ON EXPONENTIAL CONVEXITY FOR POWER SUMS AND RELATED RESULTS

J. Pečarić and Atiq ur Rehman

Abstract

In this paper, we use parameterized class of increasing functions to give exponential convexity of the non-negative difference of certain inequality as a function of parameter in connection with power sums. We define new means of Cauchy type and give its relation to the means defined in [5] and [6]. Also we give related mean value theorems of Cauchy type.

1. Introduction and Preliminaries

Bernstein [3] introduced the important sub-class of convex functions in a given interval (a, b). Akhiezer [1, page 209] denoted this sub-class by $\mathrm{W}_{a, b}$. Independently of Bernstein, but somewhat later, Widder [7] also introduced the class $W_{a, b}$ and studied it. Bernstein called functions $f \in \mathrm{~W}_{a, b}$ exponentially convex.

DEFINITION 1. A function $f:(a, b) \rightarrow \mathbb{R}$ is exponentially convex if it is continuous and

$$
\sum_{i, j=1}^{n} v_{i} v_{j} f\left(x_{i}+x_{j}\right) \geqslant 0
$$

for all $n \in \mathbb{N}$ and all choices $v_{i} \in \mathbb{R}, i=1, \ldots, n$ such that $x_{i}+x_{j} \in(a, b), 1 \leqslant i, j \leqslant n$.

Proposition 1.1. Let $f:(a, b) \rightarrow \mathbb{R}$. The following propositions are equivalent
(i) f is exponentially convex
(ii) f is continuous and

$$
\sum_{i, j=1}^{n} v_{i} v_{j} f\left(\frac{x_{i}+x_{j}}{2}\right) \geqslant 0
$$

for every $v_{i} \in \mathbb{R}$ and for every $x_{i} \in(a, b), 1 \leqslant i \leqslant n$.

COROLLARY 1.2. If $f:(a, b) \rightarrow \mathbb{R}^{+}$is exponentially convex function then f is a log-convex function.

[^0]In [5], we defined the following function:

$$
\Delta_{t}=\Delta_{t}(\mathbf{x} ; \mathbf{p})= \begin{cases}\frac{1}{t-1}\left(\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{t}-\sum_{i=1}^{n} p_{i} x_{i}^{t}\right), & t \neq 1 \\ \sum_{i=1}^{n} p_{i} x_{i} \log \sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} x_{i} \log x_{i}, & t=1\end{cases}
$$

where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ are positive n-tuples such that, $\sum_{i=1}^{n} p_{i} x_{i} \geqslant x_{j}$ for $j=1, \ldots, n$.

In [2], we proved that $t \mapsto \Delta_{t}$ is an exponentially convex function on \mathbb{R}. Also in [5], we introduced the Cauchy means by considering an increasing function of the type $f(x) / x$ related to power sums, that is, the following means were defined.

DEFINITION 2. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be two positive n-tuples $(n \geqslant 2)$ such that $p_{i} \geqslant 1(i=1, \ldots, n)$. Then for $t, r, s \in \mathbb{R}^{+}$,
$A_{t, r}^{s}(\mathbf{x} ; \mathbf{p})=\left\{\frac{r-s}{t-s} \frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{t}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{t}}{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right\}^{\frac{1}{t-r}}, \quad t \neq r, r \neq s, t \neq s$.
$A_{s, r}^{s}(\mathbf{x} ; \mathbf{p})=A_{r, s}^{s}(\mathbf{x} ; \mathbf{p})=\left\{\frac{r-s}{s} \frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right) \log \sum_{i=1}^{n} p_{i} x_{i}^{s}-s \sum_{i=1}^{n} p_{i} x_{i}^{s} \log x_{i}}{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right\}^{\frac{1}{s-r}}, s \neq r$.
$A_{r, r}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(\frac{1}{s-r}+\frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}} \log \sum_{i=1}^{n} p_{i} x_{i}^{s}-s \sum_{i=1}^{n} p_{i} x_{i}^{r} \log x_{i}}{s\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{r}\right\}}\right), s \neq r$.
$A_{s, s}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(\frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)\left(\log \sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{2}-s^{2} \sum_{i=1}^{n} p_{i} x_{i}^{s}\left(\log x_{i}\right)^{2}}{2 s\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right) \log \left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)-s \sum_{i=1}^{n} p_{i} x_{i}^{s} \log x_{i}\right\}}\right)$.
In [6] we introduced the Cauchy means by considering convex function, that is, the following means were defined.

DEFINITION 3. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be two positive n-tuples such that $p_{i} \geqslant 1(i=1, \ldots, n)$. Then for $t, r, s \in \mathbb{R}^{+}$,

$$
\begin{aligned}
& B_{t, r}^{s}(\mathbf{x} ; \mathbf{p})=\left\{\frac{r(r-s)}{t(t-s)} \frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{t}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{t}}{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right\}^{\frac{1}{t-r}}, t \neq r, r \neq s, t \neq s, \\
& B_{s, r}^{s}(\mathbf{x} ; \mathbf{p})=B_{r, s}^{s}(\mathbf{x} ; \mathbf{p})=\left\{\frac{r(r-s)}{s^{2}} \frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right) \log \sum_{i=1}^{n} p_{i} x_{i}^{s}-s \sum_{i=1}^{n} p_{i} x_{i}^{s} \log x_{i}}{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right\}^{\frac{1}{s-r}}, s \neq r, \\
& B_{r, r}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{2 r-s}{r(r-s)}+\frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s} \frac{r}{s} \log \sum_{i=1}^{n} p_{i} x_{i}^{s}-s \sum_{i=1}^{n} p_{i} x_{i}^{r} \log x_{i}\right.}{s\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{\frac{r}{s}}-\sum_{i=1}^{n} p_{i} x_{i}^{r}\right\}}\right), s \neq r, \\
& B_{s, s}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{1}{s}+\frac{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right)\left(\log \sum_{i=1}^{n} p_{i} x_{i}^{s}\right)^{2}-s^{2} \sum_{i=1}^{n} p_{i} x_{i}^{s}\left(\log x_{i}\right)^{2}}{2 s\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}^{s}\right) \log \sum_{i=1}^{n} p_{i} x_{i}^{s}-s \sum_{i=1}^{n} p_{i} x_{i}^{s} \log x_{i}\right\}}\right) .
\end{aligned}
$$

One can found the following relation between $A_{t, r}^{s}(\mathbf{x}, \mathbf{p})$ and $B_{t, r}^{s}(\mathbf{x}, \mathbf{p})$ [6].

$$
\begin{aligned}
& B_{t, r}^{s}(\mathbf{x} ; \mathbf{p})=\left(\frac{r}{t}\right)^{\frac{1}{t-r}} A_{t, r}^{s}(\mathbf{x} ; \mathbf{p}), \\
& B_{r, s}^{s}(\mathbf{x} ; \mathbf{p})=B_{s, r}^{s}(\mathbf{x} ; \mathbf{p})=\left(\frac{r}{s}\right)^{\frac{1}{s-r}} A_{s, r}^{s}(\mathbf{x} ; \mathbf{p})=\left(\frac{r}{s}\right)^{\frac{1}{s-r}} A_{r, s}^{s}(\mathbf{x} ; \mathbf{p}), \\
& B_{r, r}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{1}{r}\right) A_{r, r}^{s}(\mathbf{x} ; \mathbf{p}), \\
& B_{s, s}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{1}{s}\right) A_{s, s}^{s}(\mathbf{x} ; \mathbf{p}) .
\end{aligned}
$$

In this paper, we use the class of increasing functions to give some results related to power sums as shown in [5] and [6]; we use the following theorem [4, page 151].

THEOREM 1.3. Let $\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$, where I is an interval, $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be non-negative n-tuples such that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} x_{i} \geqslant x_{j}, \text { for } j=1, \ldots, n \text { and } \sum_{i=1}^{n} p_{i} x_{i} \in I . \tag{1}
\end{equation*}
$$

If $f: I \rightarrow \mathbb{R}$ is an increasing function, then

$$
\begin{equation*}
\sum_{i=1}^{n} q_{i} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \geqslant \sum_{i=1}^{n} q_{i} f\left(x_{i}\right) . \tag{2}
\end{equation*}
$$

REMARK 1.4. If f is strictly increasing on I and all x_{i} 's are not equal, then

$$
\sum_{i=1}^{n} p_{i} x_{i}>x_{j}
$$

implies

$$
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)>f\left(x_{j}\right) .
$$

Thus we obtain strict inequality in (2).
In this paper we use parameterized class of an increasing functions to give exponential convexity of non-negative difference of (2) as a function of parameter. We introduce means of Cauchy type and use logarithmic convexity of the difference to prove a monotonicity property of newly defined means. We also prove related mean value theorem of Cauchy type.

2. Main results

Let $t \in \mathbb{R}$ and $h_{t}:(0, \infty) \rightarrow \mathbb{R}$ be the function defined as

$$
h_{t}(x)= \begin{cases}\frac{x^{t}}{t}, & t \neq 0 \tag{3}\\ \log x, & t=0\end{cases}
$$

It is easy to check that h_{t} is strictly increasing on $(0, \infty)$ for each $t \in \mathbb{R}$.

THEOREM 2.1. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ be positive n-tuples $(n \geqslant 2)$ such that $\sum_{i=1}^{n} p_{i} x_{i} \geqslant x_{j}$ for $j=1, \ldots, n$. Also let $\left\{h_{t}: t \in \mathbb{R}\right\}$ be the family of functions define in (3) and

$$
\begin{equation*}
\mho_{t}:=\mho_{t}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=\sum_{i=1}^{n} q_{i} h_{t}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} h_{t}\left(x_{i}\right) \tag{4}
\end{equation*}
$$

(a) For $m \in \mathbb{N}$, let r_{1}, \ldots, r_{m} be arbitrary real numbers. Then the matrix

$$
\left[\mho_{\frac{r_{i}+r_{j}}{2}}\right], \quad \text { where } \quad 1 \leqslant i, j \leqslant m
$$

is a positive semi-definite matrix. Particularly

$$
\operatorname{det}\left[\mho_{\frac{r_{i}+r_{j}}{2}}\right]_{i, j=1}^{k} \geqslant 0 \text { for all } k=1, \ldots, m
$$

(b) The function $t \mapsto \mho_{t}$, where $t \in \mathbb{R}$, is an exponentially convex.
(c) If all x_{i} 's are not equal, then $t \mapsto \mho_{t}$ is log-convex function.

Proof. (a) Define a $m \times m$ matrix $M=\left[\begin{array}{l}h_{\frac{r_{i}+r_{j}}{}}^{2}\end{array}\right.$, where $i, j=1, \ldots, m$, and let $\mathbf{v}=\left(v_{1}, \ldots, v_{m}\right)$ be a nonzero arbitrary vector from \mathbb{R}^{m}.

Consider the function

$$
\zeta(x)=\mathbf{v} M \mathbf{v}^{\tau}=\sum_{i, j=1}^{m} v_{i} v_{j} h_{\frac{r_{i}+r_{j}}{2}}(x)
$$

Now we have

$$
\zeta^{\prime}(x)=\sum_{i, j=1}^{m} v_{i} v_{j} x^{\frac{r_{i}+r_{j}}{2}-1}=\left(\sum_{i=1}^{m} v_{i} x^{\frac{r_{i}-1}{2}}\right)^{2} \geqslant 0 \text { for all } x \in \mathbb{R}^{+}
$$

concluding ζ is an increasing on \mathbb{R}^{+}. Now by Theorem 1.3 with $f=\zeta$, we have

$$
\sum_{k=1}^{n} q_{k} \zeta\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\sum_{k=1}^{n} q_{k} \zeta\left(x_{k}\right) \geqslant 0
$$

this implies

$$
\sum_{i, j=1}^{m} v_{i} v_{j}\left(\sum_{k=1}^{n} q_{k} h_{\frac{r_{i}+r_{j}}{2}}\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\sum_{k=1}^{n} q_{k} h_{\frac{r_{i}+r_{j}}{2}}\left(x_{k}\right)\right) \geqslant 0
$$

and finally we have

$$
\sum_{i, j=1}^{m} v_{i} v_{j} \mho_{\frac{r_{i}+r_{j}}{2}} \geqslant 0
$$

Therefore the given matrix is positive semi-definite.
Specially, we get

$$
\left|\begin{array}{ccc}
\mho_{r_{1}} & \cdots & \mho_{\frac{r_{1}+r_{k}}{2}} \tag{5}\\
\vdots & \ddots & \vdots \\
\mho_{\frac{r_{k}+r_{1}}{2}} & \cdots & \mho_{r_{k}}
\end{array}\right| \geqslant 0
$$

for all $k=1, \ldots, m$.
(b) Since $\lim _{t \rightarrow 0} \mho_{t}=\mho_{0}$, it follows that $t \mapsto \mho_{t}$ is continuous on \mathbb{R}. Now using Proposition 1.1 we have exponential convexity of the function $t \mapsto \mho_{t}$.
(c) Since all x_{i} 's are not equal and $x \mapsto h_{t}(x)$ is strictly increasing for any $t \in \mathbb{R}$ therefore from Remark 1.4 we have $\mho_{t}>0$. Now logarithmic convexity of $t \mapsto \mho_{t}$ is follows from the Corollary 1.2.

Let us introduce the following:
DEFINITION 4. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ be positive n-tuples $(n \geqslant 2)$ such that $\sum_{i=1}^{n} p_{i} x_{i} \geqslant x_{j}$ for $j=1, \ldots, n$. Then for $t, r, \in \mathbb{R}$, we define

$$
\begin{aligned}
& H_{t, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=\left(\frac{r}{t} \frac{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{t}-\sum_{i=1}^{n} q_{i} x_{i}^{t}}{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} q_{i} x_{i}^{r}}\right)^{\frac{1}{t-r}}, r \neq t, r, t \neq 0 . \\
& H_{r, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=\exp \left(-\frac{1}{r}+\frac{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r} \log \left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} x_{i}^{r} \log x_{i}}{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} q_{i} x_{i}^{r}}\right), r \neq 0 . \\
& H_{r, 0}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=H_{0, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=\left(\frac{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} q_{i} x_{i}^{r}}{r\left\{\sum_{i=1}^{n} q_{i} \log \left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} \log x_{i}\right\}}\right)^{\frac{1}{r}}, r \neq 0 . \\
& H_{0,0}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=\exp \left(\frac{\sum_{i=1}^{n} q_{i}\left\{\log \left(\sum_{i=1}^{n} p_{i} x_{i}\right)\right\}^{2}-\sum_{i=1}^{n} q_{i}\left(\log x_{i}\right)^{2}}{2\left\{\sum_{i=1}^{n} q_{i} \log \left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} \log x_{i}\right\}}\right) .
\end{aligned}
$$

REMARK 2.2. Note that $\lim _{t \rightarrow r} H_{t, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=H_{r, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q}), \lim _{t \rightarrow 0} H_{t, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=$ $\lim _{t \rightarrow 0} H_{r, t}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=H_{0, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=H_{r, 0}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})$ and $\lim _{r \rightarrow 0} H_{r, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})=H_{0,0}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})$.

We shall use a following lemma [5] to prove the monotonicity of the means defined above.

Lemma 2.3. Let f be a log-convex function and assume that if $x_{1} \leqslant y_{1}, x_{2} \leqslant$ $y_{2}, x_{1} \neq x_{2}, y_{1} \neq y_{2}$. Then the following inequality is valid:

$$
\begin{equation*}
\left(\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)}\right)^{\frac{1}{x_{2}-x_{1}}} \leqslant\left(\frac{f\left(y_{2}\right)}{f\left(y_{1}\right)}\right)^{\frac{1}{y_{2}-y_{1}}} . \tag{6}
\end{equation*}
$$

THEOREM 2.4. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ be positive n-tuples $(n \geqslant 2)$ such that $\sum_{i=1}^{n} p_{i} x_{i} \geqslant x_{j}$ for $j=1, \ldots, n$. Also let $r, t, u, v \in \mathbb{R}$ such that $r \leqslant u, t \leqslant v$. Then we have

$$
\begin{equation*}
H_{t, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q}) \leqslant H_{v, u}(\mathbf{x} ; \mathbf{p} ; \mathbf{q}) . \tag{7}
\end{equation*}
$$

Proof. Let \mho_{t} be defined by (4). Taking $x_{1}=r, x_{2}=t, y_{1}=u, y_{2}=v$, where $r \neq t, u \neq v$, and $f(t)=\mho_{t}$ in Lemma 2.3, we have

$$
\left(\frac{r}{t} \frac{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{t}-\sum_{i=1}^{n} q_{i} x_{i}^{t}}{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} q_{i} x_{i}^{r}}\right)^{\frac{1}{t-r}} \leqslant\left(\frac{u}{v} \frac{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{v}-\sum_{i=1}^{n} q_{i} x_{i}^{v}}{\sum_{i=1}^{n} q_{i}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{u}-\sum_{i=1}^{n} q_{i} x_{i}^{u}}\right)^{\frac{1}{v-u}} .
$$

This is equivalent to (7) for $t \neq r, u \neq v$. From Remark 2.2, we get (7) is also valid for $t=r, u=v$.

REMARK 2.5. If we put $r \rightarrow r-1, t \rightarrow t-1$ and $q_{i} \rightarrow p_{i} x_{i}$ in $H_{t, r}(\mathbf{x} ; \mathbf{p} ; \mathbf{q})$, we have

$$
\begin{aligned}
\widetilde{H}_{t, r}(\mathbf{x} ; \mathbf{p}) & =\left(\frac{r-1}{t-1} \frac{\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{t}-\sum_{i=1}^{n} p_{i} x_{i}^{t}}{\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right)^{\frac{1}{t-r}}, r \neq t, r, t \neq 1 \\
\widetilde{H}_{r, r}(\mathbf{x} ; \mathbf{p}) & =\exp \left(\frac{1}{1-r}+\frac{\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r} \log \sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} x_{i}^{r} \log x_{i}}{\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right), r \neq 1 \\
\widetilde{H}_{r, 0}(\mathbf{x} ; \mathbf{p}) & =\widetilde{H}_{0, r}(\mathbf{x} ; \mathbf{p}) \\
& =\left(\frac{\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{r}-\sum_{i=1}^{n} p_{i} x_{i}^{r}}{(r-1)\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \log \sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} x_{i} \log x_{i}\right\}}\right)^{\frac{1}{r-1}}, r \neq 1 \\
\widetilde{H}_{0,0}(\mathbf{x} ; \mathbf{p}) & =\exp \left(\frac{\sum_{i=1}^{n} p_{i} x_{i}\left(\log \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}-\sum_{i=1}^{n} p_{i} x_{i}\left(\log x_{i}\right)^{2}}{2\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \log \sum_{i=1}^{n} p_{i} x_{i}-\sum_{i=1}^{n} p_{i} x_{i} \log x_{i}\right\}}\right)
\end{aligned}
$$

Now if $x_{i} \rightarrow x_{i}^{s}, r \rightarrow \frac{r}{s}$ and $t \rightarrow \frac{t}{s}$ where $r, t \neq s$ and $s \neq 0$, we have

$$
\begin{aligned}
& \widetilde{H}_{\frac{t}{s}}, \frac{r}{s} \\
& \widetilde{H}_{\frac{r}{r}}, \frac{r}{s}\left(\mathbf{x}^{s} ; \mathbf{p}\right) \\
& \widetilde{H}_{\frac{r}{s}}^{s}\left(\mathbf{x}^{s} ; \mathbf{p}\right)=\left(A_{t, r}^{s}(\mathbf{x} ; \mathbf{p})\right)^{s} \\
&\left.\widetilde{H}_{0, r}(\mathbf{x} ; \mathbf{p})\right)^{s} \\
& \widetilde{H}_{0, \frac{r}{s}}\left(\mathbf{x}^{s} ; \mathbf{p}\right)=\left(A_{s, s}^{s}(\mathbf{x} ; \mathbf{p})\right)^{s}
\end{aligned}
$$

Also note that

$$
\begin{aligned}
& B_{t, r}^{s}(\mathbf{x} ; \mathbf{p})=\left(\frac{r}{t}\right)^{\frac{1}{t-r}}\left(\widetilde{H}_{\frac{t}{s}} \frac{r}{s}\left(\mathbf{x}^{s} ; \mathbf{p}\right)\right)^{\frac{1}{s}} \\
& B_{r, s}^{s}(\mathbf{x} ; \mathbf{p})=B_{s, r}^{s}(\mathbf{x} ; \mathbf{p})=\left(\frac{r}{s}\right)^{\frac{1}{s-r}}\left(\widetilde{H}_{0, \frac{r}{s}}\left(\mathbf{x}^{s} ; \mathbf{p}\right)\right)^{\frac{1}{s}}=\left(\frac{r}{s}\right)^{\frac{1}{s-r}}\left(\widetilde{H}_{\frac{r}{s}, 0}\left(\mathbf{x}^{s} ; \mathbf{p}\right)\right)^{\frac{1}{s}} \\
& B_{r, r}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{1}{r}\right)\left(\widetilde{H}_{\frac{r}{s}}, \frac{r}{s}\right. \\
& \left.\left.B_{s, s}^{s} ; \mathbf{p}\right)\right)^{\frac{1}{s}} \\
& B_{s}^{s}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{1}{s}\right)\left(\widetilde{H}_{0,0}\left(\mathbf{x}^{s} ; \mathbf{p}\right)\right)^{\frac{1}{s}}
\end{aligned}
$$

The following result has been proved in [5].

Corollary 2.6. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be positive n-tuples $(n \geqslant 2)$ such that $\sum_{i=1}^{n} p_{i} x_{i} \geqslant x_{j}$ for $j=1, \ldots, n$. Also let $t, r, u, v \in \mathbb{R}^{+}$such that $r \leqslant u$, $t \leqslant v$. Then we have

$$
\begin{equation*}
A_{t, r}^{s}(\mathbf{x} ; \mathbf{p}) \leqslant A_{v, u}^{s}(\mathbf{x} ; \mathbf{p}) \tag{8}
\end{equation*}
$$

Proof. Taking $r \rightarrow r-1, t \rightarrow t-1, u \rightarrow u-1, v \rightarrow v-1$ and $q_{i} \rightarrow p_{i} x_{i}$ in (7), we have

$$
\widetilde{H}_{t, r}(\mathbf{x} ; \mathbf{p}) \leqslant \widetilde{H}_{v, u}(\mathbf{x} ; \mathbf{p})
$$

Now taking $x_{i} \rightarrow x_{i}^{s}, r \rightarrow \frac{r}{s}, t \rightarrow \frac{t}{s}, u \rightarrow \frac{u}{s}, v \rightarrow \frac{v}{s}$ where $r, t, u, v \neq s$ and $s \neq 0$, we have

$$
\left(A_{t, r}^{s}(\mathbf{x} ; \mathbf{p})\right)^{s} \leqslant\left(A_{v, u}^{s}(\mathbf{x} ; \mathbf{p})\right)^{s}
$$

This follows (8).
REMARK 2.7. Similarly, we can prove the monotonicity of $B_{t, r}^{s}(\mathbf{x} ; \mathbf{p})$ which we have given in [6], that is, for $t, r, u, v \in \mathbb{R}^{+}$such that $r \leqslant u, t \leqslant v$, we have

$$
\begin{equation*}
B_{t, r}^{s}(\mathbf{x} ; \mathbf{p}) \leqslant B_{v, u}^{s}(\mathbf{x} ; \mathbf{p}) \tag{9}
\end{equation*}
$$

In fact we have shown in [6] that such results can be obtained from the results given in [5].

3. Mean value theorems

In this section, we prove mean value theorems of Cauchy type by using Theorem 1.3 with the help of functions defined in a following lemma.

Lemma 3.1. Let $f \in C^{1}(I)$, such that

$$
\begin{equation*}
m \leqslant f^{\prime}(x) \leqslant M, x \in I \tag{10}
\end{equation*}
$$

Consider the functions ϕ_{1}, ϕ_{2} defined as,

$$
\begin{aligned}
& \phi_{1}(x)=M x-f(x) \\
& \phi_{2}(x)=f(x)-m x
\end{aligned}
$$

Then ϕ_{i} for $i=1,2$ are monotonically increasing.

Proof. We have that

$$
\begin{gathered}
\phi_{1}^{\prime}(x)=M-f^{\prime}(x) \geqslant 0, \\
\phi_{2}^{\prime}(x)=f^{\prime}(x)-m \geqslant 0 .
\end{gathered}
$$

i.e. ϕ_{i} for $i=1,2$ are monotonically increasing.

THEOREM 3.2. Let $\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$, where I is a compact interval, $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be non-negative n-tuples such that all x_{i} 's are not equal and condition (1) is satisfied. If $f \in C^{1}(I)$, then there exists $\xi \in I$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} q_{i} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f\left(x_{i}\right)=f^{\prime}(\xi) \sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right) \tag{11}
\end{equation*}
$$

Proof. Since I is compact and $f \in C^{1}(I)$, therefore let $m=\min f^{\prime}$ and $M=$ $\max f^{\prime}$.
In Theorem 1.3, setting $f=\phi_{1}$ and $f=\phi_{2}$ respectively as defined in Lemma 3.1, we get the following inequalities

$$
\begin{align*}
& \sum_{i=1}^{n} q_{i} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f\left(x_{i}\right) \leqslant M \sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right) \tag{12}\\
& \sum_{i=1}^{n} q_{i} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f\left(x_{i}\right) \geqslant m \sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right) \tag{13}
\end{align*}
$$

Taking $f(x)=x$ in Theorem 1.3 with all x_{i} 's are not equal, we get

$$
\sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right)>0
$$

therefore combining (12) and (13), we have

$$
\begin{equation*}
m \leqslant \frac{\sum_{i=1}^{n} q_{i} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f\left(x_{i}\right)}{\sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right)} \leqslant M . \tag{14}
\end{equation*}
$$

Hence, there exists $\xi \in I$ such that

$$
\frac{\sum_{i=1}^{n} q_{i} f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f\left(x_{i}\right)}{\sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right)}=f^{\prime}(\xi)
$$

Which implies (11).
From above Theorem we can deduce the results which we have proved in [5].
Corollary 3.3. Let $\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$, where $I \subseteq(0, \infty)$ is a compact interval, $\left(p_{1}, \ldots, p_{n}\right)$ be non-negative n-tuple such that all x_{i} 's are not equal and condition (1) is satisfied. If $f \in C^{1}(I)$, then there exists $\xi \in I$ such that

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)=\frac{\xi f^{\prime}(\xi)-f(\xi)}{\xi^{2}}\left\{\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{2}-\sum_{i=1}^{n} p_{i} x_{i}^{2}\right\} \tag{15}
\end{equation*}
$$

Proof. Taking $q_{i} \rightarrow p_{i} x_{i}, f(x) \rightarrow f(x) / x$ in (11), we get (15).

THEOREM 3.4. Let $\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$, where I is a compact interval, $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be non-negative n-tuples such that all x_{i} 's are not equal and condition (1) is satisfied. If $f_{1}, f_{2} \in C^{1}(I)$, then there exists $\xi \in I$ such that

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} q_{i} f_{1}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f_{1}\left(x_{i}\right)}{\sum_{i=1}^{n} q_{i} f_{2}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f_{2}\left(x_{i}\right)}=\frac{f_{1}^{\prime}(\xi)}{f_{2}^{\prime}(\xi)} . \tag{16}
\end{equation*}
$$

Provided that the denominators are non-zero.

Proof. Let a function $k \in C^{1}(I)$ be defined as

$$
k=c_{1} f_{1}-c_{2} f_{2}
$$

where c_{1} and c_{2} are defined as

$$
\begin{aligned}
& c_{1}=\sum_{i=1}^{n} q_{i} f_{2}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f_{2}\left(x_{i}\right), \\
& c_{2}=\sum_{i=1}^{n} q_{i} f_{1}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} q_{i} f_{1}\left(x_{i}\right) .
\end{aligned}
$$

Then, using Theorem 3.2 with $f=k$, we have

$$
\begin{equation*}
0=\left(c_{1} f_{1}^{\prime}(\xi)-c_{2} f_{2}^{\prime}(\xi)\right) \sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right) \tag{17}
\end{equation*}
$$

$\sum_{j=1}^{n} q_{j}\left(\sum_{i=1}^{n} p_{i} x_{i}-x_{j}\right)$ is non-zero, so we have

$$
\frac{c_{2}}{c_{1}}=\frac{f_{1}^{\prime}(\xi)}{f_{2}^{\prime}(\xi)}
$$

After putting the values of c_{1} and c_{2}, we get (16).

COROLLARY 3.5. [5] Let $\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$, where $I \subseteq(0, \infty)$ is a compact interval, $\left(p_{1}, \ldots, p_{n}\right)$ be non-negative n-tuple such that all x_{i} 's are not equal and condition (1) is satisfied. If $f_{1}, f_{2} \in C^{1}(I)$, then there exists $\xi \in I$ such that

$$
\begin{equation*}
\frac{f_{1}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f_{1}\left(x_{i}\right)}{f_{2}\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f_{2}\left(x_{i}\right)}=\frac{\xi f_{1}^{\prime}(\xi)-f_{1}(\xi)}{\xi f_{2}^{\prime}(\xi)-f_{2}(\xi)} \tag{18}
\end{equation*}
$$

Provided that the denominators are non-zero.

Proof. Taking $q_{i} \rightarrow p_{i} x_{i}, f(x) \rightarrow f(x) / x$ in (16), we get (18).

REFERENCES

[1] N. I. AKhIEZER, The classical moment problem and some related questions in analyisis, Oliver and Boyd Ltd. The University Press, Glasgow 1965.
[2] M. ANWAR, J. JAKŠETIĆ, J. PEČARIĆ AND ATIQ UR REHMAN, Exponential convexity, positive semidefinite matrices and fundamental inequalities, J. Math. Inequal. 4, 2 (2010), 171-189.
[3] S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66.
[4] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Vol. 187 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1992.
[5] J. Pečarić and AtiQ UR Rehman, On Logarithmic convexity for power sums and related results, J. Inequal. Appl., 2008, Article ID 389410, (2008), 9 pp.
[6] J. Pečarić and AtiQ UR Rehman, On Logarithmic convexity for power sums and related results II, J. Inequal. Appl., 2008, Article ID 305623, (2008), 12 pp.
[7] D. V. Widder, The laplace transform, Princeton 1941, 1946.
J. Pečarić

Abdus Salam School of Mathematical Sciences
GC University
68-B, New Muslim Town
Lahore 54600, Pakistan
and
Faculty of Textile Technology
University of Zagreb
Pierottijeva 6
10000 Zagreb, Croatia
e-mail: pecaric@mahazu.hazu.hr
Atiq ur Rehman
Abdus Salam School of Mathematical Sciences GC University
68-B, New Muslim Town
Lahore 54600, Pakistan
e-mail: atiq@mathcity.org

[^0]: Mathematics subject classification (2010): 26D15, 26D20, 26D99.
 Keywords and phrases: convex functions, log-convex functions, power sums, mean value theorems.
 This research was partially funded by Higher Education Commission of Pakistan. The research of the first author was supported by the Croatian Ministry of Science, Education and Sports under the Research Grant 117-1170889-0888.

