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1 Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura, Universidad de Rosario, Avenue Pellegrini 250,
2000 Rosario, Argentina

2 Escuela Politécnica Superior, Universidad de Córdoba, Menéndez Pidal s/n, 14001 Córdoba, Spain
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This paper presents the design and implementation on FPGA devices of an algorithm for computing similarities between
neighboring frames in a video sequence using luminance information. By taking advantage of the well-known flexibility of
Reconfigurable Logic Devices, we have designed a hardware implementation of the algorithm used in video segmentation and
indexing. The experimental results show the tradeoff between concurrent sequential resources and the functional blocks needed to
achieve maximum operational speed while achieving minimum silicon area usage. To evaluate system efficiency, we compare the
performance of the hardware solution to that of calculations done via software using general-purpose processors with and without
an SIMD instruction set.

1. Introduction

The capacity of Reconfigurable Logic for massive concurrent
computation makes it wellsuited to implementing complex
algorithms. This feature has increased the potential of digital
design, as shown by several papers which have proposed
implementing mathematical algorithms implemented on
FPGA. In almost all cases the topology and the performance
obtained depend on the specific application, such that each
case must be analyzed individually. References [1–3] show
the design of custom image processing systems on FPGA.

This paper presents the advantages of concurrency and
parallelism in implementing video temporal segmentation
with Reconfigurable Logic Devices, emphasizing the advan-
tages and limitations of FPGA technology and its develop-
ment tools. We chose to implement a function that has been
thoroughly studied in [4] and that measures the similarity
between two frames based on their luminance distributions.

After breaking the algorithm down into its component parts,
we propose specific solutions for each part, while making it
clear that obtaining the optimum hardware solution is an
iterative process which benefits from all the features of FPGA
devices [5].

In Section 2, we briefly present the design philosophy of
dedicated hardware, where both Configurable Logic Blocks,
(CLBs in XILINX devices), and special-function blocks
have been used. In addition, we describe an interface with
external memory, an essential feature when dealing with
huge volumes of data.

Section 3 offers an introduction to video temporal
segmentation through the artificial synthesis of visual human
perception and presents the similarity-calculation algorithm
on which this paper is based.

Section 4 describes in detail the implementation and
optimization of the proposed algorithm, emphasizing the
design and evaluation criteria.
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Finally, the experimental results section shows the quan-
titative results obtained by comparing computing time using
the proposed hardware solution to that of pure software
running on a PC.

2. Design Criteria

The combination of CLB logic with embedded Blocks and
data supply are critical aspects of the design to be taken into
account.

2.1. CLB Logic versus Embedded Blocks. The main drawback
of using a reconfigurable hardware device is the loss of
performance imposed by the reconfiguration circuit itself
[6]. For this reason, device manufacturers often include
embedded Blocks able to perform frequent and specialized
tasks, including RAM blocks, multipliers, timers, and com-
munication devices, whose performance is far superior to
that of equivalent functions implemented using CLB logic.

Another important issue is the time delay introduced by
routing. This factor justifies the inclusion on the FPGA of
different-quality routes for different purposes (clocks, near,
long, etc.).

The present study will show the many possible alterna-
tives for combining all these elements in a specific design.
Those selected in each case will depend on the specific
implementation being conducted.

2.2. Data Supply. Video processing is a task characterized
by a very high demand for data, and when using an FPGA
there is only a limited storage capacity available on chip.
Thus, an efficient interface is required with external memory
capable of feeding and receiving data at the necessary rate.
In this case, we used a Xilinx Spartan-3 development board
provided with a static external memory bank having 32-
bit width and 10-ns access time. This bus width allows us
to read and process four bytes at a time. The reading and
modification of data storage into the Spartan BlockRAM
requires two clock cycles per operation. This memory is
synchronous and can operate up to a 200 MHz clock
frequency, perfectly matching the 10-ns access time of the
external memory.

3. Application: Temporal Video Segmentation

Our aim is the development of a specific architecture for
video segmentation. This video analysis technique enables
the detection of low-level semantic units in the video,
which are called shots. Many applications are based on
shot information to carry out higher level analysis, such as
video classification, summarization, visual index generation,
or sequence comparison [7]. The technique is based on
giving a quantitative value to the human perception of
similarity between frames. In this theory, it is assumed that
the properties of a certain stimulus—in this case an image—
can be represented as a vector in a space of characteristics
and, as a consequence, the similarity between two images is
reduced to the appropriate measurement of a distance using
a metric on a psychological space [4].

One of the main features of an image is its luminance
histogram, defined as the frequency of occurrence of the
pixels’ luminance values in each frame. The similarity
between two frames is inversely related to the distance
between vectors representing its characteristics. In the case
of a histogram of luminance, this can be defined through the
following normalized equation [4]:

fs(i− 1, i) =
∑

b Hi−1[b] ·Wi[b]
√∑

b Hi−1[b] ·Wi−1[b] ·
√∑

b Hi[b] ·Wi[b]
,

(1)

where Hi[b] is the histogram of the bin “b” from frame “i”,
Wi[b] is the windowed histogram at level “b” from frame “i”,
Notice that “i − 1” and “i” subindexes refer to consecutive
frames.

4. Algorithm Segmentation

In order to implement and optimize expression (1), we divide
the procedure into the following five sequential stages:

(1) calculation of the histogram,

(2) 1D windowing using a window size of three to
calculate Wi[b],

(3) sum of products,

(4) square root,

(5) division.

Multipliers needed for stage 3 were not implemented in
VHDL because the Spartan 3 device has dedicated 18-bit
multiplier blocks providing much better performance than
that attainable using CLB logic.

4.1. Calculating the Histogram. The real bottleneck occurs
at the stage responsible for obtaining the histogram, and its
interface with external memory is the limiting factor for the
overall circuit performance. Therefore, it is advisable to try
to reduce the amount of data to be processed. As shown in
[8], the use of DC coefficients of compressed frames instead
of frame pixels values has no influence on the reliability of
the video segmentation technique. Thus, we have reduced the
number of data to be read from each video frame by using
these DC coefficients. This allows us to achieve a reduction
ratio of 64 to 1.

Considering the results obtained in [9], which proved
that a circuit for obtaining the histogram using BlockRAMs
as accumulators performs better than those using CLB logic,
we propose the hardware shown in Figure 1 for the first stage.
Note that the dual port feature of the Spartan-3 BlockRAM
allows us to extract the histogram’s individual values in pairs.

Port B input has been forced to “0” to clear the
accumulators in the same clock cycle, leaving the hardware
ready for processing the following frame. Several registers
were inserted between output adders and at the address input
of the BlockRAMs to pipeline the stage, so as to optimize the
interface with external memory and double the internal clock
frequency.
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Figure 1: Circuit for calculating the histogram.

4.2. Calculating the Windowed Terms Wi[b] . To reduce the
influence of slight variations in image luminance, each term
of the histogram has been replaced with the sum of its
adjacent neighbors. Figure 2 shows how the Ei windowed
values are generated, as well as the convenience of using
concurrent calculations due to the fact that the majority of
Hi values are used in more than one Ei calculation. Excluding
the two boundary values, each Hi value contributes to Ei−1,
Ei, and Ei+1.

Figure 3 shows how the algorithm symmetry allows the
same sum term to be used twice in calculating the windowed
value. This stage was designed to calculate six windowed
values concurrently, starting from eight histogram values
at the input. The concurrent supply of these eight values
is achieved by using two-storage BlockRAMs. As shown
below, these two memories are also used for obtaining the
sum terms needed for the correlation. These two blocks
have four 32-bit-width output ports each, and thus are
capable of supplying the eight necessary histogram values
simultaneously.

Figure 4 shows the first version of this stage. The folded
buses that appear at Port B inputs of both blocks are used

to repeat some histogram values in particular positions
of the memory bank, thus solving the boundary problem
mentioned in the above calculation. The output summing
stages were also pipelined to keep the maximum clock
frequency of the whole stage close to 200 MHz, while the
three output buses enable the concurrent extraction of six
windowed values in each clock cycle.

4.3. Coupling Considerations. To prevent the delay intro-
duced by the next calculation from piling up, BlockRAMs 4
and 5 retain data belonging to a frame while the following
one is being processed in a different memory page. The
BlockRAM dual port feature allows for decoupling and
behaves like another pipeline stage. The only difference in
this case is that the retention unit is the whole frame and not
a single clock cycle.

Bearing in mind that 64 is the number of established
histogram levels, each one represented by a 16-bit integer,
the proposed structure can process frames containing up to
65,536 pixels. Taking as a reference a frame of only 1600
pixels, Table 1 shows the calculation time expressed as the
number of elapsed clock cycles.
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Figure 2: Concurrent windowing definition.
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Figure 3: Grouping the windowed sum terms.

Table 1: Number of clock cycles per operation.

Histogram calculation 800

Intermediate storage 32

Windowing 11

At the same time that storing and windowing are being
performed on the previous histogram, the input stage builds
the following histogram. After the first frame is complete, the
remaining calculations are done in parallel within the 800
clock cycles taken by the first stage.

4.4. Calculating the Correlation and the Sum. To implement
this stage, we have modified the circuit depicted in Figure 4 to
calculate two correlation sum terms simultaneously. We have
placed six multipliers next to the windowing stage followed
by a matrix of a three-level adder, responsible for obtaining
the correlation. The whole block has been pipelined using
six registered stages, keeping the clock frequency close to
140 MHz.

Two of the partial sums needed to calculate the similarity
coefficient as defined by (1) are stored in the output. Partial
terms of the denominator will be reused in the following
frame calculation; hence, they are stored to avoid repeating
the calculation (see Figure 5). Note that both summing terms
use the windowed term of the same frame Wi[b], but while
one is multiplied by the current histogram Hi[b], the other
is multiplied by the previous one Hi−1[b]. The term Wi[b] is
retained during two clock cycles in the registers (shadowed
in Figure 5) placed at the input of the multipliers, ensuring
that in each clock cycle the correct histogram corresponds to
its associated sum term.

Starting from the histograms stored in BlockRAM
belonging to two frames, the stage only takes 28 clock
cycles to complete two windowed sums. The key to such
high performance lies in the concurrency of operations, the
organization of the data, and the pipeline structure. It is
also easy to interface this block with its neighbors because
the input and output buses are only 32- and 64-bits wide,

respectively. In contrast, the internal bus-width parallelism
reaches 192 bits in the multiplier layer.

4.5. Square Root Calculation. The purpose of this stage is
to obtain the square root of the denominator in (1). This
calculation is performed by using shift and sum operations
according to the algorithm described in [10]. The circuit
depicted in Figure 6 shows the hardware implementation
of this operation, starting from a slight modification at the
output of the circuit shown in Figure 5.

It takes 16 clock cycles to complete processing a 32-bit-
long input data. The sum term S[h(n).w(n)] is available
at the previous correlation block one clock cycle prior to
completing the sum term S[h(n − 1)w(n)], a fact that can
be useful in anticipating the beginning of the square root
calculation. It should also be emphasized that some terms in
the numerator of (1) belonging to histogram “n” will be used
in the same calculation of the next frame. For this reason, a
register has been provided to retain it.

4.6. Product and Division. Following the sequential stage
responsible for calculating the square root, a multiplying
block provides the product of the denominator in (1). In
this way, numerator and denominator are ready and available
at the output of the circuit shown in Figure 6 to make the
final division and obtain the normalized similarity coefficient
between two frames.

The division between two unsigned integers employing a
shift and subtract algorithm is done by a circuit similar to the
one shown in Figure 6, as described in [10]. The full process
takes 32 clock cycles for the 32-bit solution required.

4.7. Control and Timing. The stages referred to above require
a set of control and synchronization signals to properly
manage data flow. Therefore, a control circuit is required
to generate the appropriate timing signals. Figure 7 shows
the diagram of the Finite State Machine responsible for
controlling the whole system. This was implemented in
VHDL description language and placed and mapped with the
rest of the module at the top level of the hierarchy tree.

The design of this finite state machine is crucial, because
the generated signals have to drive all the calculating
modules, such that the fan-out and route length of these lines
determine the maximum system clock frequency.

Because of the intensive use of pipeline architecture, the
system exhibits a finite latency time from which a new value
is output each 800 clock cycles (5.7 μs at 110 MHz clock
frequency). Data flow has been organized in such a way that
the first stage calculates the histograms on alternate RAM
pages, taking 800 clock cycles to process each 1600-pixel
frame. The rest of the calculation, which takes 109 clock
cycles to complete, starts each time the processing of a frame
is over. Except for the first stage (see Figure 1), the rest of the
stages remain idle 86% of the time.

Clearly, the bottleneck is the width of the bus that con-
nects the external memory with the above-described system.
Widening this bus from 32 to 128 bits would make it possible
to process 16 pixels at a time, reducing the time needed to
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Figure 4: Circuit for calculating the windowed terms.
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complete the calculation to 200 clock cycles. Even with this
addition, the usage factor of the remaining stages is never
higher than 55% of the total time. However, the inactivity
of these stages has no influence on the total processing time
as they work in parallel with the histogram stage.

5. Experimental Results

The entire design was simulated and implemented using
the software package ISE 8.2i from Xilinx and tested on
a development board “SPARTAN-3 Starter Board” from
Digilent provided with an XC3S1000 FT256 speed grade 4
chip, 1 Mbyte of SRAM (256 Kb× 32), and 10 ns access time.

The SOFT-HARD comparison uses four compressed
videos from an MPEG-7 content set belonging to different
genres (drama, sport, and news), all of which have an average
length of 25,000 frames. The algorithm was implemented
using fixed point arithmetic. Overflow has been avoided by
selecting suitable resource sizes for each stage. The main
considerations are discussed in the following.

The bus width at the multiplication output is twice as
wide as the incoming factors and only half as wide for the
square root case. The size of the accumulators for the sums
of products enables storing the quantity N × MAX, where
MAX is the maximum value attained by these factors and N
is the number of terms to be added.
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Table 2: Summary of resources usage.

Selected device: 3s1000ft256-4

Resource Used Available Ratio

Slices 952 7680 12%

Slice Flip Flops 1170 15360 7%

4 input LUTs 1531 15360 9%

Bonded IOBs 80 173 46%

BRAMs 7 24 29%

MULT18X18s 7 24 29%

GCLKs 3 8 37%

DCMs 1 4 25%

Source: ISE 8.2i provided by XILINX.

Table 3: Summary of number of clock cycles taken per operation.

Histogram calculation 800

Intermediate storage 32

Windowed correlation (2 sums) 28

Square root 16

Product 1

Division 32

The Xilinx ISE synthesis tool provided the report shown
in Table 2 concerning the resources occupied and available
at the chip level. In regard to these data, it should be made
clear that in applications like the one described in this
paper—where there is no direct link between the number of
BlockRAMs and multipliers used—the report is inaccurate,
since the use of a multiplier block is assumed to disable
the use of its associated BlockRAM and vice versa, due to
the peculiarities of the Xilinx FPGA. Thus, the usage factor
must be calculated considering them as available pairs, in this
case 14 multiplier-BlockRAM pairs out of 24 available (58%
busy), which is almost twice the value (29%) reported by the
Xilinx synthesis tool.

The interface with the external memory was debugged
using an Agilent 64622D oscilloscope.

Close examination of the summary of the number of
clock cycles taken by each individual stage shown in Table 3
suggests that it might be desirable to reduce the parallelism
of nearly idle stages, which are very resource hungry. One
example is the circuit depicted in Figure 5, which employs
such scarce and valuable resources such as multipliers.

To evaluate circuit performance, we compared a software
implementation presented in Table 4 (on a PC Pentium IV
at 2 Ghz) for the calculation of windowed values and sum of
products to the hardware implementation on FPGA (Spartan
3 at 120 MHz) developed in this work. This comparison
is very illuminating because the FPGA is a reconfigurable
device that is impaired by the overhead of configuration
circuits that slow down clock rate and increase the silicon
area compared to a custom VLSI device. Despite this handi-
cap, the calculation speed obtained with the FPGA exceeds
that obtained using SIMD instructions (SSE multimedia
extension) by a factor of 1.75 : 1 as regards nominal delay,
and by a factor of 25 : 1 as regards clock cycles. We attribute

Table 4: Hard-Soft solution comparison.

Implementation ms cycles

PC (sequential programming) 2500 5000

PC (sequential optimized) 750 1500

PC (SSE with Intrincsics) 350 700

FPGA (SPARTAN 3-VHDL) 200 28

this improvement to the optimization of data flow and to
concurrence.

6. Conclusions

In this paper we have presented an FPGA implementation
to calculate similarities between two frames. Our design
works with the DC coefficients of compressed video frames
to compute the frame histogram. Similarity is calculated by
applying a windowed cross-correlation to frame histograms.
Our implementation has efficiently solved the problems
arising from the management of constant data flow from
video frames. Thus, we have designed a windowed sum of
products stage which completes the calculation of 64 sum
terms in only 28 clock cycles.

Although our system is a hardware implementation of
a video segmentation technique, extending these results
to other data processing applications is possible, simply
because any calculations involving data correlation always
takes the form of a sum of products. Its success in such
applications will depend strongly on both the ability to
maintain constant data flow through the system and how the
numerical resolution of each stage is chosen.
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