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Markov Decision Processes with
Threshold Based Piecewise Linear Optimal Policies
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Abstract—This letter investigates the structure of the optimal
policy for a class of Markov decision processes (MDPs), having
convex and piecewise linear cost function. The optimal policy is
proved to have a piecewise linear structure that alternates flat
and constant-slope pieces, resembling a staircase with tilted rises
and as many steps (thresholds) as the breakpoints of the cost
function. This particular structure makes it possible to express
the policy in a very compact manner, particularly suitable to
be stored in low-end devices. More importantly, the threshold-
based form of the optimal policy can be exploited to reduce the
computational complexity of the iterative dynamic programming
(DP) algorithm used to solve the problem. These results apply to
a rather wide set of optimization problems, typically involving
the management of a resource buffer such as the energy stored
in a battery, or the packets queued in a wireless node.

Index Terms—dynamic programming, low complexity, Markov
decision processes, optimization, piecewise linear policy
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I. INTRODUCTION

A Markov decision process (MDP) is a mathematical frame-
work for modeling decision making problems in stochastic
systems whose state evolution is partially random and partially
under the control of a decision maker. In this context, a policy
π is a function that maps each system state x into an action
a that takes values in the admissible region A(x). Given the
policy π, the system state evolves as a discrete-time Markov
process, so that the next state only depends upon the current
state x and the associated action a = π(x). Furthermore,
each transition incurs in penalty γ that only depends upon
the current state x and the corresponding action a. The aim is
to find the policy π∗ that minimizes some cumulative function
of γ, e.g., the average cost per stage defined as

λ = min
π

{
lim
T→∞

1

T

T−1∑
t=0

E [γ(π(x(t)), x(t))]

}
(1)

where the expectation is with respect to all possible transitions
from state x(t), with action π(x(t)). A common method to
solve MDP problems is dynamic programming (DP) [1], which
often requires the iterative evaluation of the cost function for
all possible states and admissible actions, until convergence to
the optimal policy π∗. This method, however, may be com-
putational demanding for large state space and action regions.
Furthermore, the optimal policy π∗ is typically expressed as
an action vector with the same size of the state space.
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In this letter we prove that a certain class of MDPs char-
acterized, among other properties, by a convex and piecewise
linear cost function γ, admits an optimal policy with extremely
simple piecewise linear structure, which alternates flat pieces
(thresholds) and linear segments with constant negative slope,
thus resembling the shape of a staircase with tilted rises and
irregular steps as exemplified in later Fig. 1. A similar finding
was presented in [2], where a two-threshold optimal policy was
identified under the assumption of linear and non-decreasing
cost functions. Here we generalize the result to piecewise
linear cost function, relaxing the monotonicity assumption
with convexity. The particular structure of π∗ makes it possible
to code the policy in a very compact form, particularly
suitable to be stored in resource-limited devices. Furthermore,
we propose a value iteration method that searches for the
breakpoints and intercepts of the optimal policy rather than
for a policy with generic shape, thus greatly reducing the
computational complexity.

II. PROBLEM MODEL AND EXAMPLES OF APPLICATION

Formally, the class of MDPs considered in this letter is
characterized by the following properties.

A1 The system state can be expressed as x = [xs, xv],
where the evolution of (scalar) xs is under the control
of the (scalar) action a ∈ A(x) through a deterministic
function f(a, x), while xv evolves as a (possibly vec-
torial) Markov process independent of a. Furthermore,
xs can take values in a convex set Xs. Denoting by
y = [ys, yv] the next state of the system, the update
transition probability can hence be expressed as

p(y|a, x) = δ(ys − f(a, x)) p(yv|xv) , (2)

with δ(·) the Kronecker delta function, and p(yv|xv) the
transition probability of the Markov process xv .

A2 The deterministic function f(a, x) is linear in both the
action a and the previous state xs, i.e.,

f(a, x) = c1(xv) · xs + c2(xv) · a+ c3(xv) ,

where ci(·) are coefficients that may depend on xv , with
c1(·) and c2(·) always positive. This assumption basi-
cally requires the action to affect directly and linearly
on xs, ruling out all the cases where the action has (even
partially) random effects on xs.

A3 The cost function γ only depends on xv and a, i.e.,

γ(a, x) = γ(a, xv) . (3)

Moreover, γ(a, xv) is convex and piecewise linear in a.
Hence, for any given xv , function γ(·, xv) is identified
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by a ordered set of breakpoints, b1(xv) < . . . < bB(xv),
and an ordered set of derivatives, d1(xv) < . . . <
dB+1(xv). For later use, we also set b0(xv) = −∞ and
bB+1(xv) = +∞. Note that, while xs does not impact
directly on the instantaneous cost γ, it does play a role
in determining the long-term average cost λ because it
defines the range A(x) of admissible actions.

A4 Given xv , the action space

R(xv) =
{

(a, xs)
∣∣∣ a ∈ A(xs, xv), xs ∈ Xs

}
(4)

is closed and convex.
The model defined by the assumptions A1-A4 broadly applies
to systems that meet the Markovian resource request xv by
possibly using part of the buffered resources xs. The decision
problem consists in determining the optimal buffering action
a = π(xs, xv), subject to some state-dependent constraints
A(xs, xv), in order to minimize the long term average of cost
γ (see, e.g., [3], [4]). We discuss an application example.

Power control under buffer constraints [5]: Assume that,
at every slot of length T , a sensor generates L bits to be
delivered to a controller. Let xs be the number of queued bits
at the beginning of a given slot, and xv the channel gain which
is supposed to be constant over one slot, but evolving in time as
a Markov process. Assume that the number of bits transmitted
per slot is d = WT log2(1 + P xv/(W N0)) where W is the
channel bandwidth, T the slot length, P the transmit power,
and N0 the noise power density. The buffer size at the next
slot is ys = f(a, x) = xs + a+ L, and the action is a = −d.
The objective is to minimize the long-term average power, P ,
given that the queue length xs cannot exceed threshold Q.
The action space (4) is given by Xs = [0, Q] and A(xs, xv) =
[−xs − L,Q− xs − L] ∩ [−∞, 0]. The cost function is

γ(a, xv) =
P

N0W
=

2−a/(WT ) − 1

xv
, (5)

which is convex in a for any given xv , but needs to be ap-
proximated as piecewise linear to apply the proposed method.

III. OPTIMAL THRESHOLD-BASED POLICY

DP theory [1] assures that an optimal stationary policy
π∗ for problem (1) can always be identified by solving the
following Belmann’s equation

λ+ g(x) = min
a∈A(x)

γ(a, x) +

∫
p(y|a, x)g(y) dy , (6)

where g(x) is some function satisfying g(0) = 0. Then, for
a given state x, the optimal stationary policy is identified by
π∗(x) = a∗, with a∗ the point of minimum in (6). A classical
method to solve the optimization problem (6) is by means of
value iteration, i.e., via the recursion

Ut(a, x) =

∫
p(y|a, x)gt(y) dy

π∗t (x) = argmin
a∈A(x)

γ(a, x) + Ut(a, x)

g̃t+1(x) = γ(π∗t (x), x) + Ut(π
∗
t (x), x)

gt+1(x) = g̃t+1(x)− g̃t+1(0)

(7)

xs

π∗t (xs, xv)

βn(xv)
βn−1(xv)

bn(xv)

bn−1(xv)

βn(xv)−
c1(xv)

c2(xv)
xs

Fig. 1. Staircase structure of the optimal policy π∗
t (x) as a function of xs

and for a given xv .

which starts from g0(x) = 0. It can be proved that, as the
time horizon grows to infinity, gt converges to g in (6) and π∗t
converges to an optimal strategy π∗.

Note that from assumption A1 it is

Ut(a, x) = Gt(f(a, x), xv)

Gt(x) =

∫
p(yv|xv)gt(xs, yv) dyv .

(8)

The main consequence of assumptions A1-A4 is, however, that
the optimal policy π∗t (xs, xv) exhibits, for any given xv , the
regular threshold-based structure illustrated in Fig. 1, which
can be very compactly expressed through the ordered sequence
of intercepts on the π∗t -axis. The formal result is provided by
the following theorem whose proof is given in Section IV.

Theorem 1. Under A1-A4, an optimal strategy π∗t (x) is

π∗t (x) = max
(

minA(x),min
(
π̃t(x),maxA(x)

))
(9)

where π̃t(xs, xv) is, for any given xv , a non-increasing piece-
wise linear function of xs with staircase shape as sketched in
Fig. 1. This function is uniquely identified by the points where
the pieces prolongations intercept the π∗t -axis, which are equal
to the breakpoints bn(xv) of γ (see A3), and the points

βn(xv) =
wn(xv)−c3(xv)

c2(xv)
(10)

where ci(xv) are the linear coefficients of f(a, x) (see A2),
while constants wn(xv) are defined via

wn(xv) = argmin
xs∈Xs

∣∣∣dn(xv) + c2(xv) ∂xsGt(xs, xv)
∣∣∣ , (11)

where | · | denotes the absolute value operator applied to
each of the points in the target set, dn(xv) are the derivatives
of γ(a, xv) (see A3), and ∂xs

Gt is the sub-differential1 with

1The sub-differential generalizes the derivative to convex functions which
are not differentiable. In our context it equals the derivative of the function
where it exists, while it equals the interval between the left and right deriva-
tives of the function in correspondence of breakpoints. The sub-differential is
a monotone (non-decreasing) operator.
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respect to xs of the convex function Gt(x) defined in (8).
Formally, we hence have

π̃t(x)= max
n=1,...,B+1

min

(
βn(xv)−

c1(xv)

c2(xv)
xs, bn(xv)

)
. (12)

Being Theorem 1 valid for any t, it is also valid in the limit,
and therefore the staircase structure holds also for the optimal
policy π∗ = limt→∞ π∗t . Despite the simple formulation of
(9)-(12), the derivation of constants wn(xv) according to (11)
may be troublesome because of the necessity of differentiating
Gt(x). It is therefore of interest to identify some form of policy
iteration based upon the sub-differential ∂xs

Gt in order to fully
exploit the results of Theorem 1. This is given by the following
result whose proof is given in Section IV.

Theorem 2. The optimal policy π∗(x) can be ob-
tained iteratively by tracking the sub-differential ∂xs

Gt(x),
namely:

1: Set ∂xs
G0(x) = 0

2: for t = 0, 1, . . . do
3: Evaluate constants wn(xv) using (11)
4: Synthesize the optimal policy π∗t (x) using (9), (10), (12)
5: Define ∂̃xsπ

∗
t (x) as the derivative of π∗t (x) with respect

to xs where it exists, and as the interval between the left
and right derivatives of the function in correspondence
of breakpoints2

6: Evaluate the sub-differential of gt+1(x) using

∂xsgt+1(x) = ∂aγ
(
π∗t (x), xv

)
∂̃xsπ

∗
t (x)

+ ∂xs
Gt

(
f(π∗t (x), x), xv

)[
c1(xv) + c2(xv) ∂̃xs

π∗t (x)
]

(13)
7: Update the sub-differential ∂xsGt+1(x) using

∂xs
Gt+1(x) =

∫
p(yv|xv)∂xs

gt+1(xs, yv) dyv . (14)

8: end for

In general Theorem 2 is much more efficient than standard
policy iteration (7) because the search for the minimum is
greatly simplified. In fact, for a given xv , evaluating π∗t only
requires identifying constants wn(xv) using (11), which is a
search on xs ∈ Xs of the points where the (monotone) sub-
differential reaches levels −dn(xv)/c2(xv). Instead, the search
for the optimal policy in the second of (7) is performed on
the much wider two-dimensional space R(xv) defined in A4.

Proof-of-concept example: We apply the proposed
method to the power-control example of Section II. We assume
constant bit rate data transmission at 64 kbit/s in a 802.15.4
scenario, and set T = 10 ms, L = 640 bit, Q = 10L,
W = 156 kHz (equivalent bandwidth). The wireless channel
gain is modeled as Rayleigh fading and simulated using the
Jake’s model, with maximum Doppler frequency fd = 11 Hz
(roughy 5 km/h speed) and average gain of −25 dB. Perfor-
mance was evaluated for: a) CP (continuous policy), that is,
by numerically solving (7) with the continuous cost function

2Note that this is not a proper sub-differential since π∗
t is not convex in

xs, and it is hence denoted with a tilda as ∂̃xs .
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Fig. 2. Power control example: (a) continuous and piecewise linear
approximation of the cost function with B + 1 = 4 pieces (u = −a/WT );
(b) optimal CP; (c) optimal TP; (d) parameters βn(xv) that compactly
describe TP; (e)-(f) average normalized power P/(N0W ) for CP and TP,
respectively, computed as the value iteration t evolves, and shown as a function
of processing time.

γ in (5); b) TP (threshold based policy), that is, by using
Theorem 2 with a piecewise linear approximation of γ having
four pieces (solid line in Fig. 2a). Transition probabilities
p(yv|xv) are estimated from channel samples.

Fig. 2b-c report the shape of CP and TP optimal ac-
tions, respectively, as a function of xs (buffer size), and
for increasing of xv (channel gain). Although policies are
quite different, with TP exhibiting the threshold-based regular
structure predicted by Theorem 1, their performance in terms
of P̄ is identical. However, TP outperforms CP in two ways.
First, Theorem 1 allows for a compact representation of
TP through coefficients βn(xv) shown in Fig. 2d. These
coefficients are very correlated, so that they can be further
compressed yielding an even more compacted representation
of TP. Second, thanks to the sub-gradient formulation of
Theorem 2, the processing time to compute TP is much lower,
as clearly shown in Fig. 2e-f .

IV. PROOFS

A. Proof of Theorem 1

The first step towards the identification of a threshold-
based optimal policy is the recognition of the second of (7)
as a convex minimization problem. Since γ(a, x) is assumed
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convex by A3, and A(x) is assumed convex by A4, it remains
to prove the convexity of Ut(a, x) in a.

Lemma 3. Under A1-A4 the function Ut(a, x) is convex in a.

Proof of Lemma 3: We first by induction on t that gt is
convex in xs, then show that this implies that Ut is convex in
a. For t = 0 we have g0(x) = 0, hence convexity is verified.
Assuming gt convex in xs for some t ≥ 0, then also Gt in (8)
will be convex in xs, being a linear combination of gt. In turn,
the linear relation A2 and (8) guarantee that Ut is convex in
the couple [a, xs]. We now prove that this result implies the
convexity of g̃t+1 in xs. To this end, for a given xv , consider
two values xs,1 and xs,2 of xs, with associated optimal actions

a∗i = argmin
a∈A(xs,i,xv)

γ(a, xv) + Ut(a, xs,i, xv) , (15)

and define a = αa1+(1−α)a2 and xs = αxs,1+(1−α)xs,2,
with 0 ≤ α ≤ 1. Note that a ∈ A(xs, xv) because of A4. From
(7) we can write g̃t+1(xs, xv) ≤ γ(a, xv)+Ut(a, xs, xv). Now,
by exploiting the convexity of both γ (A3 assumption) and Ut
we obtain
g̃t+1(xs, xv) ≤ αγ(a1, xv) + (1− α)γ(a2, xv)

+ αUt(a1, xs,1, xv) + (1− α)Ut(a2, xs,2, xv)

= αg̃t+1(xs,1, xv) + (1− α)g̃t+1(xs,2, xv)
(16)

which proves convexity in xs of g̃t+1. According to the
equivalence up to a constant factor stated in the last of (7),
convexity of g̃t+1 implies convexity in xs of gt+1. Hence gt
is proved to be convex in xs for any t ≥ 0. Convexity in a of
Ut(a, xs, xv) follows from convexity in [a, xs].

Note that, in comparison with [2], we proved that convexity
is independent of any non-decreasing property of γ, which is
only required to be convex.

Lemma 3 assures that the search for the minimum in (7) is
a convex problem, which can be solved by investigating the
derivative, or, more correctly, the sub-differential with respect
to a of the function γ(a, x) + Ut(a, x), which we denote by
∂aγ(a, x) + ∂aUt(a, x). Application of this rationale provides
the following proof of Theorem 1.

Proof of Theorem 1: Lemma 3 guarantees that
∂aγ(a, x) + ∂aUt(a, x) is a continuous monotone (non-
decreasing) operator and, hence, the optimal action π∗t (x) is

π∗t (x) = argmin
a∈A(x)

∣∣∣∂aγ(a, xv) + ∂aUt(a, x)
∣∣∣ . (17)

The monotonicity of ∂aγ(a, xv)+∂aUt(a, x) makes it possible
to search for the minima in any superset B(x) ⊇ A(x), thus
obtaining the solution

π̃t(x) = argmin
a∈B(x)

∣∣∣∂aγ(a, xv) + ∂aUt(a, x)
∣∣∣ , (18)

that shall hence be projected onto A(x). This projection is in
fact operated by (9), as assured by A4 which guarantees that
A(x) is a compact interval. We hence focus on the expression
of π̃t(x) by considering B(x) = {a|f(a, x) ∈ Xs}. Using (8)
and A3, we can rewrite (18) as

π̃t(x) = argmin
a∈B(x)

∣∣∣∂aγ(a, xv) + c2(xv) ∂xs
Gt(f(a, x), xv)

∣∣∣ .
(19)

Now, for any given x, the optimal policy π̃t(x) can either fall
in-between two consecutive breakpoints of γ, or correspond
to one of such breakpoints.

In the first case, there exists an n ∈ {1, . . . , B + 1} such
that π̃t(x) ∈ (bn−1(xv), bn(xv)) ∩ B(x). In this interval the
sub-gradient of γ is equal to dn(xv), and (19) takes the form

π̃t(x) = argmin
a∈B(x)

∣∣∣dn(xv) + c2(xv) ∂xsGt(f(a, x), xv)
∣∣∣ . (20)

Because of the definition of B(x) and of c2(xv) 6= 0, this
result can be equivalently expressed as a function of wn(xv)
defined in (11) by setting f(π̃t(x), x) = wn(xv), which gives

π̃t(x) = βn(xv)−
c1(xv)

c2(xv)
xs , (21)

where βn(xv) was defined in (10). The range of π̃t(x) implies
that (21) is valid for xs belonging to the open interval

In(xv) ∈
c2(xv)

c1(xv)

(
βn(xv)− bn(xv), βn(xv)− bn−1(xv)

)
,

(22)
eventually limited to Xs. Note also that gradient monotonicity
and dn(xv) > dn−1(xv) assure wn(xv) ≤ wn−1(xv). This
guarantees that (22) identifies non-overlapping intervals In,
satisfying In < In−1, with inequality intended for any couple
of elements belonging to the two sets.

In the second case, we have π̃t(x) = bn(xv) for some n ∈
{1, . . . , B}. In this point the sub-gradient of γ is given by the
interval [dn(xv), dn+1(xv)]. Hence, from (19) we have

bn(xv)

= argmin
a∈B(x)

∣∣∣[dn(xv), dn+1(xv)] + c2(xv)∂xs
Gt(f(a, x), xv)

∣∣∣.
(23)

Monotonicity, increasing ordering of dn(xv), and (11),
make (23) equivalent to requiring f(bn(xv), x) ∈
[wn+1(xv), wn(xv)], that is, xs belongs to the interval

Jn(xv) =
c2(xv)

c1(xv)

[
βn+1(xv)− bn(xv), βn(xv)− bn(xv)

]
,

(24)
eventually limited to Xs. These are again disjoint intervals
satisfying Jn > Jn−1. The union of (24) and (22) covers Xs.

To conclude, (12) is just a compact form to express policy
π̃t(x) given by (22) for xs ∈ In(xv), and π̃t(x) = bn(xv) for
xs ∈ Jn(xv). This result can be inferred from Fig. 1.

B. Proof of Theorem 2

The result follows from (11), the equivalence of gt+1 and
g̃t+1 up to a constant factor, and the fact that g̃t+1(x) =
Gt(f(π∗t (x), xs), xv) + γ(π∗t (x), xv). Note that ∂̃xsπ

∗
t (x) can

only assume three values, namely, 0, −c1(xv)/c2(xv), and the
interval [−c1(xv)/c2(xv), 0] for breakpoints.
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