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Summary. A key application of automatic differentiation (AD) is to facilitate numerical op-
timization problems. Such problems are at the core of many estimation techniques, including
maximum likelihood. As one of the first applications of AD in the field of economics, we used
Tapenade to construct derivatives for the likelihood function of any linear or linearized general
equilibrium model solved under the assumption of rational expectations. We view our main
contribution as providing an important check on finite-difference (FD) numerical derivatives.
We also construct Monte Carlo experiments to compare maximum-likelihood estimates ob-
tained with and without the aid of automatic derivatives. We find that the convergence rate of
our optimization algorithm can increase substantially when we use AD derivatives.
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1 Introduction

While applications of automatic differentiation (AD) have spread across many differ-
ent disciplines, they have remained less common in the field of economics.1 Based
on the successes reported in facilitating optimization exercises in other disciplines,
we deployed AD techniques to assist with the estimation of dynamic general equilib-
rium (DGE) models. These models are becoming a standard tool that central banks
use to inform monetary policy decisions. However, the estimation of these models
is complicated by the many parameters of interest. Thus, typically, the optimization
method of choice makes use of derivatives. However, the complexity of the mod-
els does not afford a closed-form representation for the likelihood function. Finite-
difference methods have been the standard practice to obtain numerical derivatives in
this context. Using Tapenade (see [7], [8], [9]), we constructed derivatives for a gen-
eral formulation of the likelihood function, which takes as essential input the linear
representation of the model’s conditions for an equilibrium.

1 Examples of AD contributions to the computational finance literature are [3], [10], [6].
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Table 1. List of library functions

Blas Functions

daxpy.f dcopy.f ddot.f dgemm.f dgemv.f dger.f
dnrm2.f drot.f dscal.f dswap.f dtrmm.f dtrmv.f
dtrsm.f

Lapack Functions

dgebak.f dgebal.f dgeesx.f dgehd2.f dgehrd.f dgeqp3.f
dgeqr2.f dgeqrf.f dgesv.f dgetf2.f dgetrf.f dgetrs.f
dhseqr.f dlacn2.f dlacpy.f dladiv.f dlaexc.f dlahqr.f
dlahr2.f dlaln2.f dlange.f dlanv2.f dlapy2.f dlaqp2.f
dlaqps.f dlaqr0.f dlaqr1.f dlaqr2.f dlaqr3.f dlaqr4.f
dlaqr5.f dlarfb.f dlarf.f dlarfg.f dlarft.f dlarfx.f
dlartg.f dlascl.f dlaset.f dlassq.f dlaswp.f dlasy2.f
dorg2r.f dorghr.f dorgqr.f dorm2r.f dormqr.f dtrexc.f
dtrsen.f dtrsyl.f dtrtrs.f

The programming task was complicated by the fact that the numerical solution of
a DGE model under rational expectations relies on fairly complex algorithms.2 We
use Lapack routines for the implementation of the solution algorithm. In turn, our top
Lapack routines make use of several Blas routines. A byproduct of our project has
been the implementation of numerous AD derivatives of the double precision subset
of Blas routines. Table 1 lists the routines involved.

In the remainder of this paper, Sect. 2 lays out the general structure of a DGE
model and describes our approach to setting up the model’s likelihood function.
Section 3 outlines the step we took to implement the AD derivatives and how we
built confidence in our results. Section 4 gives an example of a DGE model that we
used to construct Monte Carlo experiments to compare maximum-likelihood esti-
mates that rely, alternatively, on AD or FD derivatives, reported in Sect. 5. Section 6
concludes.

2 General Model Description and Estimation Strategy

The class of DGE models that is the focus of this paper take the general form:

H(θ)

⎛

⎝
EtXt+1

Xt
Xt−1

⎞

⎠ = 0. (1)

In the equation above, H is a matrix whose entries are a function of the structural pa-
rameter vector θ , while Xt is a vector of the model’s variables (including the stochas-

2 In this paper we focus on the first-order approximation to the solution of a DGE model.
Many alternative approaches have been advanced. We use the algorithm described by [2]
which has the marked advantage of not relying on complex decompositions.
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tic innovations to the shock processes). The term Et is an expectation operator, con-
ditional on information available at time t and the model’s structure as in (1). Notice
that allowing for only one lead and one lag of Xt in the above equation implies no
loss of generality.

The model’s solution takes the form:

Xt = S(H(θ))Xt−1, (2)

thus, given knowledge of the model’s variables at time t− 1, a solution determines
the model’s variables at time t uniquely. The entries of the matrix S are themselves
functions of the matrix H and, in turn, of the parameter vector θ .

Partitioning Xt such that Xt =
(

xt
εt

)
, where εt is a collection of all the innova-

tions to the exogenous shock processes (and possibly rearranging the system) it is
convenient to rewrite the model’s solution as

xt = A(H(θ))xt−1 +B(H(θ))εt . (3)

Again, the entries in the matrices A and B are fundamentally functions of the param-
eter vector θ . Given a subset of the entries in xt as observable, call these entries yt ,
the state-space representation of the system takes the form:

xt = A(H(θ))xt−1 +B(H(θ))εt (4)
yt = Cxt (5)

Without loss of generality, we restrict the matrix C to be a selector matrix, which
picks the relevant entries of xt . Using the Kalman Filter recursions, we can express
the likelihood function for the model as:

L = L(A(θ),B(θ),C,yt−h, ...,yt) (6)

where yt−h and yt are respectively the first and last observation points available.
The routines we developed, given an input H(θ), produce the derivative of the

likelihood function with respect to the structural parameters, ∂L
∂θ , and as an intermedi-

ate product, ∂A
∂θ , the derivative of the model’s reduced-form parameters with respect

to the structural parameters.

3 Implementing AD Derivatives

To obtain AD derivatives of the likelihood function, we used Tapenade in tangent
mode. Tapenade required limited manual intervention on our part. This is remarkable
given that the code to be differentiated consisted of approximately 80 subroutines
for a total of over 17,000 lines of code. The derivative-augmented code produced
by Tapenade covers approximately 25,000 lines (the original code has a size of 554
kilobytes and the differentiated code is 784 kilobytes in size).
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Recoding became necessary when the Lapack or Blas routines we called did
not explicitly declare the sizes of the arguments in the calling structure and instead
allowed for arbitrary sizing (possibly exceeding the storage requirements). A more
limited recoding was required when we encountered the use of “GOTO” statements
in the Fortran 77 code of the Blas library, which Tapenade could not process.

More substantially, two of the decompositions involved in the model solution,
the real Schur decomposition and the singular-value decomposition, are not always
unique. Parametric restrictions of the models we tested could ensure uniqueness
of these decompositions. In those cases, we verified that AD derivatives obtained
through Tapenade satisfied some basic properties of the decompositions that we de-
rived analytically, but our test failed whenever we relaxed those parametric restric-
tions to allow for more general model specifications

In particular, we relied on the Lapack routine DGEESX to implement the real
Schur decomposition. For a given real matrix E, this decomposition produces a uni-
tary matrix X , such that T = XHEX is quasitriangular. Given ∂E

∂θ , we need that the

derivative ∂X
∂θ satisfy ∂T

∂θ = ∂XH

∂θ EX +XH ∂E
∂θ X +XHE ∂X

∂θ , where ∂T
∂θ is itself quasitri-

angular. This property failed to be met by our AD derivatives when our choice of E
implied a non-unique Schur decomposition. To obviate this problem, we substituted
the AD derivative for the DGEESX routine with the analytical derivative of the Schur
decomposition as outlined in [1].

Similarly, the singular value decomposition, implemented through the DGESVD
routine in the Lapack library, given a real matrix E, produces unitary matrices U and
V and a diagonal matrix D, such that E = UDV T . Given ∂E

∂θ , it can be shown that
UT ∂E

∂θV = UT ∂U
∂θ D + ∂D

∂θ + D ∂V
∂θV , where ∂D

θ is diagonal and UT ∂U
∂θ and ∂V

∂θV are
both antisymmetric. Our AD derivative of the routine DGESVD failed to satisfy this
property when the matrix E had repeated singular values (making the decomposition
non-unique). We substituted our AD derivative with the analytical derivative derived
by [11].

To test the derivative of the likelihood function, we used a two-pronged ap-
proach. For special cases of our model that could be simplified enough as to yield a
closed-form analytical solution, we computed analytical derivatives and found them
in agreement with our AD derivatives, accounting for numerical imprecision. To test
the derivatives for more complex models that we could not solve analytically, we re-
lied on comparisons with centered FD derivatives. Generally with a step size of 10−8

we found broad agreement between our AD derivatives and FD derivatives. Plotting
AD and FD side by side, and varying the value at which the derivatives were eval-
uated, we noticed that the FD derivatives appeared noisier than the AD derivatives.
We quantify the “noise” we observed in an example below.

4 Example Application

As a first application of our derivatives, we consider a real business cycle model
augmented with sticky prices and sticky wages, as well as several real rigidities,
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following the work of [12]. Below, we give a brief description of the optimization
problems solved by agents in the model, which allows us to interpret the parameters
estimated in the Monte Carlo exercises that follow.

There is a continuum of households of measure 1, indexed by h, whose objective
is to maximize a discounted stream of utility according to the following setup:

max
[Ct (h),Wt (h),It (h),Kt+1(h),Bt+1(h)]

Et

∞

∑
j=0
β j (U(Ct+ j(h),Ct+ j−1(h))

+V (Lt+ j(h)))+β jλt+ j(h) [Πt(h)+Tt+ j(h)+(1− τLt)Wt+ j(h)Lt+ j(h)

+(1− τKt)Rkt+ jKt+ j(h)− 1
2
ψIPt+ j

(
It+ j(h)− It+ j−1(h)

)2

It+ j−1(h)

−Pt+ jCt+ j(h)−Pt+ jIt+ j(h)−
∫

s
ψt+ j+1,t+ jBt+ j+1(h)+Bt+ j(h)

]

+β jQt+ j(h)
[
(1−δ )Kt+ j(h)+ It+ j(h)−Kt+ j+1(h)

]
.

The utility function depends on consumption Ct(h) and labor supplied Lt(h). The pa-
rameter β is a discount factor for future utility. Households choose streams for con-
sumption Ct(h), wages Wt(h), investment It(h), capital Kt+1(h) and bond holdings
Bt+1(h), subject to the budget constraint, whose Lagrangian multiplier is λt(h), cap-
ital accumulation equation, whose Lagrangian multiplier is Qt(h), and the labor de-

mand schedule Lt(h) = Lt

(
Wt (h)

Wt

)− 1+θw
θw . Households rent to firms (described below)

both capital, at the rental rate RKt , and labor at the rental rate Wt(h), subject to labor
taxes at the rate τLt and to capital taxes at the rate τKt . There are quadratic adjust-
ment costs for investment, governed by the parameter ψI , and capital depreciates at
a per-period rate δ . We introduce Calvo-type contracts for wages following [5]. Ac-
cording to these contracts, the ability to reset wages for a household h in any period
t follows a Poisson distribution. A household is allowed to reset wages with proba-
bility 1− ξw. If the wage is not reset, it is updated according to Wt+ j(h) = Wt(h)π j

(where π is the steady-state inflation rate), as in [13]. Finally, Tt(h) and Πt(h) repre-
sent, respectively, net lump-sum transfers from the government and an aliquot share
of the profits of firms.

In the production sector, we have a standard Dixit-Stiglitz setup with nominal
rigidities. Competitive final producers aggregate intermediate products for resale.
Their production function is

Yt =
[∫ 1

0
Yt( f )

1
1+θp

]1+θp

(7)

and from the zero profit condition the price for final goods is

Pt =
[∫ 1

0
Pt( f )−

1
θp

]−θp

. (8)

where Pt( f ) is the price for a unit of output for the intermediate firm f .
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Intermediate firms are monopolistically competitive. There is complete mobility
of capital and labor across firms. Their production technology is given by

Yt( f ) = AtKt( f )αLd
t ( f )1−α . (9)

Intermediate firms take input prices as given. Ld
t ( f ), which enters the intermediate

firms’ production function, is an aggregate over the skills supplied by each house-

hold, and takes the form Ld
t ( f ) =

(∫
h Lt(h)

1
1+θw

)1+θw
. At is the technology level and

evolves according to an autoregressive (AR) process:

At −A = ρA (At−1−A)+ εAt , (10)

where εAt is an iid innovation with standard deviation σA, and A is the steady-state
level for technology. Intermediate firms set their prices Pt( f ) according to Calvo-type
contracts with reset probabilities 1−ψP. When prices are not reset, they are updated
according to Pt+ jt( f ) = Pt( f )π j.

Finally, the government sector sets a nominal risk-free interest rate according to
the reaction function:

it =
π
β
−1+ γπ(πt −π)+ γY (log(Yt)− log(Yt−1)+ εit , (11)

where inflation πt ≡ Pt
Pt−1

, and εit is itself an AR process of order 1. For this process,
we denote the AR coefficient with ρi; the stochastic innovation is iid with standard
deviation σi. Notice that, in this setting, households are Ricardian, hence the time-
profile of net lump-sum transfers is not distortionary. We assume that these transfers
are set according to:

τLtWtLt + τKtRKtKt = Gt +Tt . (12)

Labor taxes, τLt , and capital taxes, τKt , follow exogenous AR processes

τLt − τL = ρL (τLt−1− τL)+ εLt , (13)

τKt − τK = ρK (τKt−1− τK)+ εKt , (14)

as does Government spending (expressed as a share of output)

Gt

Yt
− G

Y
= ρG

(
Gt−1

Yt−1
− G

Y

)
+ εGt . (15)

In the equations above, the exogenous innovations εLt ,εKt ,εGt are iid with standard
deviations σL, σKt , and σG, respectively. The parameters τL, τK , and G

Y , without a
time subscript, denote steady-state levels.

The calibration strategy follows [4] and parameter values are reported in Table 2.
By linearizing the necessary conditions for the solution of the model, we can express
them in the format of (1).
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Table 2. Calibration

Parameter Used to Determine Parameter Used to Determine

Parameters governing households’ and firms’ behavior

β = 0.997 discount factor φI = 3 investment adj. cost
τL = 0.28 steady state labor tax

rate
τK = 0 steady state capital tax rate

ψP = 0.75 Calvo price parameter ψW = 0.75 Calvo wage parameter
δ = 0.025 depreciation rate

Monetary Policy Reaction Function

γπ = 1.5 inflation weight γY = 0.5 output weight

Exogenous Processes
AR(1) Coefficient Standard Deviation

ρL = 0.98 labor tax rate σL = 3.88 labor tax rate innovation
ρK = 0.97 capital tax rate σK = 0.80 capital tax innovation
ρG = 0.98 govt spending σG = 0.30 govt spending innovation
ρi = 0.95 monetary policy σi = 0.11 monetary policy innovation
ρA = 0.95 technology σA = 0.94 labor tax innovation

5 Monte Carlo Results

Using the model described in Sect. 4 as the data-generating process, we set up
a Monte Carlo experiment to compare maximum-likelihood estimates obtained
through two different optimization methods. One of the methods relies on our AD
derivative of the model’s likelihood function. The alternative method, uses a two-
point, centered, finite-difference approximation to the derivative.

In setting up the likelihood function, we limit our choices for the observed
variables in the vector yt of (5) to four series, namely: growth rate of output
log(Yt)− log(Yt−1), price inflation πt , wage inflation ωt ≡ Wt

Wt−1
, and the policy inter-

est rate it . For each Monte Carlo sample, we generate 200 observations, equivalent
to 50 years of data given our quarterly calibration, a sample length often used in
empirical studies. We attempt to estimate the parameters ρi, σi, governing the ex-
ogenous shock process for the interest rate reaction function; ψP, ψW , the Calvo
contract parameters for wages and prices; and γπ , and γY the weights in the mone-
tary policy reaction function for inflation and activity. In the estimation exercises, we
kept the remaining parameters at their values in the data-generating process as de-
tailed in Table 2. We considered 1,000 Monte Carlo samples.3 The two experiments
described below differ only insofar as we chose two different initialization points for
the optimization routines we used to maximize the likelihood function.

3 Our maximum-likelihood estimates were constructed using the MATLAB optimization
routine FMINUNC. When the optional argument “LargeScale” is set to “OFF”, this routine
uses a limited memory quasi-Newton conjugate gradient method, which takes as input first
derivatives of the objective function, or an acceptable FD approximation.
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Fig. 1. Sampling Distribution of Parameter Estimates; the Initial Guesses Coincided with the
True Values in the Data-Generating Process.

Figure 1 shows the sampling distribution for the parameter estimates from our
Monte Carlo exercise when we initialize the optimization routine at the true param-
eter values used in the data-generating process. The black bars in the various panels
denote the estimates that rely on AD derivatives, while the white bars denote the
estimates obtained with FD derivatives. The optimization algorithm converged for
all of the 1,000 Monte Carlo samples.4 We verified that the optimization routine did
move away from the initial point towards higher likelihood values, so that clustering
of the estimates around the truth do not merely reflect the initialization point. For our
experiment, the figure makes clear that when the optimization algorithm is initiated

4 For our MATLAB optimization routine, we set the convergence criterion to require a
change in the objective function smaller than to 10−4, implying 6 significant figures for
our specific likelihood function. This choice seemed appropriate given the limited preci-
sion of observed series in practical applications.



AD of the Likelihood Function 311

0.944 0.946 0.948 0.95 0.952 0.954 0.956
0

2

4

6

8

ρ
i
      

P
er

ce
nt

0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13
0

2

4

6

8

σ
i
    

P
er

ce
nt

1.47 1.48 1.49 1.5 1.51 1.52 1.53
0

2

4

6

8

γπ

P
er

ce
nt

0.485 0.49 0.495 0.5 0.505 0.51 0.515
0

2

4

6

8

γ
Y
    

P
er

ce
nt

0.72 0.73 0.74 0.75 0.76 0.77
0

2

4

6

8

ψ
P
      

P
er

ce
nt

0.72 0.73 0.74 0.75 0.76 0.77 0.78
0

2

4

6

ψ
W

      
P

er
ce

nt

 

 

Estimates Obtained with AD Derivatives
Estimates Obtained with FD Derivatives
True Parameter Value

Fig. 2. Sampling Distribution of Parameter Estimates; the Initial Guesses Did Not Coincide
with the True Values in the Data-Generating Process.

at the true value for the parameters of interest, reliance on FD derivatives minimally
affects the maximum-likelihood estimates for those parameters.5

Of course, the true value of the parameters do not necessarily coincide with the
maximum-likelihood parameter estimates for small samples. Yet, it is unrealistic to
assume that a researcher would happen on such good starting values. Figure 2 reports
the sampling distribution of estimates obtained when we initialize the optimization
algorithm at arbitrary values for the parameters being estimated, away from their true
values. For the estimates reported in Fig. 2, we chose ρi = 0.6, σi = 0.4, ψP = .5,
ψW = 0.5, γπ = 3, γY = 0.15. The bars in Fig. 2 show the frequency of estimates in a
given range as a percentage of the 1,000 experiments we performed. We excluded re-
sults for which our optimization algorithm failed to converge. The figure makes clear

5 We experimented with a broad set of Monte Carlo experiments by varying the choice of
estimation parameters, so as to encompass the near totality of parameters in the calibration
table, or so as to study individual parameters in isolation. We found results broadly in
line with the particular Monte Carlo experiments we are reporting below. Our results also
appear robust to broad variation in the calibration choice.
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Fig. 3. Percentage Difference Between AD and FD Derivatives.

that the convergence rate is much higher when using AD derivatives (47.2% instead
of 28.3% for FD derivatives). Moreover, it is also remarkable that the higher con-
vergence rate is not accompanied by a deterioration of the estimates (the increased
height of the black bars in the figure is proportional to that of the white bars).

To quantify the difference between AD and FD derivatives of the likelihood
function for one of our samples, we varied the parameters we estimated one at a time.
Figure 3 shows the percentage difference in the magnitude of the AD and FD deriva-
tives for ρi and σi. We discretized the ranges shown using a grid of 1,000 equally
spaced points. The differences are generally small percentage-wise, although, on oc-
casion, they spike up, or creep up as we move away from the true value, as in the
case of σi. For the other parameters we estimated, we did not observe differences in
the magnitudes of the AD and FD derivatives larger than 10−4 over ranges consistent
with the existence of a rational expectations equilibrium for our model.

6 Conclusion

Given that the approximation error for a first derivative of the likelihood function
of a DGE model computed through FD methods depends on the size of the second
derivative, which itself is subject to approximation error, we view having an inde-
pendent check in the form of automatic derivatives as a major contribution of our
work. As an example application, we showed that AD derivatives can facilitate the
computation of maximum-likelihood estimates for the parameters of a DGE model.
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