 1999.

[5] S. Kulkarni and A. Arora. Automating the Addition of Fault-
Tolerance. In Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFTS’2000), 2000.

[6] S. S. Kulkarni. Component based design of fault-tolerance.
PhD thesis, 1999.

[7] S. S. Kulkarni and A. Arora. Compositional Design of
Multitolerant Repetitive Byzantine Agreement. Lecture Notes
in Computer Science, 1346:169–183, 1997.

[8] L. Leskelä. Computational methods for stochastic relations
and markovian couplings. In VALUETOOLS ’09: Proceedings
of the Fourth International ICST Conference on Performance
Evaluation Methodologies and Tools, pages 1–8, ICST, Brus-
sels, Belgium, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engi-
neering).

[9] N. Müllner, A. Dhama, and O. Theel. Derivation of Fault
Tolerance Measures of Self-Stabilizing Algorithms by Sim-
ulation. In ANSS ’08: Proceedings of the 41st Annual
Symposium on Simulation, pages 183–192. IEEE Computer
Society Press, Apr. 2008.

[10] N. Müllner, A. Dhama, and O. Theel. Deriving a Good Trade-
off Between System Availability and Time Redundancy. In
Proceedings of the Symposia and Workshops on Ubiquitious,
Automatic and Trusted Computing, number E3737, pages 61–
67. IEEE Computer Society Press, July 2009.

[11] H. K. Qureshi, K. Shahzad, S. A. Khayam, M. Rajarajan,
and V. Rakocevic. Complexity reduction of Markov channel
models for wireless networks using graph theory. 2008.

[12] D. Racoceanu, N. Zerhouni, and N. Addouche. Modular
modeling and analysis of a distributed production system with
distant specialized maintenance. In Proc. of the 2002 IEEE
International Conference on Robotics and Automation, on CD
ROM, pages 4046–4052, 2002.

[13] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing, and Computer Science Applications. Second edi-
tion, 2002.

[14] L. Truffet. Reduction techniques for discrete-time markov
chains on totally ordered state space using stochastic com-
parisons. Journal of Applied Probability (J. Appl. Probab.),
37:795–806, 2000.


