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Summary

This project report covers an MSci investigation into the basics of supergravity. We
start by looking at the original Kaluza-Klein theory. Supergravity is then introduced
and a truncated toy system is constructed. Equations of motion for this toy system are
derived and the simplifying assumptions required to obtain a solution are presented.

This basic framework of supergravity is applied to the sample problem of the braneprobe.
The braneprobe is a system of two super-membranes (branes) where a light test brane
(the braneprobe) orbits a stationary heavy brane. The action integral for this system is
varied to find equations of motion, which are then solved to determine the nature of the
braneprobe’s orbit.

Supergravity is introduced without the more complex aspects of the mathematics of
membranes and super-membranes. Although some results from supersymmetry are used,
a thorough understanding of this topic is not required for the development in this project.
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1. Introduction

The problem of unification in physics is to find a single framework to describe all
phenomena observed in the universe. The first significant progress towards this goal was
Maxwell’s unification of the electric and magnetic forces into electromagnetism. This
laid the foundations for Einstein’s development of special relativity in 1905 [1] which
redefined electricity and magnetism to be two aspects of the same force.

In 1914, the Finnish physicist Gunnar Nordstrøm attempted to take this one step further
by unifying electromagnetism with his own theory of gravity. He postulated a fifth
dimension of spacetime, in which the two forces were coupled. This was also the first
time that the new mathematical tool of differential geometry was applied to physics.
The apparent success of this theory made it extremely popular at the time. In 1915,
Einstein applied differential geometry to derive a new theory of spacetime and gravity,
General Relativity [2].

For some time, Nordstrøm’s theory was considered a viable competitor to Einstein’s
General Relativity (GR). However, it was displaced after GR’s accurate predictions
concerning the orbit of Mercury. With the success of GR, Nordstrøm’s unification of
electromagnetism with gravity was largely forgotten, but the idea of postulating higher
dimensions of spacetime to encompass extra fields was revived in 1921 when Theodor
Kaluza published [3]. This later became Kaluza-Klein theory.

Kaluza showed that by adding an extra spatial dimension to GR a theory could be
constructed with a four dimensional metric tensor, a vector gauge potential and an
extra scalar. Restricting these fields to depend only on the four normal dimensions of
spacetime, he found that the metric would obey a standard Einstein action and the gauge
potential would obey a Maxwell action. Therefore, by postulating this extra spatial
dimension, electromagnetism was obtained as a consequence of gravity.

Kaluza-Klein theory will be explored in some detail in §2. Starting with the Einstein-
Hilbert action in five dimensions, a new action integral will be formed in four dimensions.
From this reduced action integral, the equations of motion will be derived.

These developments were taken further by Oskar Klein in 1926 [4] who added physical
substance to the mathematical structure. Klein suggested that the extra dimensions
should be physically real rather than just mathematical constructs, and postulated
that Kaluza’s extra spatial dimension should by curled up into a tiny circle. Hence the
quantisation of electric charge was obtained as a by-product of the circle’s topology. In
order to get the correct value for the electric charge, the radius of the circle would have
to be very small— of the order of the Plank length, which conveniently explained why
this extra circular dimension had not been observed.

Kaluza-Klein theory does however have significant problems. Imposing a fixed topology
on part of spacetime violates the principle of background independence enshrined in
General Relativity. In GR, masses and energies change the curvature of spacetime, and
as the quanta of electric charge are determined by the radius of the circle, gravity would
be able to change this charge. This is not observed in the real world.

Another problem with Kaluza-Klein theory is the extra field produced by the dimensional
reduction. Alongside the expected metric tensor and the gauge potential, there is an
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extra scalar that does not couple neatly to any observed phenomena. This scalar is
investigated in §2 and its equations of motion are found. It is not possible to delete this
scalar by setting it to zero as it interacts with the electromagnetic gauge potential.

Whilst Kaluza-Klein theory is ultimately a failure as a physical description of the universe,
the idea of adding new dimensions of spacetime to accommodate extra fields is still
being developed. Throughout the twentieth century there were many attempts to unify
electromagnetism, gravity and later the strong and weak nuclear forces in this kind
of geometric theory. In spite of some success, all these attempts encountered similar
problems to the original Kaluza-Klein theory. They either included extra fields that could
not be related to observed phenomena, or predicted unphysical interactions between the
four forces.

The preferred solution of mainstream physics has been to ignore the gravitational force
as it is indeed rather weak compared to the other three forces. This approach has led to
the Standard Model, which unifies the strong, weak and electromagnetic forces. The
Standard Model (SM) is one of the great achievements of twentieth century physics,
but as it does not include gravity or GR it cannot be a complete solution. However,
trying to incorporate GR into the SM leads to inconsistencies as the theory’s predictions
rapidly diverge towards infinity.

A possible solution to this problem was supersymmetry. Supersymmetry was indepen-
dently proposed by several different physicists, but is most commonly attributed to Wess
and Zumino in 1974 [5]. Supersymmetry is an abstract symmetry that relates the two
different classes of elementary particles. For each known fermion a partner boson was
proposed and for each known boson a partner fermion was postulated. None of these
supersymmetric partners has ever been observed, so it must be assumed that these new
particles must be much heavier than their known counterparts.

Despite the lack of evidence for supersymmetry, it was hoped that stringent requirements
of the symmetry would force these diverging infinities to cancel. The first successful theory
to incorporate supersymmetry into a theory of gravity was supergravity. Supergravity is
a classical theory born in the late 1970s [6], initially as a four dimensional theory, but
it was quickly generalised to a set of many different theories with different numbers of
dimensions. In 1978, Cremmer, Julia and Scherk [7] found the explicit action of the
eleven dimensional, maximally symmetric theory. This action will be explored in §3.2.

Supergravity was initially usurped in 1984 by what has become known as the first
superstring revolution. The innovation of superstring theory was to describe particles as
small one-dimensional strings rather than simple point particles [8].

The idea of modeling particles as extended objects had been first proposed by Dirac in
1962 [9]. Dirac was unsuccessful in his aim of modeling a muon as an excited state of
an electron, but despite mathematical complexities, extended objects still have some
advantages over point particles. As point particles have no size, they can get arbitrarily
close to each other, which leads to infinite forces of interactions. Extended objects neatly
avoid this problem.

String theory has now grown to include extended objects of any dimension. These
extended objects are collectively known as membranes or more simply branes. In the
terminology of branes, a zero-brane is identical to a point particle, a one-brane is the
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same as a string and so on up to the p dimensional p-brane. Modern supergravity
has developed from a theory only including point particles to include branes of any
dimension. The requirements of the supersymmetric membranes or superbranes mean
that the eleven dimensional, maximally symmetric supergravity theory is prefered over
its lower dimensional variants.

Modern string theory is split into five distinct theories. The second superstring revolution
in 1995 was the beginning of a new understanding that these five theories are just different
facets of a new underlying theory known as M-Theory [10]. M-Theory is written in 10
dimensions, which would seem to be in conflict the 11 dimensional supergravity.

However, in 1987, a deep link was revealed between these two classes of theory, showing
that by simultaneously reducing the dimensions of both the spacetime and the worldvol-
ume, 10 dimensional superstrings can be derived from 11 dimensional superbranes [11].
In particular, this seems to suggest that maximally supersymmetric supergravity is the
low energy limit to M-Theory generally and particularly to type-IIA string theory [12].

Supergravity in eleven dimensions is outlined in §3 and the dimensional reduction
linking supergravity with string theory is explored in §3.4.1. With these elements, a
toy supergravity system is constructed in §3.4, and by making appropriate simplifying
assumptions in §3.5, the action integral can be varied to find equations of motion in §3.6.

Supergravity, as a classical theory, is not applicable to the high energies of modern
particle physics. It is more suited to cosmological problems concerning the interactions
of very large objects such as black holes. In §4, such a situation will be investigated. As
supergravity is the only part of M-Theory with an action that can be written explicitly,
this kind of theoretical setup is currently the only viable way to extract a testable
prediction from the grand unified theory.

In §4, we investigate the sample problem of a braneprobe. This is a situation with
two branes, where one static, stationary heavy brane provides a background in which a
light test brane orbits. A simplistic classical analogy to this setup would be an electron
orbiting a black hole.

In §4.4, a Lagrangian formalism is used to find an equation goverening the radial motion
of the test brane. Then in §4.5, the properties of the test brane’s orbit are revealed. We
will see that the brane can form unbounded orbits for larger energies and bounded orbits
for smaller energies.

Some of the longer calculations are presented in Appendix A. As some of the algebraic
manipulation is rather tortuous it was reassuring to check the accuracy of the equations
with the symbolic manipulation package Cadabra - see Appendix B.
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2. The Five Dimensional World

2.1. Kaluza-Klein Theory

In 1921, Theodore Kaluza suggested a novel approach to the unification of electromag-
netism and general relativity [3]. This idea, which was extended by Oskar Klein, was
to write the equations of general relativity in five dimensions rather than four, and by
compactifying the extra dimension, return to a realistic model of the universe. This
idea was surprisingly successful, as Einstein’s equations in five dimensions yield not only
the correct equations for gravity in four dimensions, but also Maxwell’s equations of
electromagnetism [13].

There is a remarkable elegance to this theory, as the conservation of electric charge can
be viewed as the conservation of momentum in the hidden fifth dimension. Also, by
requiring the fifth dimension to be of the group U(1), i.e. having the same topology as a
circle, the quantization of electric charge is an emergent product of the formulation. To
retrieve the correct value for the electric charge, we must take the size of this compactified
circular dimension to be extremely small (of the order of the Planck length ∼ 10−35m)
which explains why the extra dimension is not observed.

2.2. The Action and the Metric

We can now demonstrate Kaluza-Klein theory following Duff [13], Pope [14] and Car-
roll [15]. A more in-depth discussion of Kaluza-Klein in the context of branes and
supergravity is found in Stelle [16, §6]. Start by writing the standard action of general
relativity (the Einstein Hilbert action [17, 18]) in (D + 1) dimensions:

I =
∫

dD+1x
√
−ĝ R̂ (2.1)

where this action contains ĝ, which denotes the determinant of the metric, along with R̂,
the Ricci or curvature scalar. The ansatz of D normal dimensions and an extra curled
up dimension is imposed by splitting the (D + 1) dimensional metric ĝMN into:

ĝMN =
(
ĝµν ĝµz
ĝµz ĝzz

)
µ, ν = 0 . . . (D − 1), z = D (2.2)

where in the D dimensional world, ĝµν is the ordinary metric tensor, ĝµz is a gauge
potential and ĝzz is an extra scalar. Furthermore, these new fields are independent of
the curled up, extra dimension and only depend on the D flat dimensions. The (D + 1)
dimensional quantities are given hats and the D dimensional quantities are written
without hats. A note on the choice of indices is given in Box 2.1.

For later convenience, the (D + 1) dimensional line element is written as follows:

dŝ2 = e2αφds2 + e2βφ (dz +Aµdxµ)2 (2.3)

where Aµ is chosen as the gauge potential and φ the scalar field. Also α and β are
constants to be specified later. This writing of the line element results in the components
of the metric:

ĝµν = e2αφgµν + e2βφAµAν , ĝµz = e2βφAµ, ĝzz = e2βφ (2.4)
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Throughout this project, we will be writing equations with indices that cover different
ranges and occupy different spaces.

In this section the following conventions are observed:
• Capital Latin indices M describe the (D + 1) dimensional world volume
• Greek indices µ describe the D dimensionalMD subspace
• The single z index denotes the S circular subspace
• Lower case Latin indices are used for the tangent space

This convention will be revisited in §3, Box 3.4 when the situation becomes even more
complicated and requires further choice of indices.

Box 2.1: Indices

2.2.1. Dimensional Reduction

In order to carry out dimensional reduction, the (hatted) (D+ 1) dimensional quantities
need to be written in terms of D dimensional quantities. The action integral in (2.1)
is split into two terms. The root of the metric is easily dealt with by inserting the
components given in (2.4):√

−ĝ =
√
−det (ĝµν ĝzz − ĝµz ĝzν)

=
√
−det ([e2αφgµν + e2βφAµAν ] e2βφ − e2βφAµe2βφAν)

=
√
−det (e2αφ+2βφgµν)

= e2αφ√−g (2.5)

where the determinants of the metrics are written simply without indices as ĝ and g. A
convenient choice linking the constants α and β has been made:

β = − (D − 2)α (2.6)

The other term in the action integral (2.1), the curvature scalar R̂ is more complicated.
The method originally used by Kaluza in 1921 [3] was to expand the curvature in terms
of Christoffel Symbols and expand these in terms of the metric. Then by inserting the
metric ansatz, the desired result is retrieved.

ĝµν → Γλµν → R̂

This is a difficult calculation to do efficiently, and here the calculations have been done
with the help of a computer algebra system called Cadabra [19, 20]. The working is
detailed in Appendix B.2.

A more recent approach to the problem is to use the language of differential forms.
Forms are introduced in Box 2.2 and allow us to use the metric to define vielbeins (see
Box 2.5). These vielbeins can be used to define the spin connection ω, which can then
be used to calculate R̂.

ĝµν → eaµ → ω̂ab → R̂

This second method is detailed in §2.2.2, §2.2.3 and §2.2.4 and will also be useful
preparation for applying the same method to a supergravity action in §3.
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Throughout this report, we will be using the language of components alongside the more
esoteric language of forms. A general p-form can be written:

F[p] = 1
p!Fµ1µ2...µndxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn

Where the dx terms are elements of integration. These are explained further in Box 2.3.
Due to the use of the wedge product, ∧, forms are always antisymmetric. The wedge
product is explained further in Box 2.4. To illustrate the use of forms, consider the
following product:

C[3] = A[1] ∧B[2]

where,

A[1] = Aµ1dxµ1

B[2] = 1
2!Bν1ν2dxν1 ∧ dxν2

∴

C[3] = A[1] ∧B[2] = Amu1
Bν1ν2

2! dxmu1 ∧ dxν1 ∧ dxν2

as

C[3] = 1
3!Cµ1µ2µ3dxµ1 ∧ dxµ2 ∧ dxµ3

⇒

Cµ1µ2µ3 = 3!
2!A[µ1Bµ2µ3]

= 2
2! (Aµ1Bµ2µ3 +Aµ2Bµ3µ1 +Aµ3Bµ1µ2)

This can lead to some complicated combinatorial factors when moving between form
and component language.

Box 2.2: Differential Forms

The integration elements dnx can be written in terms of one-forms as√
|g|dnx = 1

n!εµ1...µndxµ1 ∧ . . . ∧ dxµn

Since a differential form includes the basic one-forms dxµ as integration elements, one
can place them directly under an integral sign. In terms of components this becomes:∫

F[n] = 1
n!

∫
Fµ1...µndxµ1 ∧ . . . ∧ dxµn

Box 2.3: Forms and Integration Elements
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The wedge product is defined as an extension of the tensor product to a higher dimensional
analogy of the anti-symmetric cross product:

A ∧B = (A⊗B)− (B ⊗A)

It is linear, associative and anti–commutative, thus for general forms A, B and C and
scalars α and γ:

A ∧ (αB + γC) = α (A ∧B) + γ (A ∧ C)
A ∧ (B ∧ C) = (A ∧B) ∧ C

A ∧B = − (B ∧A)

Box 2.4: Wedge Products: ∧

The vielbein or tetrad formalism allows us to write equations that do not refer explicitly
to any particular coordinate system. To do this, we define an orthonormal set of vectors
e a
µ (the vielbeins) that span a tangent space. As discussed in Box 2.1, we refer to the
components of the vielbeins with Latin indices in order to avoid confusion.

We can define the metric in terms of the inner product of vielbeins:

gµν = e a
µ e

b
ν ηab, gµν e

µ
ae
ν
b = ηab

where the second equation introduces the inverse vielbeins, eµa. This relationship with
the metric leads to the vielbeins being described as the ‘square root’ of the metric. The
inverse vielbeins also satisfy:

eµae
a
ν = δµν

We will also use the vielbein 1-forms:

ea = dxµ e a
µ

Vielbeins are sometimes referred to as non-coordinate bases, and are introduced more
throughly by Carroll [15, Appendix J].

Box 2.5: The Vielbein Formalism

The exterior derivative produces a (p + 1)–form dσ from a p–form σ. It obeys the
generalised Leibniz product rule:

d (α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

where α is a p-form (and β any q-form). We will also need to use:

dd = 0

which embodies an elementary rule of topology: the boundary of a boundary is zero.
Box 2.6: Exterior Derivatives

14



2.2.2. Finding the Spin Connection

Start by defining the vielbein one-forms as:

êa = eαφea, êz = eβφ (dz +A) (2.7)

where the gauge potential Aµ is also written as a one-form A = Aµdxµ.

As before, the terms with hats belong to the (D + 1) dimensional Kaluza-Klein universe,
and the terms without hats are the apparent terms in the D dimensional visible universe.
Now proceed towards finding the spin connection terms by applying the torsion-free
condition:

dêM = −ω̂MN ∧ êN (2.8)

In (2.8), we see for the first time a wedge product (∧) and an exterior derivative (d).
These are introduced in Box 2.4 and Box 2.6. We will also make use of the antisymmetry
of ω̂:

ω̂zz = 0, ω̂za = ω̂az, ω̂ab = −ω̂ba (2.9)

In the lower dimensions, the torsion free condition (2.8) gives:

dea = −ωab ∧ eb (2.10)

Starting by choosing M = z in (2.8), inserting our choice of vielbeins from (2.7) into the
left hand side and splitting the indices (as described in Box 2.7) on the right hand side
of torsion free condition (2.8) gives:

dêz = d
(
eβφ (dz +A)

)
= −ω̂z

Ñ
∧ êÑ

d
(
eβφ
)

(dz +A) + eβφd (dz +A) = −ω̂zb ∧ êb − ω̂zz ∧ êz

β ∂φ eβφ (dz +A) + eβφddz + eβφdA = −ω̂zb ∧ êb

β ∂φ êz + eβφF = −ω̂za ∧ êa (2.11)

where the derivative of the one-form gauge potential is now written as the two-form field
strength dA = F . We can now pull out the ω̂az term:

ω̂za ∧ êa = −β ∂φ êz − eβφF
ω̂za ∧ êa ∧ êb = −β ∂φ êz ∧ êb − eβφF ∧ êb

ω̂zb = −β ∂φ êz ∧ e−αφeb − eβφF ∧ êb ∧
1
2 (êa ∧ êa)

= βe−αφ ∂φ eb ∧ êz + 1
2e

βφF ∧ êb ∧ êa ∧ êa

= βe−αφ ∂bφ êz + 1
2e

βφF ∧ êb ∧ êa ∧ êa

= βe−αφ ∂aφ êz + 1
2e

βφe−2αφFab êb

ω̂az = −ω̂za = −βe−αφ ∂aφ êz − 1
2e

(β−2α)φFab êb (2.12)
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We will sometimes encounter equations in which it is necessary to split an implicit sum
over indices into an explicit sum of terms with indices that operate over a smaller range.

For a short example, define an index M which runs 1 . . . D. Also define indices µ running
1 . . . N and m running (N + 1) . . . D. With a term such as:

AMB
M

we can split the implicit sum over M into the explicit sum:

AMB
M = AµB

µ +AmB
m

Box 2.7: Splitting Indices Into Subranges

where the derivative of φ and the field strength F have been written including vielbein
components: ∂aφ = ∂φ ∧ ea and Fab = F ∧ ea ∧ eb. (2.12) makes use of the fact given
in Box 2.6 that ∀ T, ddT = 0 and the symmetries of ω given in (2.9).

The other component of the spin connection can be found be choosing M = µ in (2.8):

dêa = d
(
eαφea

)
= −ω̂a

Ñ
∧ êÑ

d
(
eαφ

)
ea + eαφd (ea) = −ω̂ab ∧ êb − ω̂az ∧ êz

α ∂φ eαφea − eαφωab ∧ eb = −ω̂ab ∧ êb − ω̂az ∧ êz

α ∂φ êa − ωab ∧ êb = −ω̂ab ∧ êb − ω̂az ∧ êz (2.13)

In (2.13) we have used the relationship (2.10) to give an equation containing both ω̂ and
ω, connecting the (D + 1) dimensional universe with the D dimensional visible world.
Hence, from (2.13),

ω̂ab ∧ êb = ωab ∧ êb + ω̂az ∧ êz − α ∂φ êa

ω̂ab = ωab + ω̂az ∧ êz ∧ êb − α ∂φ (êa ∧ êb − êb ∧ êa)

= ωab −
(
βe−αφ∂aφ êz + 1

2e
(β−2α)φFabêb

)
∧ êz ∧ êb − αe−αφ (∂aφ êb − ∂bφ êa)

= ωab − βe−αφ ∂aφ êz ∧ êz ∧ êb − αe−αφ (∂aφ êb − ∂bφ êa)−
1
2e

(β−2α)φFab êz

= ωab − 0− αe−αφ (∂aφ êb − ∂bφ êa)−
1
2e

(β−2α)φFab êz

ω̂ab = ωab − αe−αφ
(
∂aφ êb − ∂bφ êa

)
− 1

2e
(β−2α)φFab êz (2.14)

The final component of the spin connection has already been defined by the antisymmetric
nature of ω described in (2.9):

ωzz = 0 (2.15)

With these components of the spin connection found in (2.12), (2.14) and (2.15), the
vielbein components of the curvature two-form can now be found.
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2.2.3. Calculating the Curvature

With the components of the spin connection given above in §2.2.2, the curvature two-
forms can now be calculated. As in (2.6), convenient values of the constants α and β
can be chosen to simplify (2.12) and (2.14):

α = [2(D − 1)(D − 2)]−1/2 , β = −(D − 2)α (2.16)

ω̂ab = ωab + αe−αφ
(
∂bφ êa − ∂aφ êb

)
− 1

2e
−DαφFab êz

ω̂az = −ω̂za = (D − 2)αe−αφ∂aφ êz − 1
2F

a
be
−Dαφ êb (2.17)

The definition of the curvature two-form in terms of the spin connection ω gives:

Rab = dωab + ωac ∧ ωcb (2.18)

for the lower dimensional case and:

R̂MN = dω̂MN + ω̂MP ∧ ω̂PN
= dω̂MN + ω̂Ma ∧ ω̂aN + ω̂Mz ∧ ω̂zN (2.19)

for the higher dimensional case.

Inserting the components in (2.17) into these relations (2.18) and (2.19) to find the
components of the Ricci tensor is a rather tedious calculation. The final results are:

R̂ab = e−2αφ
(
Rab −

1
2∂aφ∂bφ− αηab�φ

)
− 1

2e
−2DαφF c

a Fbc

R̂az = R̂za = 1
2e

(D−3)αφ∇b
(
e−2(D−1)αφFab

)
R̂zz = (D − 2)αe−2αφ�φ+ 1

4e
−2DαφF2 (2.20)

The Raz term is actually not necessary for specifying the Ricci scalar as below, but is
included here for completeness.

The Ricci scalar can then be calculated by contracting the Ricci tensor using:

R̂ = ηABR̂AB = ηabR̂ab + R̂zz (2.21)

Contracting R̂ab gives three terms. The first term, ηabRab contracts trivially to give R.
The second term gives ηab∂aφ∂bφ = (∂φ)2. Contracting the third term is also simple
with ηabηab = 1. Therefore, inserting (2.20) into (2.21) gives:

R̂ = ηABR̂AB = ηabR̂ab + R̂zz

= e−2αφ
(
R− 1

2(∂φ)2 + (D − 3)α�φ
)
− 1

4e
−2DαφF2 (2.22)
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2.2.4. Retrieving the Dimensionally Reduced Action

Combining the contributions found in (2.5) and (2.22) allows the dimensionally reduced
action to be written:

I =
∫

dD+1x
√
−ĝ R̂

=
∫

dDx e2αφ√−g e−2αφ
(
R− 1

2(∂φ)2 − 1
4e
−2(D−1)αφF2

)
=
∫

dDx
√
−g

(
R− 1

2(∂φ)2 − 1
4e
−2(D−1)αφF2

)
(2.23)

where the �φ term in (2.22) is dropped as it is a total derivative and therefore does not
contribute to the action integral.

Comparing this new action in (2.23) with the action of classical relativistic electrody-
namics [17]: ∫

dnx
√
−g

(
R−F2

)
(2.24)

we can see that the action (2.23) contains an Einstein action
√
−gR for gµν and a Maxwell

action F2 for A. This means that the (D+1) dimensional theory of pure gravity contains
D dimensional gravity alongside electromagnetism. As the electromagnetism term is
just a product of the dimensional reduction, we could say that electromagnetism is a
consequence of the higher dimensional gravity.

There is also a mysterious kinetic term for the scalar φ. In order to investigate this more
fully, the this action is varied and the equations of motion found in §2.3.

2.3. Equations of Motion

The variation of action integrals to find equations of motion is a technique that will be
used repeatedly in this project. In §2.3.1 the simple Einstein-Hilbert action is varied as
a template for the more difficult variation of the full Kaluza-Klein action (2.23) in §2.3.2
and for the other variations in §3.

2.3.1. Varying the Einstein-Hilbert Action

The Einstein-Hilbert action integral is given by:

IEH =
∫

dDx
√
−gR (2.25)

In this equation, we see the determinant of the metric g alongside the Ricci scalar R.
Einstein’s field equations are produced by varying this action with respect to gµν . We
will treat the curvature as a function of the connections R = R(Γ) and independent of
the metric, ignoring the fact that actually Γ = Γ(gµν).

18



There are several relationships that will be useful when varying expressions that contain
the metric. Firstly, to contract the metric with its inverse:

gµνgνρ = δµρ

gµνgνµ = δµµ = D − 1

where D is the number of dimensions of the spacetime. This gives the formula for varying
an inverse metric:

δ (gµν) gνρ + gµνδ (gνρ) = 0 ⇒ δ (gµν) = −gµρgνσδ (gρσ)

It will also be useful to vary the determinant of the metric:

δ (g) = ggµνδ (gµν)

where the determinant has been written without indices as g.
Box 2.8: Varying the Metric

So, making use of the definitions in Box 2.8, varying (2.25) with respect to gµν gives:

δ (IEH) =
∫

dDx δ
(√
−gR

)
=
∫

dDx
[
δ
(√
−g
)
R+
√
−gδ (R)

]
=
∫

dDx
[ −1

2
√
−g

δ (g)R+
√
−g δ (gµν)Rµν

]
=
∫

dDx
[ −1

2
√
−g

ggρσδ (gρσ)R−
√
−g gµρgσνδ (gρσ)Rµν

]
=
∫

dDx
√
−g

[1
2g

ρσR−Rρσ
]
δ (gρσ) (2.26)

which gives the equation of motion:

Rµν − 1
2g

µνR = 0 (2.27)

We can choose to rewrite the left-hand side using index free notation as the Einstein
Tensor G:

G = R − 1
2gR (2.28)

using the convention that bold quantities G, R are tensors.

The right hand side of (2.27) is zero for this vacuum case. When matter and energy are
included, the right hand side would involve the stress energy tensor Tµν . This gives the
familiar Einstein Field Equations (written with a cosmological constant Λ).

G + Λg = 8πG
c4 T (2.29)
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2.3.2. Varying the Kaluza-Klein Action

We can now proceed to finding the equations of motion by varying (2.23) with respect to
all the variables of interest. Here, only the results are presented, as an almost identical
set of calculations are performed in §3.4.2.

The three equations of motions found by varying with respect to the metric g, the scalar
φ and the gauge potential A are:

Rµν = 1
2∂µφ∂νφ+ 1

2e
−2(D−1)αφ

(
F2
µν −

1
2(D − 2)F

2gµν

)
(2.30)

0 = ∇µ
(
e−2(D−2)αφFµν

)
(2.31)

� φ = −1
2 α(D − 1) e−2(D−1)αφ F2 (2.32)

The final equation of motion for φ in (2.32) leads to the failure of the original Kaluza-
Klein theory. The scalar φ is interacting with the electromagnetic fields and so cannot
be simply truncated, set to zero and ignored.

2.4. Conclusions

In this section, it has been shown that by dimensionally reducing gravity from (D + 1)
to D dimensions we arrive at (2.23). In this new action, the familiar R and F2 terms
from the Einstein-Hilbert action are obtained together with an unfamiliar scalar term.

If this scalar φ could be simply set to zero, it could be claimed that a successful unification
of gravity and electromagnetism has been achieved, formulated as pure five dimensional
gravity. However, in the derivation of the equations of motion in §2.3.2, we see in (2.32)
that setting φ = 0 also sets F = 0 thereby loosing all electromagnetic interaction. For
further discussion see [14] and [16, §6]. In must be therefore be concluded that this
theory is ultimately unphysical.

While this original Kaluza-Klein theory is unsuccessful, it has spawned many similar
geometric theories seeking to unify gravity with electromagnetism and later with the
nuclear forces. Throughout the twentieth century, there have been many attempts at
unification involving a higher dimensional reality with one or more dimensions curled
up into spheres or tori. In fact, almost all theories that are written in more than four
dimensions rely on some version of Kaluza-Klein style reduction to connect them to the
physical world.

In §3, the results found in §2.2 and §2.3 will be used to connect 11 dimensional super-
gravity to 10 dimensional M-Theory. The same process of using vielbeins to find spin
connections and curvature components will also be used to investigate the supergravity
action in §3.5.
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3. The Eleven Dimensional World

3.1. Supergravity

The current favourite candidate for a unified theory to embrace all aspects of modern
physics is M-Theory, which is a unified field theory of strings and higher dimensional
extended objects known as branes. The five different superstring theories developed in
the late 1980s were found to be connected by various dualities [10] which linked them
together to form this M-Theory. Whilst most of the details of this grand unified theory
are unknown, it can be shown that the low energy limit is supergravity [12].

Supergravity is a classical theory from the late 1970s [6] which was originally abandoned
in favour of superstrings, but has continued to be relevant as a low energy approximation
to M-Theory. It has many possible areas of study, as unlike most string theories and
M-Theory, it has an action that can be written explicitly [7].

A key feature of both M-Theory, supergravity and almost all modern attempts at a
unified theory is supersymmetry. Supersymmetry is an abstract set of symmetries that
rotate the two classes of particles (bosons and fermions) into each other. None of these
partner particles have ever been observed, so we do know that if supersymmetry exists,
it must be a partially broken symmetry, as evidenced by the very different masses of
the leptons and the quarks. Supersymmetry is also important as it limits the number of
dimensions to eleven.

In this section, we will investigate the bosonic sector of supergravity. Starting by
investigating the action found by Cremmer, Julia and Scherk [7], we will also apply some
ansätze and simplifying assumptions in order to find and solve the equations of motion.

3.2. The Bosonic Action

The action of the bosonic sector of D = 11 supergravity was found in 1978 by Cremmer,
Julia and Scherk [7]. Its action integral can be written as:

I =
∫

d11x
√
−g

(
R− 1

48F
2
[4]

)
− 1

6

∫
F[4] ∧ F[4] ∧A[3] (3.1)

In some places, for example Stelle [16, eq. 1.1], the second integral in (3.1) is written
with a positive sign. We choose here to use a negative sign for later consistency, but the
two forms are identical through a redefinition of the potential A[3].

In the action in (3.1), the metric g can be identified, written without indices to denote
the determinant along with R, the Ricci Scalar. The three form antisymmetric gauge
potential A[3] and the four form field strength F[4] can also be seen. These quantities are
related as:

F[4] = dA[3]. (3.2)

The first integral in (3.1) is written in component notation and the second integral is
written in the language of forms (introduced in Box 2.2, Box 2.6 and Box 2.4). The first
integral can be identified as the action of classical relativistic electrodynamics as seen in
(2.24). This first term will be rewritten in §3.3.1 to also be in form language.



3.3. Magnetic and Electric Charges

3.3.1. Rewriting the Action

To proceed, we would like to rewrite the action integral (3.1) totally in the language
of forms. The first term is recognised as the Einstein-Hilbert action (2.1) and can be
rewritten in form language using the Hodge dual, such that:∫

R
√
−g dnx = 1

11!

∫
R
√
−g εµ1...µndxµ1 ∧ . . . ∧ dxµd

=
∫ 1

11!R εµ1...µndxµ1 ∧ . . . ∧ dxµd

=
∫

?R (3.3)

where ?R is the Hodge dual of R. The equality of lines 1 and 2 is due to the definitions
of ε and ε as outlined in Box 3.1. A precise definition of the Hodge dual is given in
Box 3.2. Turning to the second, electric term, we need to show the equivalence of:

−
√
−g 1

48

∫
d11xFµ1...µ4F

µ1...µ4 = −1
2

∫
F[4] ∧ ?F[4] (3.4)

This is shown in Appendix A.1. As a result of these calculations, the action (3.1) can
now be written in the form:

I =
∫ [

?R− 1
2F[4] ∧ ?F[4] −

1
6F[4] ∧ F[4] ∧A[3]

]
(3.5)

We can now proceed and vary this action and find the equations of motion.

This is defined in various ways across the literature, so in this report, we shall follow the
following conventions:
• The tensor density, ε is defined as follows:

εµνρσ... =


+1 for even permutations
−1 for odd permutations
0 otherwise

For consistency, we shall only use this ε with upper indices.
• The proper tensor, ε is defined as:

√
−gεµνρσ... = εµνρσ...

where
√
−g is a density factor, defined by g: the determinant of the metric:

g = gµνgµν

The advantage of using the proper tensor ε is that its indices can be raised and lowered
by the metric as usual:

εµνρσ... = gµαgνβgργgση . . . ε
αβγη...

Box 3.1: The Levi-Civita Symbol: ε and ε
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On an n–dimensional manifold the Hodge dual produces a (n− p)-form ?σ from a p-form
σ. Dualizing is defined for one–forms as

?(dxµ1 ∧ . . . ∧ dxµp) = 1
q! ε

µ1...µp
ν1...νq

dxν1 ∧ . . . ∧ dxνp

where p+ q = n. This definition allows us to dualize any p-form without affecting the
tensor components. Dualizing twice gives the identity on the algebra (up to a sign) such
that:

??η = (−1)p(n−p) η

with η a general p-form.
Box 3.2: The Hodge Dual: ?

3.3.2. Variation With Respect to A[3]

Now that the action is in the form of (3.5), it is now possible to proceed to vary this
action to find the equations of motion. Applying the variational derivative gives:

δI =
∫ [

δ (?R)− δ
(1

2F[4] ∧ ?F[4]

)
− δ

(1
6F[4] ∧ F[4] ∧A[3]

)]
=
∫ [
−δ
(1

2F[4] ∧ ?F[4]

)
− δ

(1
6F[4] ∧ F[4] ∧A[3]

)]
= −1

2

∫
δ
(
F[4] ∧ ?F[4]

)
+ −1

6

∫
δ
(
F[4] ∧ F[4] ∧A[3]

)
(3.6)

where in the second line, the R term has been set to zero as it has no A[3] dependence,
and then the constants have been taken outside the variational derivatives. Now the
relationship between A[3] and F[4] given in (3.2) can be used to find:

F[4] = dA[3]

dF[4] = ddA[3]

δ
(
F[4]

)
= δ

(
dA[3]

)
= dδ

(
F[4]

)
(3.7)

Taking the first term of (3.6) gives:

1
2

∫
δ
(
F[4] ∧ ?F[4]

)
= 1

2

∫
δ
(
F[4]

)
∧ ?F[4] + F[4] ∧ δ

(
?F[4]

)
= 1

2

∫
δ
(
F[4]

)
∧ ?F[4] + F[4] ∧ ?δ

(
F[4]

)
= 1

2

∫
2δ
(
F[4]

)
∧ ?F[4]

=
∫
δ
(
dA[3]

)
∧ ?F[4]

=
∫
δ
(
A[3]

)
∧ d?F[4] (3.8)

where in the first line the variational derivative has been applied using the product rule.
To arrive at the last line, a technique of partial integration is used which is explained in
Box 3.3.
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Now turning to the second term in (3.6), the variational derivative is again applied using
the product rule:

−1
6

∫
δ
(
F[4] ∧ F[4] ∧A[3]

)
(3.9)

= −1
6

∫ [
δ
(
F[4]

)
∧ F[4] ∧A[3] + F[4] ∧ δ

(
F[4]

)
∧A[3] + F[4] ∧ F[4] ∧ δ

(
A[3]

)]
The first two of these terms are identical as F[4] commutes with δ

(
F[4]

)
. For the final

term we see that: ∫
F[4] ∧ F[4] ∧ δ

(
A[3]

)
=
∫

dA[3] ∧ F[4] ∧ δ
(
A[3]

)
=
∫
A[3] ∧ F[4] ∧ dδ

(
A[3]

)
=
∫
A[3] ∧ F[4] ∧ δ

(
dA[3]

)
=
∫
A[3] ∧ F[4] ∧ δ

(
F[4]

)
(3.10)

which is then identical to the first two terms. Therefore, (3.9) becomes:

−1
6

∫
δ
(
F[4] ∧ F[4] ∧A[3]

)
= −1

2

∫
δ
(
A[3]

)
∧ F[4] ∧ F[4] (3.11)

Combining the contributions from (3.8) and (3.11) gives:

δ (I) =
∫
−δ
(
A[3]

)
∧ d?F[4] + −1

2 δ
(
A[3]

)
∧ F[4] ∧ F[4] (3.12)

and now, as seen in [16, eq. 1.2], δ (I) can be set to zero in order to retrieve the equations
of motion. (3.13) can can be rewritten using the relations in (3.7) to retrieve (3.14).

d?F[4] + 1
2F[4] ∧ F[4] = 0 (3.13)

d
(
?F[4] + 1

2A[3] ∧ F[4]

)
= 0 (3.14)

3.3.3. Conserved Quantities

The equation of motion found in (3.14) allows us to identify two different conserved
charges. There is an electric type charge U :

U =
∫
∂M̃8

(
?F[4] + 1

2A[3] ∧ F[4]

)
(3.15)

and an magnetic type charge V :

V =
∫
∂M̃5

F[4] (3.16)

as seen in Stelle [16, eqs. 1.3 & 1.4].
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3.4. Building a Toy System

3.4.1. Dimensional Reduction of the Supergravity Action

Returning to the bosonic action in (3.1), a Kaluza-Klein style dimensional reduction can
be applied using the techniques introduced in §2 to give another action integral. By
compressing the 11th dimension into a circle, using the line element:

ds2
11 = e−φ/6ds2

10 + e4φ/3
(
dz +AMdxM

)2
(3.17)

where M = 0 . . . 9, we retrieve:

IIIA =
∫

d10x
√
−g
[(

R− 1
2∇Mφ∇

Mφ− 1
12e

−φFMNPF
MNP

)
− 1

48e
φ/2FMNPQF

MNPQ − 1
4e

3φ/2FMNFMN + . . .

]
(3.18)

The gauge fields in the original action (3.1) are written as A and F , whereas the gauge
fields introduced by the dimensional reduction are written with curly A and F . This
action can be identified as the Einstein-frame type action of a type IIA bosonic string,
written in a supergravity form.

Whilst this action is clearly intractable, we can still use it to identify the main features
needed to build a working model of a supergravity system. As in Stelle [16, §2], three
terms can be chosen to build an effective theory containing gravity, gauge fields and
scalars:

I =
∫

dDx
√
−g

[
R− 1

2∇µφ∇
µφ− 1

2n!e
aφF 2

[n]

]
(3.19)

giving an action simple enough to be varied in order to find the equations of motion.
Note that in this toy action, we are now considering a general n-form gauge potential.
Unsurprisingly, as it is also formed by a Kaluza-Klein style dimensional reduction, this
action is very similar to the one found in §2.2.1.

Choosing these three terms to form the action integral may seem somewhat arbitrary,
but by this choice, we have formed a system that is in fact a consistent truncation of
the full supergravity theory. This means that the solutions to this truncated system are
solutions of the full untruncated theory. Further discussion can be found in Stelle [16].

This action can be varied in order to find the equations of motion. It will be useful to
refer back to §2.3.1, where the variation of the Einstein-Hilbert action is presented. In
the following section, this toy action will be varied with respect to the metric g, the
scalar φ and the gauge potential A[n−1].

3.4.2. Varying the Toy Action

We can now proceed to finding the equations of motion by varying (3.19) with respect
to all the variables of interest. This process is rather similar to that in §2.3.2.
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Variation With Respect to φ Starting with the most simple case, varying with respect
to φ, we remove terms with no φ dependence to find:

δ (I) =
∫

dDx
√
−g δ

(
−1

2∇µφ∇
µφ− 1

2n!e
aφF 2

[n]

)
=
∫

dDx
√
−g

[
−1

2δ (∇µφ∇µφ)− 1
2n!δ

(
eaφ
)
F 2

[n]

]
=
∫

dDx
√
−g

[
−δ (∇µφ)∇µφ− a

2n!e
aφδ (φ)F 2

[n]

]
=
∫

dDx
√
−g

[
∇µ∇µφ−

a

2n!e
aφF 2

[n]

]
δ (φ) (3.20)

where the technique of partial integration from Box 3.3 has been used. Setting δ (I) to
zero gives:

∇µ∇µφ = a

2n!e
aφF 2

[n] (3.21)

In order to get this equation in the same form as Stelle [16, eq. 2.2d], we rewrite (3.21)
using the � operator:

�φ = ∇2φ = ∇µ∇µφ = a

2n!e
aφF 2

[n] (3.22)

Variation With Respect to A The next equation of motion comes from varying the
toy action integral (3.19) with respect to the gauge potential A[n−1]. Again starting
by removing terms with no A[n−1] dependence, we also rewrite the F 2

[n] term in form
language using the Hodge Dual (see Box 3.2):

δ (I) =
∫

dDx
√
−g δ

(
− 1

2n!e
aφF 2

[n]

)
= K

∫
dDx eaφ δ

(
F[n] ∧ ?F[n]

)
= K

∫
dDx eaφ

[
δ
(
F[n]

)
∧ ?F[n] + F[n] ∧ δ

(
?F[n]

)]
= K

∫
dDx eaφ δ

(
F[n]

)
∧ ?F[n]

= K

∫
dDx eaφ δ

(
dA[n−1]

)
∧ ?F[n]

= K

∫
dDx eaφ δ

(
A[n−1]

)
∧ d

(
?F[n]

)
(3.23)

where all numerical constants have been included into K and again a partial integration
has been used. It is now possible to extract the equation of motion from (3.23):

eaφ d
(
?F[n]

)
= 0 (3.24)

To convert this equation to the form of Stelle [16, eq.2.2c], it needs to be rewritten in
coordinate form:

?d
(
eaφ ?F[n]

)
= ∇M1

(
eaφ FM1...M2

)
= 0 (3.25)
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There is a common technique in manipulating these expressions which uses partial
integration. With an expression like: ∫

δ (A)B

the identity of the product rule gives:∫
δ (AB) =

∫
δ (A)B +

∫
A δ (B)

or equivalently, perform a partial integration to get:∫
δ (A)B =

∫
δ (AB)−

∫
δ (B)A

= −
∫
δ (B)A

where we have dropped the first term
∫
δ (AB) as it is a total derivative and so vanishes

when integrated over a closed surface.
Box 3.3: Partial Integration

Variation With Respect to the Metric The last equation of motion is found by again
varying the toy action integral (3.19) now with respect to the metric.

δ (I) =
∫

dDx δ
(√
−g

[
R− 1

2∇µφ∇
µφ− 1

2n!e
aφF 2

[n]

])
(3.26)

This can be split into three terms. The first term with δ (R) is a simple Einstein-Hilbert
action and has already been addressed in §2.3.1. Therefore, this term simply contributes
the result from (2.26):

δ (IEH) =
∫

dDx
√
−g

[1
2g

ρσR−Rρσ
]
δ (gρσ) (3.27)

Again using the definitions in Box 2.8, the second term gives:

δ (Iφ) =
∫

dDx δ
(√
−ggµν

) (
−1

2∇µφ∇νφ
)

=
∫

dDx
[
δ
(√
−g
)
gµν +

√
−g δ (gµν)

] (
−1

2∇µφ∇νφ
)

=
∫

dDx
[ −1

2
√
−g

δ (g) gµν −
√
−g gµρgνσδ (gρσ)

](
−1

2∇µφ∇νφ
)

=
∫

dDx
[ −1

2
√
−g

ggρσgµν −
√
−g gµρgνσ

](
−1

2∇µφ∇νφ
)
δ (gρσ)

=
∫

dDx
√
−g

[−1
4 gρσgµν∇µφ∇νφ+ 1

2g
µρgνσ∇µφ∇νφ

]
δ (gρσ)

=
∫

dDx
√
−g

[1
2∇

ρφ∇σφ− 1
4g

ρσ∇µφ∇µφ
]
δ (gρσ) (3.28)

Now turning to the final term, the F2 term is rewritten in components as:

F2 = gµ1ν1 · · · gµnνnFµ1...µnFν1...νn (3.29)
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so, again using the definitions in Box 2.8, the variation with respect to the metric gives:

δ (IF )

=
∫

dDx δ
(
√
−g

(
−eaφ

2n! g
µ1ν1 · · · gµnνnFµ1...µnFν1...νn

))

=
∫

dDx
[
δ
(√
−g
)
gµ1ν1 · · · gµnνn +

√
−g δ (gµ1ν1 · · · gµnνn)

] (−eaφ
2n! Fµ1...µnFν1...νn

)

=
∫

dDx
[ −1

2
√
−g

ggρσgµ1ν1 · · · gµnνn −
√
−g gρµ1gσν1n (gµ2ν2 · · · gµnνn)

]
×

×
(
−eaφ

2n! Fµ1...µnFν1...νn

)
δ (gρσ)

=
∫

dDx
√
−g

[1
2g

ρσgµ1ν1 − n gρµ1gσν1

](−eaφ
2n! g

µ2ν2 · · · gµnνnFµ1...µnFν1...νn

)
δ (gρσ)

=
∫

dDx
√
−g

[1
2g

ρσgµ1ν1 − n gρµ1gσν1

](−eaφ
2n! Fµ1µ2...µnF µ2...µn

ν1

)
δ (gρσ) (3.30)

The contributions from the three terms in (3.26) found in (3.27), (3.28) and (3.30) can
now be combined. Setting δ (I) to zero gives:

0 = 1
2gρσR−Rρσ + 1

2∇ρφ∇σφ−
1
4gρσ∇µφ∇

µφ + (3.31)

+
(1

2gρσg
µ1ν1 − n g µ1

ρ g ν1
σ

)(−1
2n!e

aφFµ1µ2...µnF µ2...µn
ν1

)
It is now necessary to eliminate the R term, which can be achieved by contracting our
equation (3.31) with gρσ:

0 = D

2 R−R+ 1
2 (∇φ)2 − D

4 (∇φ)2 +

−
(
D

2 g
µ1ν1 − n gµ1ν1

)(−eaφ
2n! Fµ1µ2...µnF µ2...µn

ν1

)

R
2−D

2 = 2−D
4 (∇φ)2 + D − 2n

2

(
eaφ

2n!Fµ1µ2...µnF ν2...µn
ν1

)

R = 1
2 (∇φ)2 + D − 2n

2−D

(
eaφ

2n!Fµ1µ2...µnF µ2...µn
ν1

)
(3.32)

This term is now reinserted into (3.31) to give the equation of motion as seen in Stelle [16,
eqs. 2.2a, 2.2b]:

Rρσ = 1
2∇ρφ∇σφ+ Sρσ

Sρσ =
(1

2gρσg
µ1ν1 − n g µ1

ρ g ν1
σ

)(−1
2n!e

aφFµ1µ2...µnF µ2...µn
ν1

)
+

+ 1
2
D − 2n
2−D

(
eaφ

2n!Fµ1µ2...µnF µ2...µn
ν1

)

= eaφ

2(n− 1)!

(
Fρµ2...µnF µ2...µn

σ − n− 1
n(D − 2)F

2gρσ

)
(3.33)
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The Equations of Motion The equations found in this section can now be collected
together from (3.22), (3.25) and (3.33):

RMN = 1
2∂Mφ∂Nφ+ SMN

SMN = 1
2(n− 1)!e

aφ
(
FM ···F ···

N − n− 1
n(D − 2)F

2gMN

)
0 = ∇M1

(
eaφFM1M2...Mn

)
�φ = a

2n!e
aφF2 (3.34)

as seen in Stelle [16, eq. 2.2].

These equations are too difficult to be solved directly in this form. In §3.5, a simplifying
ansatz will be applied and these equations of motion solved for a simple, free moving,
flat brane.

3.5. The p-Brane Ansatz

The equations (3.34) found in §3.4.2 are generally intractable. To proceed, some
simplifying assumptions must be made. For a p-brane moving in a D dimensional
spacetime we shall require a translational symmetry in directions on the brane and also
an isotropic symmetry for the directions transverse to the brane. This can be generally
written as (Poincaré)d × SO (D − d) symmetry where d = p+ 1.

Put more simply, the d dimensions with translational symmetry form the worldvolume
of the brane and the remaining (D − d) dimensions are isotropic. Therefore, the history
of the brane will be formed of p-dimensional, flat spatial surfaces. To impose this ansatz,
the spatial coordinates are split into two ranges:

xM = (xµ, ym) (3.35)

where the x coordinates are on the worldvolume directions and the y coordinates are
transverse to the worldvolume. A note on the choice of indices is given in Box 3.4. The
line element is written:

ds2 = e2A(r)dxµdxνηµν + e2B(r)dymdynδmn (3.36)

where the distance from the brane is given by the radial coordinate r:

r =
√
ymym (3.37)

Note that the suspicious contraction over two raised indices is appropriate in this case,
as indices in the y direction are raised and lowered with a simple δ metric. The effect of
this ansatz on the scalar is such that φ = φ(r). A full discussion is found in Stelle [16,
§2.2].

In order to apply this ansatz, the same procedure as §2.2 is followed. In §3.5.1, the spin
connection terms are found from the vielbein one-forms. In §3.5.2, these are used to find
the components of the Ricci Tensor which can then be inserted into the equations of
motion found above in (3.34), to finally give the p-brane equations in §3.5.4.
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As before in §2, where the spacetime was split into the flat and curled up dimensions,
here the spacetime will have to be split into directions on the brane’s worldvolume and
directions transverse to it.

For a p-brane in an ambient D dimensional spacetime, the world indices will be split:

M = (µ,m)

where the Greek indices cover the range µ = 0 . . . p and the Latin m = (p+ 1) . . . D. The
tangent space in which the vielbeins live will be split in a similar way:

M = (µ,m)

Box 3.4: Indices Revisited

3.5.1. Calculating Spin Connections

Noting the convention on choosing indices in Box 3.4, we start by choosing to define the
vielbein one-forms as:

eµ = eA(r)dxµ, em = eB(r)dym (3.38)

where care should be taken to distinguish between viebeins and exponentials. As noted
above, the x coordinate has been used for directions on the brane’s worldvolume and
y for directions transverse to the worldvolume. To use these vielbeins to find the spin
connection components, the torsion free condition is imposed:

deE + ω
E
F ∧ e

F = 0 (3.39)

By splitting the space into two subspaces, we have given the antisymmetric spin connec-
tion one-form four different components:

ωMN =
(
ωµν ωµn

ωmν ωmn

)
(3.40)

In order to find these different components, the vielbeins in (3.38) are inserted into the
torsion free condition in (3.39). Starting by choosing E = µ, we get:

0 = deµ + ω
µ

F ∧ e
F

= deµ + ω
µ
ν ∧ eν + ω

µ
n ∧ en

= d
(
eA(r)dxµ

)
+ ω

µ
ν ∧ eA(r)dxν + ω

µ
n ∧ eB(r)dyn (3.41)

where the implicit sum over F in the first line was split into a explicit sum over the two
ranges ν and n as encountered before in Box 2.7. Now the vielbeins have been inserted,
the product rule is applied. The first term of (3.41) gives:

d
(
eA(r)dxµ

)
= d

(
eA(r)

)
dxµ + eA(r)d (dxµ)

= eA(r)d (A(r)) dxµ

= eA(r)A′(r)dr ∧ dxµ (3.42)
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where A′(r) has been written as a shorthand for dA(r)/dr. dr can be expressed in terms
of dy using (3.37):

r =
√
ymym

2 r dr = 2 ym dym

dr = ym dym

r
(3.43)

inserting this into (3.42) and then (3.41) gives:

0 = eA(r)A′(r)dr ∧ dxµ + ω
µ
ν ∧ eA(r)dxν + ω

µ
n ∧ eB(r)dyn

= eA(r)A′(r)y
m

r
dym ∧ dxµ + ω

µ
ν ∧ eA(r)dxν + ω

µ
n ∧ eB(r)dyn (3.44)

Now, due to the linear independence of the orthogonal basis vectors dxM , it can be seen
that the middle term of (3.44) is independently zero. This gives one of the components
of the spin connection, as seen in Stelle [16, eq. 2.9]:

ω
µ
ν ∧ eA(r)dxν = 0

ω
µ
ν = 0

⇒ ωµν = 0 (3.45)

The remaining part of (3.44) is:

eA(r)A′(r)y
m

r
dym ∧ dxµ + ω

µ
n ∧ eB(r)dyn = 0(

eB(r)ω
µ
n − eA(r)A′(r)y

n

r
dxµ

)
∧ dyn = 0

eB(r)ω
µ
n − eA(r)A′(r)y

n

r
dxµ = 0 (3.46)

A′(r) can now be rewritten:

A′(r) = r

yn
∂

∂yn
A(r) (3.47)

and inserted into (3.46) to give:

ω
µ
n = e−B(r)∂nA(r) eA(r) dxµ

= e−B(r)∂nA(r) eµ (3.48)

where ∂n has been used as a shorthand for ∂
∂yn . Raising the index on ω to retrieve the

desired form gives:

ωµn = δnp ω
µ
p

= e−B(r)∂nA(r) eµ (3.49)

as seen in Stelle [16, eq. 2.9].
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To find the final term of the spin connection, we now return to the torsion free condition
in (3.39) and pick E = m:

0 = dem + ω
m
F ∧ e

F

= dem + ωmν ∧ eν + ωmn ∧ en

= d
(
eB(r)dym

)
+ ωmν ∧ eA(r)dxν + ωmn ∧ eB(r)dyn (3.50)

In the same way as above, the middle term of (3.50) is zero independently of the others
due to the orthogonality of the basis vectors. Setting this term to zero gives an equation
for ωmν , but due to the symmetry of ω, this term has already been found in (3.49).

So, removing the middle term from (3.50) and calculating the derivative in the first term
using the same process as in (3.42) gives:

eB(r) ∂nB(r) dyn ∧ dym + ωmn ∧ eB(r)dyn = 0(
ωmn − ∂nB(r) dym

)
∧ eB(r)dyn = 0

ωmn − ∂nB(r) dym = 0 (3.51)

Now, by reinserting the vielbeins and raising the indices, we retrieve the final component
of ω as written in Stelle [16, eq. 2.9].

ωmn = ∂nB(r) dym

= e−B(r) ∂nB(r) em

ωmn = δnp ωmp − δpm ωnp

= e−B(r) ∂nB(r) em − e−B(r) ∂mB(r) en (3.52)

The three independent components of the spin connection can now be collected from
(3.45), (3.49) and (3.52):

ωµν = 0 ωµn = e−B(r) ∂nA(r) eµ

ωmn = e−B(r) ∂nB(r) em − e−B(r) ∂mB(r) en (3.53)

3.5.2. Finding Curvature Components

The components found in §3.5.1 above can now be used to find the components of the
curvature two-form. We use the definition:

REF = dωEF + ωED ∧ ω F
D (3.54)

Inserting the components of the spin connection found in (3.53) in the definition (3.54) is
a long but fairly mechanical calculation, so it is not presented here. From the components
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of the curvature two-form, the components of the Ricci tensor can be found:

Rµν = −ηµνe2(A−B)
(
A′′ + d(A′)2 + d̃A′B′ + d̃+ 1

r
A′
)

Rmn = −δmn

(
B′′ + dA′B′ + d̃(B′)2 + 2d̃+ 1

r
B′ + d

r
A′
)

(3.55)

− ymyn

r2

(
d̃B′′ + dA′′ − 2dA′B′ + d(A′)2 − d̃(B′)2 − d̃

r
B′ − d

r
A′
)

where as before, the primes denote derivatives with respect to r. The new constant
d̃ = D − d− 2 is described in §3.5.3 below.

3.5.3. Elementary and Solitonic Cases

In applying the p-brane ansatz to the field strength F[n], there is a choice in how to
relate the rank n of F[n] to the dimension d of the p-brane’s worldvolume. Following
Stelle [16, §2.2], we can choose to write an elementary case where the gauge potential
A[n−1] supports a d = n− 1 dimensional worldvolume. Written with non-zero values of
the gauge potential lying only on the worldvolume:

Aµ1...µn−1 = εµ1...µn−1e
C(r) (3.56)

where the isotropicity and the required transverse symmetry are automatically supported
as the function C(r) is purely radial.

It is also possible to write a solotonic case where F[n] couples to a d̃ = D − n − 1
dimensional worldvolume:

Fm1...mn = λεm1...mnp
yp

rn+1 (3.57)

where we see that the field strength is only non-zero in the transverse directions, again
guaranteeing the required (Poincaré)d × SO (D − d) symmetry.

3.5.4. The p-Brane Equations

The Ricci tensor found above in §3.5.2, (3.55) can be contracted to the Ricci scalar using
the same method as before in §2.2.3, (2.21). This definition of the curvature scalar can
be inserted into the equations of motion from (3.34) to give:

A′′ + d(A′)2 + d̃A′B′ + d̃+ 1
r

A′ = d̃

2(D − 2)S
2 (3.58)

B′′ + dA′B′ + d̃(B′)2 + 2d̃+ 1
r

B′ + d

r
A′ = − d

2(D − 2)S
2 (3.59)

d̃B′′ + dA′′ − 2dA′B′ + d(A′)2 − d̃(B′)2 − d̃

r
B′ − d

r
A′ + 1

2(φ′)2 = 1
2S

2 (3.60)

φ′′ + dA′φ′ + d̃B′φ′ + d̃+ 1
r

φ′ = −1
2 ςaS

2 (3.61)
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where choosing either the elementary or solitonic cases described in §3.5.3 above gives:

ς =
{

+1 elementary
−1 solitonic

(3.62)

for the constant ς seen in (3.61).

The source term S on the right hand side of these equations also depends on whether
the solitonic or elementary case is being considered.

S =


(
eaφ/2−dA+C

)
C ′ elementary

λ
(
eaφ/2−d̃B

)
r−d̃−1 solitonic

(3.63)

3.6. p-Brane Solutions

The p-brane equations found above in §3.5.4, (3.58)–(3.61) are still completely intractable.
In order to make any progress towards a solution, further simplifying assumptions will
be made.

3.6.1. Linearity Conditions

A linearity condition is chosen to link A′ and B′ such that:

dA′ + d̃B′ = 0 (3.64)

When this is applied to the equations of motion (3.58)–(3.61), (3.58) and (3.59) become
identical. This leaves three independent equations:

∇2φ = −1
2 ςaS

2 (3.65)

∇2A = d̃

2(D − 2)S
2 (3.66)

d(D − 2) (A′)2 + 1
2 d̃(φ′)2 = 1

2 d̃S
2 (3.67)

where the left-hand side of (3.65) and (3.66) has been written using the Laplacian ∇2,
as defined in Box 3.5.

To further simplify (3.67), another linearity condition can be imposed which links A′
and φ′:

φ′ = −ςa(D − 2)
d̃

A′, a2 = ∆− 2dd̃
(D − 2) (3.68)

This is written in terms of the constant a which quantifies the coupling of the scalar
field. In (3.68), a is written in terms of another constant ∆. The equation of motion
(3.67) can now be written:

∆(φ′)2

a2 = S2 (3.69)

This can now be inserted into the other equation for φ, (3.65) to form:

∇2φ+ ς∆
2a (φ′)2 = 0 (3.70)
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It will be useful to define the Laplacian, ∇2φ for isotropic scalar functions φ = φ(r):

∇2φ = φ′′ + (d̃+ 1)r−1φ′

This form of ∇2 can be tested by returning to the familiar arena of 3 dimensional,
spherically symmetric systems. A sample function φ = 1/r gives:

φ = 1
r
, φ′ = −1

r2 , φ′′ = 2
r3

so, for a point particle with d̃ = 1, substituting into the definition given above, we see
that this is the correct form of ∇2:

∇2φ = 2
r3 + 2

r

(−1
r2

)
= 0

Box 3.5: The Laplacian

The harmonic functions are the set of functions H that are solutions to Laplace’s
equation:

∇2ϕ = 0

where ϕ is any function. In our system, where we have specified spherical symmetry, the
form of the Harmonic functions are know:

H = 1 + k

rd

where r is the radial coordinate, k is a (positive) constant and d counts the dimension of
the spherical system.

Box 3.6: Harmonic Functions

3.6.2. Harmonic Functions

The equation of motion found above in §3.6.1, (3.70) can be rewritten in the form of a
Laplace equation:

∇2
(
e

ς∆
2a
φ
)

= 0 (3.71)

The solution to Laplace’s equation in this form in a Harmonic function. Harmonic
functions are very briefly introduced in Box 3.6 above. As we are working in a system
with spherical symmetry (as determined by the p-brane ansatz in §3.5 above), the
solution can be written:

e
ς∆
2a
φ = H = 1 + k

rd̃
(3.72)

so the ansatz (3.36) can be written:

ds2 = H
−4d̃

∆(D−2) dxµdxνηµν +H
4d

∆(D−2) dymdynδmn (3.73)

In the electric case, the function eC(r) also needs to be determined using a relationship
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derived from (3.69) and (3.63):

∂

∂r
eC(r) = −

√
∆

a
e

−1
2 aφ+dA(r)φ′ (3.74)

which gives:
eC(r) = 2√

∆
H−1 (3.75)

3.6.3. Eleven Dimensional Supergravity

The solutions found above in §3.6.2 can now be applied to the supergravity system in
§3.2, (3.1). This specifies the number of spacetime dimensions: D = 11 and also the
dimensionality of the field strength: n = 4. Writing the field strength as a four-form
gives d = n− 1 = 3 and d̃ = D − n− 1 = 6.

Also, as there is no scalar field in (3.1), the scalar φ can be safely truncated by setting
a = 0. Therefore, (3.68) can be used to find ∆:

∆ = a2 + 2dd̃
(D − 2) = 0 + 2× 3× 6

11− 2 = 4 (3.76)

These constants can now be inserted into (3.72) and (3.73) to find the form of the
functions A(r), B(r) and C(r):

eA(r) =
(

1 + k

r6

)− 1
3

eB(r) =
(

1 + k

r6

) 1
6

= e−
1
2A(r)

eC(r) =
(

1 + k

r6

)−1
= e3A(r) (3.77)

allowing the line element (3.36) and gauge potential to be written:

ds2 =
(

1 + k

r6

)− 2
3

dxµdxνηµν +
(

1 + k

r6

) 1
3

dymdynδmn

Aµνλ = εµνλ

(
1 + k

r6

)−1
(3.78)
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4. Sample Problem: The Orbiting Braneprobe

4.1. Introduction

The supergravity theory explored in §3 will now be applied to a sample problem. We
shall look at a situation with one heavy brane forming a background in which a light
test brane orbits. It will be assumed that the test brane or braneprobe is light enough
that it does not perturb the heavy background brane at all. A classical analogy for this
situation might be an electron orbiting a black hole.

In §4.2, we shall start by looking at the Nambu-Goto action, which is the action of a
test brane in a gravitational background. Then, in §4.3, another term will be added to
investigate electrical interaction between the test brane and the background, forming
the braneprobe action.

In §4.4, the Lagrangian formalism will be used to find equations governing the orbit of
the test brane. Finally, in §4.5, the properties of the braneprobe’s orbit will be revealed.

4.2. The Nambu-Goto Action

In the more familiar territory of point particles in general relativity, equations of motion
are found by minimising the length of a particle’s worldline. The generalisation of this
principle to higher dimensional structures such as p-branes gives the Nambu-Goto action:

ING =
∫

dp+1ξ
√
−γ (4.1)

Several new terms have been introduced. The integral is over coordinates ξi, which are
the coordinates on the brane. The coordinates ξ are embedded in the background such
that ξi = ξi(x) or similarly xµ = xµ(ξ). There is also a new metric γij (written in (4.1)
without indices to denote the determinant), which is the induced metric on the brane’s
worldvolume. γij is related to the spacetime metric gµν as:

γij(ξ) = ∂xµ

∂ξi
∂xν

∂ξj
gµν(x) (4.2)

The conventions followed in this section for naming coordinates and indices are outlined
in Box 4.1. The variables introduced in §3 will continue to be used here, so p counts the
dimensionality of the brane and d = p+ 1 is the dimension of the brane’s worldvolume.

In this section, we shall have two sets of coodinates:

xµ for the background spacetime
ξi for coordinates on the brane

The spacetime coordinates xµ will be written with Greek indices and the brane coordinates
ξ will be written with Latin indices.

Box 4.1: Naming Coordinates



4.2.1. Variation of the Action

The action (4.1) can be varied to find the equations of motion:

δ (ING) =
∫

ddξ δ
(√
−γ
)

=
∫

ddξ −1
2
√
−γ

δ (γ)

=
∫

ddξ 1
2
√
−γγijδ (γij) (4.3)

where the definitions in Box 2.8 have been used to vary the determinant of the metric.
Proceeding by varying the definition of γij given in (4.2):

δ (γij) = δ (∂ixµ ∂jxν gµν)
= ∂iδ (xµ) ∂jxν gµν + ∂ix

µ ∂jδ (xν) gµν + ∂ix
µ ∂jx

ν δ (gµν)

= 2∂iδ (xµ) ∂jxν gµν + ∂ix
µ ∂jx

ν δ
(
xλ
)
∂λgµν

γijδ (γij) = 2γij∂iδ (xµ) ∂jxν gµν + γij∂ix
λ ∂jx

ν δ (xµ) ∂µgλν (4.4)

Inserting this under the integral in (4.3) gives:

δ (ING) =
∫

ddξ 1
2
√
−γγijδ (γij)

=
∫

ddξ
[√
−γγij∂iδ (xµ) ∂jxν gµν + 1

2
√
−γγij∂ixλ ∂jxν δ (xµ) ∂µgλν

]
=
∫

ddξ
[
−∂i

(√
−γγij∂jxν gµν

)
+ 1

2
√
−γγij∂ixλ ∂jxν ∂µgλν

]
δ (xµ) (4.5)

where a partial integration has been applied to the first term as explained previously in
Box 3.3. Setting δ (ING) to zero retrieves the equation of motion:

0 = ∂i
(√
−γγij∂jxν gµν

)
− 1

2
√
−γγij∂ixλ ∂jxν ∂µgλν

= ∂i
(√
−γγij ∂jxµ

)
gµν +

√
−γγij ∂jxν ∂ixλ ∂λgµν −

1
2
√
−γγij ∂ixλ ∂µgλν ∂jxν

= ∂i
(
2
√
−γγij ∂jxµ

)
gµν +

√
−γγij ∂ixλ ∂jxν (2∂λgµν − ∂µgλν)

= ∂i
(
2
√
−γγij ∂jxµ

)
gµνg

µα +
√
−γγij ∂ixλ ∂jxν gµα (∂λgµν + ∂νgµλ − ∂µgλν) (4.6)

A Christoffel symbol (defined in Box 4.2) can be identified in the second term and the
first term can be rewritten using a covariant derivative ∇i:

∂i
(√
−γγij∂jxα

)
=
√
−γγij∇i∂jxα (4.7)

The covariant derivative is defined in Box 4.3 and the validity of the equality (4.7) is
shown more thoroughly in Appendix A.2.

Now the equation of motion can be written:

0 =
√
−γγij ∇i∂jxα +

√
−γγij Γαλν ∂ixλ ∂jxν

0 = ∇i∂jxα + Γαλν ∂ixλ ∂jxν (4.8)
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Christoffel symbols or connection coefficients are used to define the covariant derivative
(see Box 4.3 below). It quantifies the effects of a curved space by relating vectors in the
tangent spaces of nearby points.

The Christoffel Symbol is usually defined [15] in terms of a metric gµν as:

Γλµν = 1
2g

λσ (∂µgνσ + ∂νgσµ − ∂σgµν)

It is important to note that it is not a tensor. Despite being written using tensor notation,
it does not behave as a tensor under general coodinate transforms. To reflect its status
as a symbol rather than a proper tensor, it is often seen written as:

Γλµν =
{
λ
µν

}

Box 4.2: Christoffel Symbols

The covariant derivative differentiates tensors, taking into account the curvature and the
dynamics of the basis vectors on which the tensor is defined. The covariant derivative of
a contravariant tensor is defined as [15]:

∇iV j = ∂iV
j + Γjik V

k

where the second term includes a Christoffel symbol Γ as defined in Box 4.2. The
covariant derivative is sometimes referred to as a semicolon derivative and written:

V j
;i = V j

,i + Γjik V
k

where the partial derivative in the first term has been written with a comma. Whilst
this notion does save a little space, in this report we shall prefer to write the derivatives
with ∇ and ∂.

Box 4.3: The Covariant Derivative

4.2.2. Equations of Motion

As the equation of motion (4.8) found in §4.2.1 above describes the motion of a brane in
a purely gravitational background, it could be seen as a generalisation of the geodesic
equation for point particles. The geodesic equation can be written [17]:

d2xλ

dt2 + Γλµν
dxµ

dt
dxν

dt = 0 (4.9)

where in the second term the Christoffel Symbol defined in Box 4.2 is used.

It can be seen that in the limit of a brane having zero size and becoming a point particle,
the covariant derivative in (4.8) tends to a simple partial derivative and the coordinates
ξ all disappear apart from the time, ξ0 = t. Therefore, in this limit, (4.8) and (4.9) are
indeed equivalent.
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4.3. The Braneprobe Action

A term can be added to the Nambu-Goto action given in §4.2 to allow the coupling of
the brane to the electromagnetic field. This term is written:

IQ = Q

(p+ 1)!

∫ (
∂i1x

µ1 . . . ∂ip+1x
µp+1

)
Aµ1...µp+1 dξµ1 ∧ . . . ∧ dξµp+1 (4.10)

where Q gives the charge on the brane and A[d] is the usual d-form gauge potential
(where d = p+ 1).

By writing this coupling term and requiring A[d] to support the whole of the brane’s d
dimensional worldvolume, we have chosen to use the elementary case from §3.5.3.

This coupling term (4.10) is added to the term in the Nambu-Goto action (4.1) to give
the braneprobe action:

IB = ING + IQ

= T

∫
ddξ
√
−γ + Q

d!

∫
(∂i1xµ1 . . . ∂idx

µd) Aµ1...µd
dξµ1 ∧ . . . ∧ dξµd (4.11)

as seen in Stelle [16, eq. 7.11]. The constant T is added to the Nambu-Goto action as a
generalised unit tension with units [energy]/[length]p.

This constant would be a fundamental parameter of the theory governing the amplitude
and frequency of the vibrations on the brane. However, in this project, we are assuming
that the branes are not vibrating so the constant T will be largely ignored.

In Stelle [16, eq. 7.11], there is another term in the braneprobe action of the form:

e
1
2 ςa·φ (4.12)

which describes the coupling of the electromagnetic field to the scalar (or dilaton) field.
For the purposes of this report we will simply ignore this term.

4.3.1. Variation of the Action

The action (4.11) can now be varied to find the equations of motion. The gravitational
term from the Nambu-Goto action and the coupling term can be dealt with separately:

δ (IB) = δ (ING) + δ (IQ) (4.13)

allowing the result for the first term to be taken directly from the result of the variation
of the Nambu-Goto action in §4.2.1, (4.8):

δ (ING) = −T
∫

ddξ
√
−γγijgµα

(
∇i∂jxα + Γαλν ∂ixλ ∂jxν

)
δ (xµ) (4.14)

The coupling term is fairly simple to vary, but it is important to note that the gauge
potential A[d] = A[d](x) and so also needs to be included in the variation. Usually, the
ξ terms would also have to be included, as ξ = ξ(x), but as we are assuming that the
brane is flat (see §3.5) these terms can be safely ignored.
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Removing the ξ terms but taking care to remain faithful to the antisymmetric wedge
product allows the coupling term (4.10) to be rewritten as:

δ (IQ) = Q

d!

∫
ddξ εi1...id δ (∂i1xµ1 . . . ∂idx

µd Aµ1...µd
) (4.15)

Applying the variational derivative using the product rule to the d-fold product of xµ
gives d terms and one extra term is picked up from the variation of A[d](x):

δ (IQ) = Q

d!

∫
ddξ εi1...id

[
∂i1x

µ1 . . . ∂idx
µd δ (Aµ1...µd

)

− ∂i1xµ1 . . . ∂idx
µd
(
∂µ1Aσµ2...µd

+ ∂µ2Aµ1σµ3...µd
+ · · ·+ ∂µd

Aµ1...µd−1σ
)
δ (xσ)

]
= Q

d!

∫
ddξ εi1...id ∂i1xµ1 . . . ∂idx

µd ∂[σAµ1...µd] δ (xσ)

= Q

d!

∫
ddξ εi1...id ∂i1xµ1 . . . ∂idx

µd Fσµ1...µd
δ (xσ) (4.16)

where the d-fold sum of all the differentials of A[d] in the first line are written simply into
the antisymmetrising bracket on the indices in the second line. Finally, this antisymmetric
derivative of the gauge potential is rewritten simply as the field strength F .

The contributions from the two terms δ (ING) and δ (IQ) can be combined to give the
equations of motion in §4.3.2.

4.3.2. Equations of Motion

The variation performed in §4.2.1 and §4.3.1 allows the equations of motion for the
braneprobe to be written:

T
√
−γγij

[
∇i∂jxα + Γαµν ∂ixµ ∂jxν

]
= Q

d!ε
i1...id ∂i1x

µ1 . . . ∂idx
µd F σµ1...µd

(4.17)

In §4.2.2, the left-hand side of this equation was compared to the geodesic equation for a
point particle (4.9). The right-hand side can be compared to the case of a point particle
in a simple magnetic field:

f = qẋ×B (4.18)

where the force f is equal to the charge times the cross product of the particle’s velocity
ẋ with the magnetic force B. In the equation of motion (4.17) we see the generalised
charge Q multiplying a antisymmetrised product of the coordinate differentials ∂ixµ
with the field strength F .

Solving these equations of motion directly is possible, but is not straightforward. There-
fore, in §4.4 below, the Lagrangian formulation is used to investigate the properties of
the braneprobe’s orbit. A valuable extension to this project would be to confirm these
results by direct solutions of the equations of motion.
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4.4. The Lagrangian Approach

We shall use the Lagrangian formulation to find the conjugate momenta via the relation:

pq = ∂L
∂q̇

(4.19)

The Lagrangian for our braneprobe action can be read directly from (4.11):

L = T
√
−γ + Q

d! ε
i1...id ∂i1x

µ1 . . . ∂idx
µd Aµ1...µd

(4.20)

To simplify the situation in our sample problem, it will be assumed that the test brane
is uncharged. Thus Q = 0, reducing the Lagrangian to:

L = T
√
−γ (4.21)

Choosing this uncharged case simplifies the calculations substantially. In future work,
the charged case should also be analysed.

As seen in (4.19), in order to find the conjugate momenta, we need to take the differential
of the Lagrangian L:

∂L = T ∂
(√
−γ
)

= T
−1

2
√
−γ

∂(γ)

= 1
2T
√
−γγij ∂(γij) (4.22)

where as before, the definitions in Box 2.8 have been used to vary the determinant of
the metric. To proceed with this expression, some further simplifications are required in
the form of gauge and coordinate choices. This will give an expression for γij which can
then be inserted into (4.22).

4.4.1. Gauge and Coordinate Choices

As in §3.5, the coordinate range will be split into the directions on the brane’s worldvolume
and directions transverse to the worldvolume:

xµ = (xµ, ym) (4.23)

where the underlined Greek and Latin coordinates have ranges:

µ, ν, . . . = 0 . . . p
m, n, . . . = d . . . (D − 1)

A gauge choice will be made such that the spatial parts of the two sets of coordinates
xµ and ξi are equal:

xµ = ξi for µ, ξ = 1, . . . , p (4.24)
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The time components x0 and ξ0 will not be set equal, and we shall label them explicitly
as t and τ . t is the proper time, and τ is the time kept by the emperor’s heartbeat as he
rides around on his brane.

x0 = t

ξ0 = τ (4.25)

To simplify the situation, it will be assumed that the braneprobe’s orbit is in a single
plane. Then, by choosing to work in polar coordinates, all of the transverse coordinates
can be set to zero except two which shall be called r and θ:

yd = r

yd+1 = θ

ym̃ = 0, m̃ = (d+ 2), . . . , D − 1 (4.26)

As before in §3.5, (3.36), the spacetime metric gµν will be split and is defined by the
line element:

ds2 = e2A(r)dxµdxνηµν + e2B(r)dymdynδmn

= e2A(r)dxµdxνηµν + e2B(r)
(
dr2 + r2dθ2

)
(4.27)

where the functions A(r) and B(r) are as defined in §3.5. This definition of the spacetime
metric can now be used to find the components of the induced metric.

4.4.2. Components of the Induced Metric γij

With the definition of the spacetime metric above in (4.27), the relationship between
the spacetime metric and the induced metric given in (4.2) can be used:

γij = ∂ix
µ ∂jx

ν gµν

= e2A(r) ∂ix
µ ∂jx

ν ηµν + e2B(r)
(
∂ir ∂jr + r2 ∂iθ ∂jθ

)
(4.28)

where as before, ∂i is written as shorthand for ∂/∂ξi.

As noted above in (4.25), the time components x0 and ξ0 are treated differently to the
spatial components. To separate these, we introduce some new indices µ̃ that range only
over the spatial part of the worldvolume:{

0, µ̃
}

= µ ⇒ µ̃ = 1, . . . , p (4.29)

With these new indices, the sums on µ and ν in (4.28) can be written as:

γij = −e2A(r) ∂it ∂jt+ e2A(r) ∂ix
µ̃ ∂jx

ν̃ δµ̃ν̃ + e2B(r)
(
∂ir ∂jr + r2 ∂iθ ∂jθ

)
(4.30)

where the components of ηµν have been entered:

η00 = −1 and ηµ̃ν̃ = δµ̃ν̃ (4.31)
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The γ00 component can be written out explicitly:

γ00 = −e2A(r) ṫ2 + e2A(r) ẋµ̃ ẋν̃ δµ̃ν̃ + e2B(r)
(
ṙ2 + r2θ̇2

)
(4.32)

where the dotted terms (e.g. ṫ, ẋ) are derivatives with respect to the proper time τ .

We can now introduce another simplification by setting ẋµ̃ = 0. The physical interpreta-
tion of this is that the test brane is static. It does not vibrate or rotate, but remains
flat and parallel to the heavy background brane. The γ00 component can therefore be
written:

γ00 = −e2A(r) ṫ2 + e2B(r)
(
ṙ2 + r2θ̇2

)
(4.33)

To look at the other components of γij another set of coordinates is introduced. In the
same way as (4.29), coordinates ĩ are defined:{

0, ĩ
}

= i ⇒ ĩ = 1, . . . , p (4.34)

and the corresponding components of γij are written:

γĩj̃ = −e2A(r) ∂ĩt ∂j̃t+ e2A(r) ∂ĩx
µ̃ ∂j̃x

ν̃ δµ̃ν̃ + e2B(r)
(
∂ĩr ∂j̃r + r2 ∂ĩθ ∂j̃θ

)
= 0 + e2A(r) ∂ξ

k̃

∂ξ ĩ
∂ξ l̃

∂ξj̃
δk̃l̃ + 0

= e2A(r) δk̃
ĩ
δ l̃
j̃
δk̃l̃

= e2A(r) δĩj̃ (4.35)

where all the differentials ∂ĩt, ∂ĩr and ∂ĩθ are zero due to the independence of the
directions on and transverse to the worldvolume. Also the gauge choice (4.24) has been
used to relate the coordinates x and ξ.

The induced metric γij can mow be written:

γij = e2A(r) diag
(

γ00
e2A(r) , 1, 1, . . . , 1

)
(4.36)

with the component γ00 given in (4.33) above. The determinant γ of the induced metric
can be seen from (4.36):

γ = γ00 e
2pA(r) (4.37)

and differential of γij will also be useful:

∂γij = ∂

(
e2A(r) diag

(
γ00
e2A(r) , 1, 1, . . . , 1

))
= ∂(γ00) (4.38)

where all the e2A(r) are constant, so they do not contribute.

These relations found in (4.36), (4.37) and (4.38) can now be used to find expressions
for the momenta, see §4.4.3 below.
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4.4.3. Conjugate Momenta

As the motion of the test brane has been compressed into a single plane, we are left
with just three components of the relativistic momentum vector: the linear and angular
momenta and the energy. To find these, the components of γij specified above in §4.4.2
are inserted into the differential of the Lagrangian (4.22):

∂L = 1
2T
√
−γγij ∂(γij)

= 1
2T
√
−γγ00 ∂(γ00)

= T
e2pA(r)

2
√
−γ

∂
(
−e2A(r) ṫ2 + e2B(r)

(
ṙ2 + r2θ̇2

))
(4.39)

where the γ00 given in (4.33) has also been used.

The angular momentum pθ is found as:

pθ = ∂L
∂θ̇

= T
e2pA(r)

2
√
−γ

2e2B(r)r2θ̇

= T
e2(pA(r)+B(r))
√
−γ

r2θ̇ (4.40)

which is similar to the form of the classical expression for angular momentum: L = mr2θ̇.
Also, as θ̇ rather than θ appears in the Lagrangian, it follows that the angular momentum
is a conserved quantity.

The linear momentum pr is found similarly as:

pr = ∂L
∂ṙ

= T
e2pA(r)

2
√
−γ

2e2B(r)ṙ

= T
e2(pA(r)+B(r))
√
−γ

ṙ (4.41)

which is similar to the form of the classical expression: p = mṙ.

The energy E is given by:

E = −pt = −∂L
∂ṫ

= −T e
2pA(r)

2
√
−γ

(
−2e2A(r)ṫ

)
= T

e2(p+1)A(r)
√
−γ

ṫ (4.42)

There is no classical analogy that can be drawn in this case, but as the Lagrangian is
independent of ṫ, it follows that energy is also a conserved quantity of the system.
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4.5. Braneprobe Orbits

4.5.1. The Mass-Shell Condition

To proceed and find an equation of radial motion for the braneprobe, we shall use the
Mass-Shell condition:

µ2 = papbg
ab (4.43)

where the indices a, b now sum over the different momentum components, which in this
case is t, r and θ. The form of the line element in (4.27) allows the spacetime metric gab
to be written:

gab = diag
(
−e2A(r), e2B(r), r2e2B(r)

)
(4.44)

Inserting the components of momentum found in (4.40), (4.41) and (4.42) above gives
an expression for the rest mass µ:

µ2 = −e−2A(r)p2
t + e−2B(r)

(
p2
r + r−2p2

θ

)
=
(

T√
−γ

)2 (
− e−2A(r)e4(p+1)A(r)ṫ2 + e−2B(r)e4(pA(r)+B(r))

(
ṙ2 + r2θ̇2

))
= e4pA(r)

(
T√
−γ

)2 (
− e2A(r)ṫ2 + e2B(r)

(
ṙ2 + r2θ̇2

))
= γ00

(
e2pA(r) T√

−γ

)2

= e4pA(r) T
2

−γ
γ

e2pA(r)

= −e2pA(r)T 2 (4.45)

where the γ00 component was recognised from (4.32), in the last step, the definition
(4.37) of the determinant γ was used.

This definition (4.45) of the of the rest mass can be insrted back into the mass-shell
condition with the constants of motion L = pθ and E = pt to give:

0 = µ2 + e−2A(r)p2
t − e−2B(r)

(
p2
r + r−2p2

θ

)
= −e2pA(r)T 2 + e−2A(r)E2 − e−2B(r)

(
T 2 e

4(pA(r)+B(r))

−γ
ṙ2 + L2

r2

)

= −e2pA(r)T 2 + e−2A(r)E2 − T 2 e
2(pA(r)+B(r))

−γ00
ṙ2 − e−2B(r)L

2

r2 (4.46)

This links r and ṙ, forming an equation of radial motion. To make any further progress,
a specific case from §3.5 will have to be chosen. This will give a value for the constant
p and expressions for the functions A(r) and B(r) which can be inserted to allow the
properties of the motion to be studied.
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4.5.2. An Electric Two-Brane

We shall choose to look at the specific case of a two-brane with electric type charge.
This gives the value p = 2 and expressions for A(r) and B(r) can be taken from §3.6.3:

eA(r) =
(

1 + k

r6

)− 1
3
, A(r) = −2B(r) (4.47)

To find a specific expression for γ00, these definitions (4.47) are inserted into (4.33).
Also, the ṫ and θ̇ in (4.33) are rewritten in terms of the constants E and L using the
expressions (4.42) and (4.40). This gives:

γ00 = e−6A(r)E
2

T 2 γ00 + e−A(r)
(
ṙ2 − r2 L2

T 2r4γ00e
−2A(r)

)

= e−A(r)ṙ2
(

1 + e−3A(r) L2

T 2r2 − e
−6A(r) E

2

T 2

)−1

(4.48)

This γ00 term can then be inserted into (4.46) to give:

ṙ4 =
(
e2A(r) − e−4A(r)E

2

T 2 + e−A(r) 1
r2

L2

T 2

)(
1− e−6A(r)E

2

T 2 + e−3A(r) 1
r2

L2

T 2

)

ṙ2 = eA(r)
(
e−6A(r)E

2

T 2 − 1− e−3A(r) 1
r2

L2

T 2

)
(4.49)

In taking the square root to retrieve ṙ2 from ṙ4, the positive roots have been chosen to
be physically meaningful. This is explained further below.

To find the properties of the orbit (following Misner, Thorne & Wheeler [17]), we look
at the behaviour of ṙ2 at large r. The function eA(r) tends simply to 1:

lim
r→∞

[(
1 + k

r6

)− 1
3
]

= 1 (4.50)

which then can be used to find:

lim
r→∞

ṙ2 = E2

T 2 − 1 (4.51)

Therefore, for
(
E2/T 2) > 1 we have open or unbound orbits and for

(
E2/T 2) < 1 we

have closed or bound orbits.

Choosing negative roots in (4.49) above would have produced an unphysical result: a
test brane with large energy would be captured but one with small energy would escape.
By choosing the positive sign in (4.49), we have a result that satisfies physical intuition:
a test brane with large energy is not captured, but one with small energy forms bound
orbits.
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5. Conclusions

In §2, Kaluza-Klein theory is investigated. The success of the theory is seen in §2.2
as electromagnetism is found as a consequence of pure gravity in higher dimensions.
However, in §2.3, the theory’s failings are also seen. An extra scalar term is found which
conflicts with experiment.

Some of the mathematics and ideas of Kaluza-Klein theory are used in §3 to outline the
basics of supergravity. A toy system is constructed as a truncation of the full action
integral in §3.4, and this integral is varied to find equations of motion. Simplifications
are introduced in §3.5 to allow these equations to be solved in certain specific cases.

In §4, the sample problem of the braneprobe is introduced. In §4.2 and §4.3 various action
integrals are considered that describe the motion of a test brane in gravitational and
electromagnetic backgrounds. For simplicity, we choose to only look at motion confined
to a single plane. After choosing an appropriate gauge and system of coordinates, these
action integrals are then varied to find equations of motion. These equations could be
solved directly to retrieve equations governing the orbit of the test brane.

However, in §4.4, the Lagrangian formalism is used instead to find the energy and
angular momentum of as uncharged test brane. These constants are then inserted
into the mass-shell condition to find an equation describing the radial motion of the
brane. A possible extension to this project would be to use the equations of motion to
independently derive this equation of radial motion and check that it is consistent. A
further check for consistency would be to take time derivatives of the energy and angular
momentum and confirm that they are indeed constant.

In §4.5 the equation of radial motion is further investigated and limits are taken to
determine the nature of the test brane’s orbit. It was found that the test brane can
form both open and closed orbits depending on the amount of energy it is carrying. The
threshold energy is found to be E2/T 2 = 1.

The only feature of the test brane’s orbit that was properly investigated was whether
it was open or closed. A more thorough investigation should also look at the effects of
angular momentum on the shape of the orbit, perhaps hoping to find a relationship with
the eccentricity of the orbit. In this way, one could check whether supergravity reduces
to an appropriate Newtonian limit.

In this report, only uncharged test branes are considered. A simple extension would
be to also investigate the charged case and see how different amounts of charge affect
the motion. It would also be instructive to generalise the results to branes of different
dimensionality.
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Appendices
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A. Extended Calculations

A.1. Rewriting the Supergravity Action

In §3.3.1, when rewriting the supergravity action (3.1) in form language, it is necessary
to show the equivalence of:

−
√
−g 1

48

∫
d11xFµ1...µ4F

µ1...µ4 = −1
2

∫
F[n] ∧ ?F[n] (A.1)

Starting with the definition of a form:

T[n] = 1
n!Tµ1µ2...µndxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn (A.2)

the product F[n] ∧ ?F[n] can be written as:

F[n] ∧ ?F[n] = 1
4!Fµ1...µ4dxµ1 ∧ . . . ∧ dxµ4

(
?
[ 1

4!Fµ1...µ4dxµ1 ∧ . . . ∧ dxµ4

])
= 1

4! 4! 7!Fµ1...µ4F
ν1...ν4εν1...ν4µ5µ11dxµ1 ∧ . . . ∧ dxµ4 ∧ dxν5 ∧ . . . ∧ dxν11

= H[11] (A.3)

where the definition of the Hodge dual given in Box 3.2 has been used and H[11] is an
arbitrary 11 form:

H[11] = 1
11!Hµ1...µ11dxµ1 ∧ . . . ∧ dxµ11 (A.4)

The components Hµ1...µ11 can be written as:

Hµ1...µ11 = 11!
4! 4! 7!Fµ1...µ4F

ν1...ν4εν1...ν4µ5µ11 (A.5)

so:

F[n] ∧ ?F[n] =
∫
H[11]

= 1
11!

∫
d11x εµ1...µ11Hµ1...µ11

= 11!
4! 4! 11! 7!

∫
d11x

(
−
√
−g
)
εµ1...µ11Fµ1...µ4F

ν1...ν4εν1...ν4µ5µ11

=
√
−g

4! 4! 7!

∫
d11x 4! 7! δµ1

ν1 δ
µ3
ν3 δ

µ3
ν3 δ

µ4
ν4 Fµ1...µ4F

ν1...ν4

=
√
−g
4!

∫
d11x δµ1

ν1 δ
µ3
ν3 δ

µ3
ν3 δ

µ4
ν4 Fµ1...µ4F

ν1...ν4

=
√
−g
24

∫
d11xFµ1...µ4F

µ1...µ4

1
2F[n] ∧ ?F[n] =

√
−g
48

∫
d11xFµ1...µ4F

µ1...µ4 � (A.6)
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A.2. The Covariant Derivative on an Induced Metric

In §4.2.1, (4.7), the covariant derivative on an induced metric is used to simplify the
equation of motion:

∂i
(√
−γγij∂jxα

)
=
√
−γγij∇i∂jxα (A.7)

To show this equality, we start from the definition of a covariant derivative acting on a
contravariant tensor as given in Box 4.3.

∇iζj = ∂iζ
j + Γjik ζ

k (A.8)

here, it is important to note that Γjik is the Christoffel connection of the induced metric
γij rather than the spacetime metric gµν . In this calculation, we use the same index
conventions as in §4, described in Box 4.1.

Inserting the vector
(√
−γγij∂jxα

)
as ζi in the definition (A.8) gives:

∇a
(√
−γγbj∂jxα

)
= ∂a

(√
−γγbj∂jxα

)
+ Γbac

√
−γγcj∂jxα (A.9)

and expanding the covariant derivative on the left-hand side using the product rule:

∇a
(√
−γγbj∂jxα

)
=
(
∇a
√
−γ
)
γbj∂jx

α +
√
−γ

(
∇aγbj

)
∂jx

α +
√
−γγbj (∇a∂jxα)

=
(
∂a
√
−γ
)
γbj∂jx

α +
√
−γγbj (∇a∂jxα)

= Γiia
√
−γγbj∂jxα +

√
−γγbj (∇a∂jxα) (A.10)

where one of the defining identities of the Christoffel symbol has been used:

Γiij = 1√
−γ

∂j
√
−γ (A.11)

Now inserting (A.10) back into (A.9) and setting the indices a, b→ i gives:

∂i
(√
−γγij∂jxα

)
=
√
−γγij ∇i∂jxα (A.12)

as required.
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B. Cadabra

B.1. Introducing Cadabra

Cadabra is a software package for computer algebra written by Kasper Peeters [19, 20].
Cadabra is specifically designed for use in field theory problems and tensor calculus. In
this document, we will show cadabra’s input and output as follows:

Input to Cadabra

Output from Cadabra.

In §B.2, Cadabra is used to dimensionally reduce the Ricci Scalar using the process:

ĝµν → Γλµν → R̂

Cadabra was also used to check many of the other calculations included in this report.



B.2. Dimensional Reduction in Kaluza-Klein Gravity

B.2.1. Initialisation

We start by defining two sets of indices: Greek for the full worldvolume and Latin for
the flat subspace.

{\mu,\nu,\rho,\sigma,\kappa,\lambda,\eta,\chi#}::Indices(full, position=independent).
{m,n,p,q,r,s,t,u,v,m#}::Indices(subspace, position=independent, parent=full).

Assigning list property Indices to {µ, ν, ρ, σ, κ, λ, η, χ#}.
Assigning list property Indices to {m, n, p, q, r, s, t, u, v, m#}.

We also define some other useful objects: a derivative (∂), metrics g for the (D + 1)
worldvolume and h for the flat space and a Kronecker Delta (δ). Also, we define the
field strength F to be anti symmetric.

\partial{#}::PartialDerivative.
{g_{\mu \nu}, h_{m n}}::Metric.
{g^{\mu \nu}, h^{m n}}::InverseMetric.
{g_{\mu? \nu?}, g^{\mu? \nu?}, h_{m n}, h^{m n}}::Symmetric.
{\delta^{\mu?}_{\nu?}, \delta_{\mu?}^{\nu?}}::KroneckerDelta.
F_{m n}::AntiSymmetric.

Assigning property PartialDerivative to ∂# .
Assigning property Metric to gµν , hmn.
Assigning property InverseMetric to gµν , hmn.
Assigning property Symmetric to gµ?ν?, gµ?ν?, hmn, hmn.
Assigning property KroneckerDelta to δµ?

ν?, δµ?
ν?.

Assigning property AntiSymmetric to Fmn.

B.2.2. Expanding the Riemann Tensor

We will proceed by expanding the Riemann tensor in terms of the metric. We will
convert Riemann tensor to Christoffel symbols with:

Rλµνκ = −∂κΓλµν + ∂νΓλµκ+ ΓλανΓαµκ − ΓλακΓαµν

and convert the Christoffel symbols to metrics with:

Γλµν = (1/2) ∗ gλκ(∂νgκµ + ∂µgκν − ∂κgµν)
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RtoG:= R^{\lambda?}_{\mu?\nu?\kappa?} ->
- \partial_{\kappa?}{ \Gamma^{\lambda?}_{\mu?\nu?} }
+ \partial_{\nu?}{ \Gamma^{\lambda?}_{\mu?\kappa?} }
- \Gamma^{\eta}_{\mu?\nu?} \Gamma^{\lambda?}_{\kappa?\eta}
+ \Gamma^{\eta}_{\mu?\kappa?} \Gamma^{\lambda?}_{\nu?\eta};

RtoG := Rλ?
µ?ν?κ? → (−∂κ?Γλ?

µ?ν? + ∂ν?Γλ?
µ?κ? − Γη µ?ν?Γλ?

κ?η + Γη µ?κ?Γλ?
ν?η);

Gtog:= \Gamma^{\lambda?}_{\mu?\nu?} ->
(1/2) * g^{\lambda?\kappa} (

\partial_{\nu?}{ g_{\kappa\mu?} }
+ \partial_{\mu?}{ g_{\kappa\nu?} }
- \partial_{\kappa}{ g_{\mu?\nu?} } );

Gtog := Γλ?
µ?ν? →

1
2 g

λ?κ(∂ν?gκµ? + ∂µ?gκν? − ∂κgµ?ν? );

Now select the Rm4n4 component and do the substitution R→ Γ and Γ→ g. After each
substitution, will expand brackets and apply the product rule:

Rm4n4 := g_{m1 m} R^{m1}_{4 n 4} + g_{4 m} R^{4}_{4 n 4};
@substitute!(%)( @(RtoG) ):
@substitute!(%)( @(Gtog) ):
@distribute!(%): @prodrule!(%):
@distribute!(%): @prodsort!(%);

Rm4n4 := gm1mR
m1

4n4 + g4mR
4

4n4;

Rm4n4 := −1
2 ∂4g

m1κ ∂ngκ4 gm1m −
1
2 ∂4ngκ4 gm1mg

m1κ − 1
2 ∂4gκn ∂4g

m1κ gm1m

− 1
2 ∂44gκn gm1mg

m1κ + 1
2 ∂4g

m1κ ∂κg4n gm1m + 1
2 ∂4κg4n gm1mg

m1κ

+ 1
2 ∂4gκ4 ∂ng

m1κ gm1m + 1
2 ∂n4gκ4 gm1mg

m1κ + 1
2 ∂4gκ4 ∂ng

m1κ gm1m

+ 1
2 ∂n4gκ4 gm1mg

m1κ − 1
2 ∂κg44 ∂ng

m1κ gm1m −
1
2 ∂nκg44 gm1mg

m1κ

− 1
4 ∂ηgµ4 ∂ngκ4 g

ηκgm1mg
m1µ − 1

4 ∂4gµη ∂ngκ4 g
ηκgm1mg

m1µ

+ 1
4 ∂µg4η ∂ngκ4 g

ηκgm1mg
m1µ − 1

4 ∂4gκn ∂ηgµ4 g
ηκgm1mg

m1µ

− 1
4 ∂4gµη ∂4gκn g

ηκgm1mg
m1µ + 1

4 ∂4gκn ∂µg4η g
ηκgm1mg

m1µ

+ 1
4 ∂κg4n ∂ηgµ4 g

ηκgm1mg
m1µ + 1

4 ∂4gµη ∂κg4n g
ηκgm1mg

m1µ

− 1
4 ∂µg4η ∂κg4n g

ηκgm1mg
m1µ + 1

4 ∂4gκ4 ∂ηgµn g
ηκgm1mg

m1µ

+ 1
4 ∂4gκ4 ∂ngµη g

ηκgm1mg
m1µ − 1

4 ∂4gκ4 ∂µgnη g
ηκgm1mg

m1µ

+ 1
4 ∂4gκ4 ∂ηgµn g

ηκgm1mg
m1µ + 1

4 ∂4gκ4 ∂ngµη g
ηκgm1mg

m1µ
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− 1
4 ∂4gκ4 ∂µgnη g

ηκgm1mg
m1µ − 1

4 ∂κg44 ∂ηgµn g
ηκgm1mg

m1µ

− 1
4 ∂κg44 ∂ngµη g

ηκgm1mg
m1µ + 1

4 ∂κg44 ∂µgnη g
ηκgm1mg

m1µ

− 1
2 ∂4g

4κ ∂ngκ4 g4m −
1
2 ∂4ngκ4 g

4κg4m −
1
2 ∂4g

4κ ∂4gκn g4m

− 1
2 ∂44gκn g

4κg4m+ 1
2 ∂4g

4κ ∂κg4n g4m+ 1
2 ∂4κg4n g

4κg4m+ 1
2 ∂4gκ4 ∂ng

4κ g4m

+ 1
2 ∂n4gκ4 g

4κg4m+ 1
2 ∂4gκ4 ∂ng

4κ g4m+ 1
2 ∂n4gκ4 g

4κg4m−
1
2 ∂κg44 ∂ng

4κ g4m

− 1
2 ∂nκg44 g

4κg4m −
1
4 ∂ηgµ4 ∂ngκ4 g

4µg4mg
ηκ − 1

4 ∂4gµη ∂ngκ4 g
4µg4mg

ηκ

+ 1
4 ∂µg4η ∂ngκ4 g

4µg4mg
ηκ − 1

4 ∂4gκn ∂ηgµ4 g
4µg4mg

ηκ

− 1
4 ∂4gµη ∂4gκn g

4µg4mg
ηκ + 1

4 ∂4gκn ∂µg4η g
4µg4mg

ηκ

+ 1
4 ∂κg4n ∂ηgµ4 g

4µg4mg
ηκ + 1

4 ∂4gµη ∂κg4n g
4µg4mg

ηκ

− 1
4 ∂µg4η ∂κg4n g

4µg4mg
ηκ + 1

4 ∂4gκ4 ∂ηgµn g
4µg4mg

ηκ

+ 1
4 ∂4gκ4 ∂ngµη g

4µg4mg
ηκ − 1

4 ∂4gκ4 ∂µgnη g
4µg4mg

ηκ

+ 1
4 ∂4gκ4 ∂ηgµn g

4µg4mg
ηκ + 1

4 ∂4gκ4 ∂ngµη g
4µg4mg

ηκ

− 1
4 ∂4gκ4 ∂µgnη g

4µg4mg
ηκ − 1

4 ∂κg44 ∂ηgµn g
4µg4mg

ηκ

− 1
4 ∂κg44 ∂ngµη g

4µg4mg
ηκ + 1

4 ∂κg44 ∂µgnη g
4µg4mg

ηκ;

At this point, we realise how useful the computer can be in dealing with these long
algebraic expressions. Some of the following equations contain thousands of terms and
would take tens of pages to write out!

We now ask Cadabra to split the µ index into a m part and the remaining 4 direction.
After that, we remove x4 derivatives of the gauge field and write the expression in
canonical form:
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@split_index!!(%){\mu,m1,4}:
@canonicalise!(%):
@substitute!(%)( \partial_{4}{A??} -> 0 ):
@substitute!(%)( \partial_{4 m?}{A??} -> 0 );

Rm4n4 := −1
2 ∂m1g44 ∂ng

m1p gmp −
1
2 ∂nm1g44 gmpg

m1p − 1
4 ∂ng4m1 ∂pg4q g

m1pgmrg
qr

− 1
4 ∂m1g44 ∂ng4p g

m1pgmqg
4q − 1

4 ∂m1g4p ∂ng44 g
4m1gmqg

pq

− 1
4 ∂ng44 ∂m1g44 g

4m1gmpg
4p + 1

4 ∂m1g4p ∂ng4q g
m1rgmrg

pq

+ 1
4 ∂m1g4p ∂ng44 g

4pgmqg
m1q + 1

4 ∂m1g44 ∂ng4p g
4pgmqg

m1q

+ 1
4 ∂ng44 ∂m1g44 g

44gmpg
m1p + 1

4 ∂m1g4n ∂pg4q g
m1pgmrg

qr

+ 1
4 ∂m1g4n ∂pg44 g

m1pgmqg
4q − 1

4 ∂m1g4p ∂qg4n g
m1rgmrg

pq

− 1
4 ∂m1g44 ∂pg4n g

4pgmqg
m1q − 1

4 ∂m1g44 ∂pgnq g
m1pgmrg

qr

− 1
4 ∂m1g44 ∂pg4n g

m1pgmqg
4q − 1

4 ∂m1g44 ∂ngpq g
m1pgmrg

qr

− 1
4 ∂m1g44 ∂ng4p g

m1pgmqg
4q − 1

4 ∂m1g44 ∂ng4p g
4m1gmqg

pq

− 1
4 ∂ng44 ∂m1g44 g

4m1gmpg
4p + 1

4 ∂m1g44 ∂pgnq g
m1qgmrg

pr

+ 1
4 ∂m1g44 ∂pg4n g

4m1gmqg
pq − 1

2 ∂pg44 ∂ng
4p g4m −

1
2 ∂npg44 g

4pg4m

− 1
4 ∂ng4p ∂qg4r g

4rg4mg
pq − 1

4 ∂pg44 ∂ng4q g
44g4mg

pq

− 1
4 ∂pg4q ∂ng44 g

4qg4mg
4p − 1

4 ∂ng44 ∂pg44 g
44g4mg

4p

+ 1
4 ∂pg4q ∂ng4r g

4pg4mg
qr + 1

4 ∂pg4q ∂ng44 g
4pg4mg

4q

+ 1
4 ∂pg44 ∂ng4q g

4pg4mg
4q + 1

4 ∂ng44 ∂pg44 g
4pg4mg

44

+ 1
4 ∂pg4n ∂qg4r g

4rg4mg
pq + 1

4 ∂pg4n ∂qg44 g
44g4mg

pq

− 1
4 ∂pg4q ∂rg4n g

4pg4mg
qr − 1

4 ∂pg44 ∂qg4n g
4pg4mg

4q

− 1
4 ∂pg44 ∂qgnr g

4rg4mg
pq − 1

4 ∂pg44 ∂qg4n g
44g4mg

pq

− 1
4 ∂pg44 ∂ngqr g

4qg4mg
pr − 1

4 ∂pg44 ∂ng4q g
44g4mg

pq

− 1
4 ∂pg44 ∂ng4q g

4qg4mg
4p − 1

4 ∂ng44 ∂pg44 g
44g4mg

4p

+ 1
4 ∂pg44 ∂qgnr g

4qg4mg
pr + 1

4 ∂pg44 ∂qg4n g
4qg4mg

4p;
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B.2.3. Inserting the Metric Ansatz

We can now retrieve our metric ansatz from §2.2:

ĝMN =
(
ĝµν ĝµz
ĝµz ĝzz

)
µ = 0 . . . D, z = (D + 1)

with
ĝµν = e2αφgµν +AµAν , ĝµz = e2βφAµ, ĝzz = e2βφ

g1 := g_{m n} -> e**{2 \alpha \phi} h_{m n} + e**{2 \beta \phi} A_{m} A_{n};
g2 := g^{m n} -> e**{-2 \alpha \phi} h^{m n};
g3 := g_{4 m} -> e**{2 \beta \phi} A_{m};
g4 := g^{4 m} -> - e**{-2 \alpha \phi} h^{m n} A_{n};
g5 := g_{4 4} -> e**{2 \beta \phi};
g6 := g^{4 4} -> e**{-2 \beta \phi} + e**{-2 \alpha \phi} h^{m n} A_{m} A_{n};

g1 := gmn → (e2αφhmn + e2βφAmAn);
g2 := gmn → e(−2)αφhmn;
g3 := g4m → e2βφAm;
g4 := g4m → −e(−2)αφhmnAn;
g5 := g44 → e2βφ;
g6 := g44 → (e(−2)βφ + e(−2)αφhmnAmAn);

The inverse components were found by hand, and are tested by:

test := g_{\mu \nu} g^{\nu \mu};
@split_index!!(%){\mu, m, 4}:
@substitute!(%)( g_{m 4} -> g_{4 m}, g^{m 4} -> g^{4 m} );
@substitute!(%)( @(g1), @(g2), @(g3), @(g4), @(g5), @(g6) );
@distribute!(%); @prodsort!(%);
@collect_factors!(%);
@canonicalise!(%); @collect_terms!(%);

test := gµνg
νµ;

test := gmng
nm + g4mg

4m + g4mg
4m + g44g

44;
test := (e2αφhmn + e2βφAmAn)e(−2)αφhnm − e2βφAme

(−2)αφhmnAn

− e2βφAme
(−2)αφhmnAn + e2βφ(e(−2)βφ + e(−2)αφhmnAmAn);

test := e2αφhmne
(−2)αφhnm + e2βφAmAne

(−2)αφhnm − e2βφAme
(−2)αφhmnAn

− e2βφAme
(−2)αφhmnAn + e2βφe(−2)βφ + e2βφe(−2)αφhmnAmAn;

test := e(−2)αφe2αφhmnh
nm +AmAne

(−2)αφe2βφhnm −AmAne(−2)αφe2βφhmn

−AmAne(−2)αφe2βφhmn + e(−2)βφe2βφ +AmAne
(−2)αφe2βφhmn;
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test := hmnh
nm +AmAne

(−2αφ+2βφ)hnm −AmAne(−2αφ+2βφ)hmn

−AmAne(−2αφ+2βφ)hmn + 1 +AmAne
(−2αφ+2βφ)hmn;

test := hmnh
mn +AmAne

(−2αφ+2βφ)hmn −AmAne(−2αφ+2βφ)hmn

−AmAne(−2αφ+2βφ)hmn + 1 +AmAne
(−2αφ+2βφ)hmn;

test := hmnh
mn + 1;

Which yields the correct result. We also need to teach the program how to take the first
and second derivatives of exponentials properly:

e1 := \partial_{m}{ e**{ 2 \beta \phi} }
-> 2 \beta \partial_{m}{\phi} e**{ 2 \beta \phi};

e2 := \partial_{m}{ e**{ 2 \alpha \phi} }
-> 2 \alpha \partial_{m}{\phi} e**{ 2 \alpha \phi};

e3 := \partial_{m}{ e**{-2 \beta \phi} }
-> -2 \beta \partial_{m}{\phi} e**{-2 \beta \phi};

e4 := \partial_{m}{ e**{-2 \alpha \phi} }
-> -2 \alpha \partial_{m}{\phi} e**{-2 \alpha \phi};

e5 := \partial_{m n}{ e**{ 2 \beta \phi} }
-> 4 \beta \beta \partial_{m}{\phi} \partial_{n}{\phi} e**{2 \beta \phi} );

e6 := \partial_{m n}{ e**{ 2 \alpha \phi} }
-> 4 \alpha \alpha \partial_{m}{\phi} \partial_{n}{\phi} e**{2 \alpha \phi} );

e7 := \partial_{m n}{ e**{-2 \beta \phi} }
-> 4 \beta \beta \partial_{m}{\phi} \partial_{n}{\phi} e**{-2 \beta \phi} );

e8 := \partial_{m n}{ e**{-2 \alpha \phi} }
-> 4 \alpha \alpha \partial_{m}{\phi} \partial_{n}{\phi} e**{-2 \alpha \phi} );

e1 := ∂me
2βφ → 2β∂mφ e2βφ;

e2 := ∂me
2αφ → 2α∂mφ e2αφ;

e3 := ∂me
(−2)βφ → (−2)β∂mφ e(−2)βφ;

e4 := ∂me
(−2)αφ → (−2)α∂mφ e(−2)αφ;

e5 := ∂mne
2βφ → 4ββ∂mφ∂nφ e2βφ;

e6 := ∂mne
2αφ → 4αα∂mφ∂nφ e2αφ;

e7 := ∂mne
(−2)βφ → 4ββ∂mφ∂nφ e(−2)βφ;

e8 := ∂mne
(−2)αφ → 4αα∂mφ∂nφ e(−2)αφ;

We can now proceed and insert the components of the metric into our Riemann tensor.
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@substitute!(Rm4n4)( @(g1), @(g2), @(g3), @(g4), @(g5), @(g6) );

Rm4n4 := −1
2 ∂m1e

2βφ ∂n(e(−2)αφhm1p) (e2αφhmp + e2βφAmAp)

− 1
2 ∂nm1e

2βφ (e2αφhmp + e2βφAmAp)e(−2)αφhm1p

− 1
4 ∂n(e2βφAm1) ∂p(e2βφAq) e(−2)αφhm1p(e2αφhmr + e2βφAmAr)e(−2)αφhqr

+ 1
4 ∂m1e

2βφ ∂n(e2βφAp) e(−2)αφhm1p(e2αφhmq + e2βφAmAq)e(−2)αφhqrAr

+ 1
4 ∂m1(e2βφAp) ∂ne2βφ e(−2)αφhm1rAr(e2αφhmq + e2βφAmAq)e(−2)αφhpq

− 1
4 ∂ne

2βφ ∂m1e
2βφ e(−2)αφhm1qAq(e2αφhmp + e2βφAmAp)e(−2)αφhprAr

+ 1
4 ∂m1(e2βφAp) ∂n(e2βφAq) e(−2)αφhm1r(e2αφhmr + e2βφAmAr)e(−2)αφhpq

− 1
4 ∂m1(e2βφAp) ∂ne2βφ e(−2)αφhprAr(e2αφhmq + e2βφAmAq)e(−2)αφhm1q

− 1
4 ∂m1e

2βφ ∂n(e2βφAp) e(−2)αφhprAr(e2αφhmq + e2βφAmAq)e(−2)αφhm1q

+ 1
4 ∂ne

2βφ ∂m1e
2βφ (e(−2)βφ + e(−2)αφhqrAqAr)(e2αφhmp

+ e2βφAmAp)e(−2)αφhm1p

+ 1
4 ∂m1(e2βφAn) ∂p(e2βφAq) e(−2)αφhm1p(e2αφhmr + e2βφAmAr)e(−2)αφhqr

− 1
4 ∂m1(e2βφAn) ∂pe2βφ e(−2)αφhm1p(e2αφhmq + e2βφAmAq)e(−2)αφhqrAr

− 1
4 ∂m1(e2βφAp) ∂q(e2βφAn) e(−2)αφhm1r(e2αφhmr + e2βφAmAr)e(−2)αφhpq

+ 1
4 ∂m1e

2βφ ∂p(e2βφAn) e(−2)αφhprAr(e2αφhmq + e2βφAmAq)e(−2)αφhm1q

− 1
4 ∂m1e

2βφ ∂p(e2αφhnq + e2βφAnAq) e(−2)αφhm1p(e2αφhmr

+ e2βφAmAr)e(−2)αφhqr

+ 1
4 ∂m1e

2βφ ∂p(e2βφAn) e(−2)αφhm1p(e2αφhmq + e2βφAmAq)e(−2)αφhqrAr

− 1
4 ∂m1e

2βφ ∂n(e2αφhpq + e2βφApAq) e(−2)αφhm1p(e2αφhmr

+ e2βφAmAr)e(−2)αφhqr

+ 1
4 ∂m1e

2βφ ∂n(e2βφAp) e(−2)αφhm1p(e2αφhmq + e2βφAmAq)e(−2)αφhqrAr

+ . . .
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B.2.4. Simplifying

We can now start to simplify this expression by multiplying out brackets, applying the
above definitions for the differentials of exponentials and collecting terms together.

@distribute!(%):
@substitute!(%)( @(e1), @(e2), @(e3), @(e4), @(e5), @(e6), @(e7), @(e8) ):
@prodrule!(%): @prodsort!(%): @distribute!(%):
@substitute!(%)( @(e1), @(e2), @(e3), @(e4), @(e5), @(e6), @(e7), @(e8) ):
@canonicalise!(%): @prodsort!(%): @collect_factors!(%):
@substitute!!(%)( h_{m1 m2} h^{m3 m2} -> \delta_{m1}^{m3} ):
@eliminate_kr!(%): @prodsort!(%): @collect_terms!(%);

Rm4n4 := 3αβ∂mφ∂nφ e2βφ − β∂m1φ∂nh
m1p e2βφhmp

+ 3AmAm1αβ∂nφ∂pφ e
(−2αφ+4βφ)hm1p −AmAm1β∂pφ∂nh

m1p e(−2αφ+4βφ)

− ∂mφ∂nφβ2e2βφ −AmAm1∂nφ∂pφβ
2e(−2αφ+4βφ)hm1p

− 1
2 Amβ∂nAm1 ∂qφ e

(−2αφ+4βφ)hm1q − 1
4 ∂nAm1 ∂pAm e

(−2αφ+4βφ)hm1p

− 1
2 AmAm1Apβ∂qAr ∂nφ e

(−4αφ+6βφ)hm1qhpr

− 1
2 AmAm1Aqβ∂nAp ∂rφ e

(−4αφ+6βφ)hm1qhpr

− 1
4 AmAm1∂nAp ∂qAr e

(−4αφ+6βφ)hm1rhpq +Amβ∂nAq ∂pφ e
(−2αφ+4βφ)hpq

+AmAm1Apβ∂nAr ∂qφ e
(−4αφ+6βφ)hm1phqr

+ 1
2 Aqβ∂mAp ∂nφ e

(−2αφ+4βφ)hpq + 1
4 ∂mAq ∂nAm1 e

(−2αφ+4βφ)hm1q

+ 1
2 AmAm1Apβ∂nAr ∂qφ e

(−4αφ+6βφ)hm1qhpr

+ 1
2 AmAm1Arβ∂pAq ∂nφ e

(−4αφ+6βφ)hm1phqr

+ 1
4 AmAm1∂nAp ∂qAr e

(−4αφ+6βφ)hm1qhpr

− 1
2 Am1β∂mAq ∂nφ e

(−2αφ+4βφ)hm1q

+ 1
2 Amβ∂m1An ∂qφ e

(−2αφ+4βφ)hm1q + 1
4 ∂m1An ∂pAm e

(−2αφ+4βφ)hm1p

+AmAm1AnAq∂pφ∂rφβ
2e(−4αφ+6βφ)hm1qhpr

+ 1
2 AmAm1Anβ∂qAr ∂pφ e

(−4αφ+6βφ)hm1rhpq

+ 1
2 AmAm1Aqβ∂pAn ∂rφ e

(−4αφ+6βφ)hm1qhpr

+ 1
4 AmAm1∂pAn ∂qAr e

(−4αφ+6βφ)hm1rhpq

− 1
2 Apβ∂m1An ∂mφ e

(−2αφ+4βφ)hm1p − 1
4 ∂mAq ∂m1An e

(−2αφ+4βφ)hm1q

−AmAm1AnAq∂pφ∂rφβ
2e(−4αφ+6βφ)hm1phqr
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− 1
2 AmAm1Anβ∂qAr ∂pφ e

(−4αφ+6βφ)hm1qhpr

− 1
2 AmAm1Aqβ∂pAn ∂rφ e

(−4αφ+6βφ)hm1phqr

− 1
4 AmAm1∂pAn ∂qAr e

(−4αφ+6βφ)hm1qhpr

+ 1
2 Am1β∂qAn ∂mφ e

(−2αφ+4βφ)hm1q − αβ∂m1φ∂pφ e
2βφhmnh

m1p

− 1
2 β∂m1φ∂phnm e

2βφhm1p −AmAnαβ∂pφ∂qφ e(−2αφ+4βφ)hpq + . . .

By applying further simplifications:

@substitute!(%)( \partial_{p}{h^{n m}} h_{q m}
-> - \partial_{p}{h_{q m}} h^{n m} ): @canonicalise!(%):

@substitute!(%)( h_{m1 m2} h^{m3 m2} -> \delta_{m1}^{m3} ):
@eliminate_kr!(%);

Finally, replacing the derivative of the gauge potential with the field strength and
choosing a convenient value of β:

β = −2α

@substitute!(%)( \partial_{n}{A_{m}} -> F_{n m} ):
@prodsort!(%): @canonicalise!(%): @rename_dummies!(%):
@collect_terms!(%): @sumsort!(%);
@substitute!(%)( \beta -> -2 \alpha ):
@expand_power!(%): @prodsort!(%): @collect_factors!(%): @collect_terms!(%);

Rm4n4 := FmpFnqe
(−2αφ+4βφ)hpq − ∂mφ∂nφβ2e2βφ + 2αβ∂mφ∂nφ e2βφ

+ 1
2 β∂pφ∂mhnq e

2βφhpq + 1
2 β∂pφ∂nhmq e

2βφhpq

− 1
2 β∂pφ∂qhmn e

2βφhpq − αβ∂pφ∂qφ e2βφhmnh
pq;

Rm4n4 := FmpFnqe
(−10)αφhpq − 8α2∂mφ∂nφ e

(−4)αφ

− α∂pφ∂mhnq e(−4)αφhpq − α∂pφ∂nhmq e(−4)αφhpq

+ α∂pφ∂qhmn e
(−4)αφhpq + 2α2∂pφ∂qφ e

(−4)αφhmnh
pq;

Which is the required result.
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