
On the Theory of Specification, Implementation, 
and Parametrization of Abstract Data Types 

H . - D .  E H R I C H  

Umversttat Dortmund, Dortmund, West Germany 

ABSTRACT. In the framework of a category spec of equational speoficatlons of abstract data types, 
tmplementations are defined to be certain pairs of morphlsms with a common target Th~s concept covers, 
among others, arbitrary recurslon schemes for defining the derived operations It is shown that for given 
single steps of a multilevel tmplementatlon, there is always a multtlevel tmplementatlon composed of 
these steps, but there ts no effective construction of th~s overall implementauon Some suggestions are 
gtven for practtcal composition of tmplementat~ons Utdlzmg pushouts Parametric specifications and 
parameter assignments are defined to be spectal morphlsms in spec, and parameter substitution ~s made 
precise by means of pushouts Since actual parameters can agam be parametrtc, parameter subsututton 
can be tterated. Thts tterauon ts shown to be assoctatwe Whtle the subject is being treated on a syntactical 
level in terms of speclfieauons, the imtlal algebra approach ts adopted as providing an appropriate 
semantics for spec~ficauons, and the effects of the present concepts and results on the initial algebras are 
studied 
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1. Introduction 

Equat iona l  specifications of  data  abstractions and  abstract data  types are considered 
to be a promising design tool m software engineer ing  [14, 16, 28]. The  theoretical 
basis of  this method has been investigated by several authors  [4-11, 14, 20, 25-27] 
utilizing initial  algebras or algebraic theories. 

In  this paper  we concentrate  on two concepts that are central  to the theory of  
abstract data types, namely,  implementa t ions  and  parametr ic  specifications. There  
are several approaches to make the not ion  of  implementa t ion  precise: as a relat ionship 
between algebras [14] or between specifications and  algebras [6, 7, 11]. A more 
general  funct ional  approach is described in [20]. The  approaches to parametr iza t ion  
[15, 25] model  the idea of a type constructor: a parametr ic  data  type is considered to 
be a functor sending parameter  types to a resultant  type. 

We consider the concepts of implementa t ion  and  parametr iza t ion  on  a syntactical  
level, that is, as a relationship between specifications. Our  choice of  terminology and  
no t auon  may need some justif ication,  since it is not yet widely used in computer  
science. We use the language (but  no deeper results) o f  category theory because we 
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feel it is most appropriate for the material presented here. A great deal of the 
literature cited in this paper makes more or less explicit use of categorical concepts, 
and we are also encouraged by the availability of excellent introductory texts in 
category theory [1, 12]. The language of categories provides a clean and perspicacious 
way to deal with objects, together with certain relationships (morphisms) between 
them, in a closed and consistent system of notation. In comparison with more 
conventional notations, it helps to reduce the amount of notational detail, thus 
achiewng more concise and elegant formulations. We found it especially advanta- 
geous to utilize the categorical concept of a pushout, both for implementation 
composition and parameter substitution. 

Our mathematical framework is a category named spec: the objects are specifica- 
tions, and the morphisms are certain pairs of mappings on the sorts and the 
operations. Associated with each specification there is a category of algebras (satis- 
fying the specification), and there is an initial algebra in this category determined 
uniquely up to isomorphism [ 11-13]. This imtial algebra serves as a semantics of the 
specification. While we develop our notions on a purely syntactical level, we discuss 
semantical issues by considering the effects on the associated initial algebras. 

In Section 2 we give a brief exposition of the general algebraic background used 
in the paper. For more details we refer to the literature [1, 12, 13, 19]. In Sections 3 
and 4 we develop our specific mathematical machinery, that is, the category s0ec of 
specifications. The notions of sufficient completeness and consistency in [14] are 
reflected by special morphisms. 

In Section 4 we show that soec has pushouts (in fact, s0ec is cocomplete), aiad we 
prove some useful theorems about what properties of morphisms carry over to 
opposite sides of a pushout. The main idea in utilizing the categorical pushout 
construction is that pushouts describe, roughly speaking, how to build a new object 
by combining two objects while identifying certain parts of them. A simple instance 
of a pushout in the category of sets is the union of two sets. Pushouts have been used 
in the algebraic theory of graph grammars [21, 22] to describe the substitution of 
subgraphs by graphs and to handle at the same time the connections to the rest 
graph. In this paper we have two applications for pushouts: they describe how to 
glue implementation steps together and how to substitute actual parameters into 
parametric specifications. 

In Section 5 we define implementations to be certain pairs of morphisms with a 
common target. This definition is general enough to include arbitrary recursion 
schemes for defining the derived operations used for implementation. Our main 
results concern the composability of implementations. We show that the single steps 
of a multilevel implementation can always be composed, but there Is no general 
effective composition method. We give some hints and suggestions for a practical 
composition method utilizing pushouts, where the single nonsystematic step consists 
of finding a canomcal term algebra [6, 11]. Special cases of interest, called full 
implementations, can be composed in nearly the same way, but there is one more 
nonsystematic step consisting of, roughly speaking, the completion of partially 
defined operations. 

Parametric specifications are defined in Section 6 to be certain morphisms in spec, 
embedding a formal part into a specification. This notion coincides with that in [25] 
for the special case where the parameter conditions are equations. For parameter 
assignments we allow for a great deal of flexibility by requiring that they are 
morphisms in spec. Thus actual parameters may have more operations than pre- 
scribed by the formal parameter, and different formal sorts and operations can be 
assigned the same sort and operation, respectively. For example, from array of key 
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and entry we can get array of nat and int, array of int and (stack of entry), array of 
int and int with the same int, etc. 

Parameter substitution is made precise by means of  pushouts. Since it should again 
be possible to have parametric specifications as actual parameters, parameter substi- 
tution can be iterated. We show that this iteration is associative. 

A given parametric specification defines a category of  possible parameters that 
may be substituted for the formal part. Our pushout approach results in a functor 
from this parameter category to spec. Thus, we are not so much concerned with type 
constructors as in [15, 25] but with "specification constructors" as proposed in [3]. 

2. Algebraic Background 

Let set be the category of sets with functions as morphisms. If  S ~ I set I (the class of 
objects in set), we denote by sets the comma category whose objects are functions 
,4 :.4 -~ S, S f'Lxed, and morphismsf:,4 --~ B are functionsf:~,/--, B such that .4 = f B  
(cf. Figure 1). Morphism composition is written from left to right, that is, xfg instead 
of the conventional g(f (x)) .  

If  we call the elements of  S sorts, we may view objects in sets to be "S-sorted sets," 
that is, sets with a sort in S attached to each element. The objects of  sets are in 
bijective correspondence with S-indexed families of disjoint sets; for ,4 :.4--~ S define 
,4~ to be the set of all a E .4 such that a,4 = s. Many authors use S-indexed families 
without the disjointness requirement. Morphisms in sets are mappings leaving the 
sort fixed. 

Let S E I setl be a set of sorts. By S*(S  +) we denote the set of  (nonempty) words 
over S. An object ft E Isets+l is called a signature over S. I f x  E S* and s ~ S, an 
element (w ~-~ xs) E ~ is called an operation (-symbol), xs  its index, x its domain, and 
s its codomain. Goguen et al. [11] use "type," "arity," and "sort" for our "index," 
"domain," and "codomain," respectively. 

Given a signature ~t over S we define an endofunctor 

: sets --~ sets, 

as follows: Each S-sorted set X of  "variables" (or "constants") is sent to the S-sorted 
set X~ := {([xl . . . .  xp]w ~-, sp+l) l w E ~, x, E X, wf~ = sl . . .  s~p+l, x ,X  = s, for 
1 _< i _< p} of all simple or atomic formal expressions consisting of  an operation 
symbol applied to an appropriate p-tuple of  variables. The source set of  ~Y~ is a 
set of strings over an alphabet consisting of X, f~, and the symbols [, ], and ,. Mor- 
phismsf:  X--* Y E sets are sent to the corresponding variable substitutions, that is, 

. . . ,  xp] ,o  [x , f ,  . . . .  xd] ,o .  

Definition 2.1. An ~2-algebra is a pair ~¢ -- (,4, 6), where .4 ~ I sets I is an S-sorted 
carrier set and 6 :,4 ~ ~ .4 ~ sets is the operational structure. 

6 describes the operations of the algebra by associating a value with each formal 
expression [al . . . . .  av]w. Thus, for fixed operation symbol w we have the associated 
operation 

6o:A,, x . . .  x A~p---~ A,p+,:(al . . . . .  av) ~ ([al . . . . .  av]w)& 

where "4s is the subset of all elements in ,4 of  sort s. 

Definition 2.2. ~-alg is the category of  all ~2-algebras. The morphisms 
f:( ,4,  6) --* (`4', 6') are mappings of  the carriers f : ,4  ---, `4' such that 6 f =  ( f ~ ) 6 '  
(see Figure 2). 
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Let f~o, f~l be signatures over sort sets So and S1, respectively. I f  So C S1 and 
9,o C ~1, there is a forgetful functor 

U: f~l-alg ---> f~o-alg, 

sending each f~l-algebra d = (A1, 81) to the f~0-algebra d U  - (Ao, 8o), where Ao is the 
sorted subset of all elements in A 1 with a sort in So, and & is the restriction of  81 to 
operation symbols in f~o and carder elements in Ao. Algebra morphisms f :d - - ->  
d '  ~ Ol-alg are sent t o f U : d U - - *  d ' U  E ~o-alg, w h e r e f U  is the restriction o f f  to 
Ao. I f d  E Ol-alg, d U  is called the reduct o f d  induced by So and f~o or the (So, f~o)- 
reduct of d .  

A signature f~ over a sort set S determines an endofunctor 

T~: sets ---> sets, 

associating the sorted set XTa of all ~-terms over variables X with each sorted set X 
of variables. Formally, XTe is the least sorted set Y containing X and being dosed 
with respect to an application of ~, that is, the least Y such that (1) X C Y and 
(2)WC Y ~  W~ C Y. Morphismsf:  X---> X' are sent tofT~ given by (1) x ( fT~)  = 
x f  and (2) It1 . . . . .  tp]~(fTa) = [t~(fTu), . . . ,  tp(fTn)]o~; that is, fTa  is the variable 
substitution corresponding tof .  

It is well known that for each X E I sets I, (XTn, Xy), where Xy: [tl . . . . .  tj,]¢o 
[t~ . . . . .  t~,]o~, is a free f~-algebra over X, that is, for each f~-algebra (,4, 8) and each 
mapping g: X---> A there is a unique ~-algebra morphism g'~:(XTa, Xy) ~ (.4, d) 
extending g such that g = ,/g'~, where ~: X ~ XTu is the inclusion of  generators. 

Definition 2.3. The mapping Xa : XTu ---> [[X---> A ] ~ A ] : t ~ [ g ~ tg*] is called 
the evaluation of terms over X in (14, 8). 

We are especially interested in equationally defined f~-algebras. Let E C YT~ x 
YTn, given Y E I sets l. E is an S-sorted set, and its elements are called f~.equations 
(or simply equations ff ~ is clear from the context). For each equation e = (t, t ') let 
Ye be the S-sorted set of variables occurring in e (i.e., in t or t'). An ~-algebra 
(A, 8) is said to satisfy equations E iff t(Yea) = ( (Yea)  for each equation e -- 
(t, t ') ~ E. Equations (t, t ') E E are conventionafiy denoted by t = t'. 

Definition 2.4. An f~E-algebra is an ~-algebra satisfying the given set E of  
equations, f~E-alg denotes the full subcategory of all f~E-algebras in ~-alg. 

For each [2-algebra d = (A, 8), a given set E of equations determines a congruence 
ce generated by the relation rE: 

areb: a = t g  " ~ A b = t ' g  ~' for some ( t = t ' ) E E  and some g:Y--*A.  
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The quotient algebra (XTEu, XT E) := (XTa, X'/)IcE is known to be a free f~E-algebra 
over X [19]. Thus (OT~, ~ )  is an initial object in ~E-alg: since there is a unique 
mapping from O to each X, there is a unique morphism from this initial algebra to 
each f~E-algebra. 

Initial objects in categories are unique up to isomorphism. Therefore isomorphism 
classes of initial algebras are useful semantic domains for interpreting syntactic 
structures [11, 13]. We will not differentiate between isomorphic algebras. By "the" 
initial algebra we thus mean its isomorphism class or any representative of it. 

3. Specifications 

Definition 3.1. A specification is a triple D = (S, ~, E) ,  where S is a set of sorts, 
f~ is a signature over S, and E is an S-sorted set of  f~-equations. 

As shown in the previous section, with each specification D and each S-sorted set 
Xof  variables the free algebra over X can be associated uniquely (up to isomorphism). 
The initial algebra, that is, the free algebra over O, is called init D. 

We give some examples using the notation of Guttag [14]. Thus to:s1 × s2 x . . .  
x sp ~ Sp+l means that sis2 ..  • spsp+l is the index of the operation ~o. Signatures and 
equations are separated by horizontal lines. 

Example 3.2 

Db true:-->bool Dn 0 :--->nat 

false :-->bool succ: n a t  --> n a t  

These are very basic specifications without equations. Clearly, init Db is a two- 
element set, and init Dn is isomorphic to the set of natural numbers generated by the 
constant 0 and the successor function. 

Example 3.3. 
items: 

D,,b is obtained by taking Db and Dn and adding the following 

eq:nat x n a t - - *  b o o l  

if-then-else-fi:bool × n a t  x n a t  ~ n a t  

eq(O, O) = true 
eq(O, succ(n)) =false if true then n else m f i  = n 
eq(succ(n), O) =false i f  false then n else m f i  = m 

eq(succ(n), succ(m)) = eq(n, m) 

The initial algebra init Dnb has as reducts init Db and init D,,, connected by an 
equality test and a branching operation. 

Example 3.4 

Da new:-->array 
store: array  x n a t  x n a t  ~ array  

read: array x nat---> n a t  

read(new, n) = 0 
read(store(a, n, m), p) -- if eq(n, p) then m else read(a, p) f i  

Specification Dnb must be added to obtain a complete specification, init Da behaves 
like an array with indexes and entries in init Dab • Actually, Da specifies an array 
whose entries are stacks of nat, but only the top element of the stack can be accessed. 
Thus Da does not specify array of nat according to correctness criteria imposed by 
Goguen et al. [l l]. However, it serves its purpose as a useful example in our context. 
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E x a m p l e  3.5 

Ds create :--->stack 
push  : s t a c k  × array  --> s t a c k  

pop:  s t a c k  ---> s t a c k  

top: s t a c k  ---> array  

pop(create)  = create top(create)  = n e w  

pop(push ( s ,  a)) = s top(push(s ,  a)) = a 

Specification Da has to be added in order to complete this specification. In the first 
equations, errors are usually introduced. We avoid doing so in order to keep the 
examples small and complete. Equational specification of error handling is treated in 
[11], and [10] contains a semantic approach to errors, in i t  Ds is a stack whose entries 
are taken from in i t  Da. 

Relationships between different specifications are generally given by relationships 
among their sorts, signatures, and equations. Let D~ = (S,, f~, E~), i -- 0, 1, be 
specifications. The sorts arc related by a mapping 

h : So ---> SI .  

Let h + : S~0 --> S~1 be the string homomorphism determined by h. Then we can relate 
operation symbols by a mapping g: ~o ~ ~ ,  where ~,, i -- 0, 1, are the domains of  
f~, such that f~oh + = gf~l (cf. Figure 3). Thus g is a morphism g: f toh ÷ ---> ~'~1 ~ sets~-.  

Given h and g, we can m a p  each term t over signature f~o and So-sorted set of  
variables X to a term t ( X f )  over signature ~'~1 by simply replacing each operation 
symbol ~:s~ x s2 x . .  • x sv---~ sp+i by its image o~g: slh x s2h × . . .  x sph ~ sp+lh. 
Formally, for each X we have a morphism 

X f : X T ~  o h ---> X h  Tn I E setsi 

(cf. Figure 4) sending each variable x of  sort s to the "same" variable x but viewed 
as having sort sh, and sending each term [tl . . . . .  tp]o~, where each t, has sort s, and 
o~ has index s~ x . . .  x sp --~ s,+l, to the term [ t ~ ( X f )  . . . . .  t v (Xf )] (o~g) ,  where each 
t d X f )  has sort s,h and w g  has index slh x . . .  x sph --* Sp+xh. 

Letting X vary over So-sorted sets, we get a natural transformation 

7:  T.oh ~ hT.,, 

where Taoh and h Te, are functors from setso to sets, sending So-sorted sets of  variables 
X to S~-sorted sets of  terms. 

Let Eo C YoT~ o × YoT~ o be an So-sorted set of  equations. By mapping both sides 
of each equation by Y o f ,  we get an Sl-sorted set of equations 

E o f : -  {t(Yof) = t ' (Yo]')] t = t '  e Eo ) .  

If  E C YT~ x Y T ,  is a set of  equations over some signature f~ and some variable 
set Y, we can deduce other equations from E by the usual rules of  equational calculus, 
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that is, substitution of  terms for variables and the laws of  equality. We write E t-- 
t = t '  if equation t = t' is deducible from E. Let 

~ ' := { t = t ' l E F - t = t '  andt,  t' E(3Ta} 

be the set of  equations without variables, also called constant equations, deducible 
from E. 

Definition 3.6. The category spec has specifications D = (S, f~, E)  as objects, and 
its morphisms f :  Do ~ D1 are pairs of  mappings f = (h, g), h: So ---* S~, g: f?,o ---> ~1, 
such that (1) fl~h + = gf~l and (2)/~o2 ~ C El. 

Condition (2) means that all and only the constant equations deducible from Eo 
map to valid equations deducible from El. The obvious alternative of  requiring that 
all equations in Eo (and thus all those deducible from Eo) map to valid equations 
deducible from E1 is too restrictive for our purpose. This would, for instance, restrict 
proof methods for the correctness of  implementations (cf. Section 5) to deductions in 
equational calculus, whereas our weaker condition allows for term induction, as 
suggested by Guttag's approach [14]. 

Each morphism f E spec determines a natural transformation f ,  as shown above. 
Condition (2) in the above definition means that congruent (w.r.t. Eo) constant terms 
map to congruent (w.r.t. E0  constant terms. Thus we can factorize O f  by sending 
each congruence class (w.r.t. Eo) of  constant 9,o-terms to that congruence class (w.r.t. 
E 0  of  constant f~-terms that contains its image. This defines a mapping 

Definition 3.7. A morphism f = (h, g) E spec is called an embedding iff h and g 
are injective, f is called an [2-embedding iff h is bijective and g is injective. 

Up to renaming, an embedding f :  Do ~ D1 describes the situation in which Do is 
a subspecification of  D~, that is, So C S~, 9~o C f~ and/~o C / ~  (note that Eo C E1 is 
not required). ~-embeddings denote the special cases where the sort sets are equal, 
that is, only operation symbols are added. 

I f f  = (h, g) and X E Isetsol, let (init DO ° be the reduct induced by Soh and 
(f/~h+)g. Clearly, i f f  is an embedding, there is an isomorphism from (f~oh+)g-alg to 
~o-alg. We do not make this isomorphism explicit in our notation but consider 
(init D1) ° to be an algebra in [~0-alg (i.e., we take h, g to be inclusions). The next 
theorem relates embeddings to morphisms between the associated initial algebras. 

THEOREM 3.8 Let f = (h, g) : Do --~ D1 be an embedding. Then ~ f  : init Do 
(init D0  ° is an f~o-algebra morphism. 

The proof is straightforward by the definitions of  j~ and f .  
In what follows, special embeddings to be defined now will be of  essential interest. 

I f f  = (h, g,) : D, ---> D2, i = 0, 1, are embeddings, let S~ = S,h, and f~' = (f~,h+,)g,. 
Furthermore, let Tj = OTu,, j = 0, 1, 2, and T~ = f~Tu, h,, i = O, 1. 

Definition 3.9. jq is called 

(1) full w.r.t, fo i fffor each term to E T~ with a sort in St, there is a term t~ E T] such 
that to = t~ ~/~2. 

(2) full lff for each term t2 E T2 with a sort in S~, there is a term t~ E T] such that 
t2= h E l~2. 

(3) true iff for all terms t~, t2 E T], t~ = t2 E/~2 implies t~ = t2 E /~ f~ .  
(4) extension (w.r.t. fo) ifff~ is a full (w.r.t. fo) and true embedding. 
(5) enrichment (w.r.t. fo) i f f f i  is a full (w.r.t. fo) and true ~-embedding. 
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These notions of extension and enrichment are compatible with those given in 
[6, 7, 11]. Clearly, i f f l  is full, it is full w.r.t, any f0. Full embeddings correspond to 
sufficiently complete specifications, and true embeddings correspond to consistent 
specifications, both in the sense of Guttag [14]. 

Referring to Examples 3.2-3.5, all inclusions Db --* Dnb, 1), ---* D,b, Dnb ~ Da, 
Da ~ D,, Db ~ D~, etc., are extensions. If  we add, for example, the equation 
top(create) = top(push(s, a)) to Ds, we have a full inclusion D~ ~ D~ that is not true. 
If we drop, for example, the equation top(create) --- new in D~, the inclusion D~ ~ Ds 
is not full but true. 

We give some immediate consequences of  the above definitions. 

PROPOSITION 3.10. I f  f and g are both full (true) embeddings (extensions, enrich- 
ments), so is fg. 

PROPOSITION 3.11. Let f ,  : D, --~ D2, i = O, 1, be embeddings. With the notation of  
Definition 3.9 we have 

(1) I f  S~ C S',, then f ,  is full w.r.t, fo /ff (init DO(Of,)U, D (initDo)(Ofo)Uo. Here U, 
is the respective forgetful functor sending algebras to their carriers. 

(2) f l  is full i f f ~  is surjective. 
(3) f ,  is true ifff~f, ts injective. 
(4) f ,  is an extension iff Ofl is an isomorphism. 
(5) f~ is an enrichment iff fDfl is an isomorphism and h is btjective. In this case, 
(init D1) ° and init D1 have the same carrier set. 

PROPOSITION 3.12. Let f , :D,  ---> D2 be embeddmgs, i = O, 1, and let f~ be full 
w.r.t, fo. 

(1) I f  f~:D~ --~ Do is any embedding, then f ,  is full w.r.t, f'ofo. 
(2) I f  f', : D', ---> D~ is a full embedding, then f~ f l is full w.r.t, fo. 

THEOREM 3.1 3. Consider the situation depicted in Figure 5, and suppose that all the 
morphisms are embeddings. I f  fia is full w.r.t, fo3 and f24 is full w.r.t, fi4, then f24fi5 is full 
w.r.t, fo3fls. (Note that the square need not be commutanve.) 

PROOF. In order to facilitate notatmn we assume that all morphisms are inclu- 
sions. Let 7", = ~Tu,, i = 0 . . . . .  5. Let to ~ To. Since fi3 is full w.r.t, fo3, there is a term 
t, E /'1 such that to = t, E/~3. Thus we have to = t, E ~5, since f15 is a morphism. 
Moreover, since fi4 is full w.r.t, fi4, there is a term t2 E T2 such that t~ = t2 E/~4 C/~5. 
It follows that to = t2 ~ / ~ ,  proving the theorem. [] 

This theorem is of  a more technical nature and will be utilized m Section 5 when 
we are discussing constructions for the composition of  implementations. 

4. Pushouts 

The categorical pushout construction provides our main technical tool for describing 
how to put implementation steps together (Section 5) and how to apply parametric 
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specifications to actual parameters (Section 6). In this section we give the mathemat- 
ical justification for these constructions by showing that they can be done in spec 
and behave as desired. 

Formally, a pushout diagram in a category is a square like that in Figure 6a (that 
is commutative and has the additional property that whenever there are two morph- 
isms f~:  D1 ~ D~ and f ] : / ) 2  ~ D~ such that f , f~  = f2f'4, there is a unique morphism 
k:D3 ~ D'3 such that fak  = f'a and f4k  = f'4. In this case the pair of  morphisms 
(fa, f i)  is called the pushout ofjq and f2, and Da is called the pushout object. If a 
pushout exists, it is determined up to isomorphism. A category has pushouts iff a 
pushout exists for each pair of  morphisms (fl, f2) with a common source. 

The relevance of  pushouts for our purposes lies in the fact that they gwe a neat 
and concise description of  the following situation: Given two objects (D1 and D2 in 
Figure 6a), we want to construct a new object (/93) by combining them while 
identifying certain parts of  them (as given by Do, f i ,  and f2). The pushout construction 
gives--in a rough sense--the "minimal" such Da, and the morphisms fa and f i  tell 
us what happens to the components D1 and D2, respectively, in the "combination" 
Da. That is why it is important to know which properties fa and jq have, dependent 
on those o f f i  and f2. 

We show that there are pushouts in spee, and we investigate how relevant 
properties of  morphisms carry over to opposite sides of  pushouts. 

THEOREM 4.1. spee haspushouts. 

PROOF. Let f l  : Do ~ D1 and f2 : Do ~ / ) 2  be given. We construct fa: O1 "~  Da and 
f i :D2 ~ Da such that the diagram in Figure 6a is a pushout. Let f -- (h, g,) and 
D~ = (Sj, f~, E~ ) for 1 _< i ___ 4 and 0 _< j _< 3. Let ha, h4 and ga, g4 be given by the 
pushouts in set depicted in Figures 6b and c, respectively. Then we have the 
commutative diagram depicted in Figure 7 (without arrow £a). Since the front 
diagram (6c) is a pushout, there is a unique mapping £a:£3 ~ Sj- making the 
diagram in Figure 7 commutative. 

Now we have Sa, £a andfa = (ha, ga),fi = (h4, g4), and we know that fhh~- = ga£a 
and £zh~ = g4~a hold. We still have to construct equations E~ such that for D3 = 
(Sa, £3, Ea), the diagram in Figure 6a is a pushout. 

Equation set Ez is defined as follows: 

It is evident thatfa and f4 are morphlsms in spec. 
That the diagram in Figure 6a is a pushout follows directly from those m Figures 

6b and c being pushouts: if f5 : D, ~ / ) 4  and f6:1)2 ~ D4 are any morphisms such that 
flJ~ = f2j~, there are morphisms hs, h6 and g~, g6 in set such that h,h5 = h2h6 and 
g,g5 = g2g6; respectively. Since Figures 6b and c are pushouts, there is exactly one 
h:S3 ~ $4 and exactly one g:0a ~ ~4 such that hah = hs, h4h = h6 and gag = gs, 
g4g = g6, respectively. Thus there is at most one morphism f :  D3 --~ D4 in spec such 
that f a f  = f5 and f 4 f  = f6, namely, f = (h, g). That f is indeed a morphism follows 
easily from its construction and that of  Ea. [] 
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We note in passing that (0, O, 0 )  is an initial object in spec. Thus spec has fimte 
colimits [23]. spec can even be shown to be cocomplete since there are arbitrary 
coproducts. 

There is some similarity between pushout constructions in spec and those in the 
category of graphs [21, 22] as used in the theory of graph grammars. The connection 
is established by associating the syntax graph [11] with each specification: the edges 
are fL and the incident nodes are those elements in S* occurring as domains or 
codomains of operations in f]. Then the forgetful functor sending specifications to 
their syntax graphs preserves pushouts (cf. [5]). 

Consider Figure 6a. From the construction of pushouts in spec we have immedi- 
ately that iff i  is an (~2-) embedding, the same holds forfi.  

THEOREM 4.2. I f  f ,  and fz are both full  embeddings, so are f3 and f4. 

PROOF. Since f i ,  fz  and consequently f3, Jq are embeddings, we facilitate our 
notation by assuming that they are inclusions. Then we have $3 = $1 tJ $2, So = 
S~ n $2 and ~23 = ~'~1 [-J ~'~2, ~~0 = ~'~1 ('~ ~2, as well as E3 =/~1 tO/~2,/~0 C/~,  O ~2, by 
the pushout construction in spec. If  bothf i  andf2 are full, we can reduce each term 
t ~ 7"3 (again, T, := OTs~,) with a sort in $2 to an equivalent term t '  E 7"2 (actually, To) 
by a bottom-up reduction, removing operation symbols in ~2I - ~22 and f~2 - ~2,, 
respectively, by applying ~ and ~2, respectively. Thusf i  is full. By symmetry, f3 is 
full too. [] 

THEOREM 4.3. I f  f l  and fz are both true embeddings, so are f3 and f4. 

PROOF. Again we assume that f i  . . . . .  )q are inclusions, that is, that we have the 
same situation concerning the sorts and operations as in the previous proof. Let/~;, 
i = 1, 2, be the subset of/~, consisting of all equations in which only operation 
symbols from f~o occur. Trueness off i  andf i  means that 

Go = ~ i  = ~ = ~ ,  n ~.,. 

We now want to show that f i  is true, that Is,/72 = / ~ ,  w h e r e / ~  is the subset of/~3 
consisting of all equations in which only operation symbols from f~z occur. That f3 is 
true will then follow from the symmetry of the situation. 

Clearly/~2 C / ~ ,  by definition of morphism in spec. Let t = t '  E / ~ ,  and let 

t = to --> tl --> t2 --> • • • --> tn  = t '  

be a sequence of terms such that t,+t results from t, by substituting ~',+1 for a subterm 
~', of t,, accordingotO the equation z, = ~-,+, E E3. From the pushout construction we 
have E3 = E~ U E2. 
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Let tp ~ tp+~ be the first step in which an equation in/~1 - /~2 is applied, say 
o = o'. (If there is no such step, then t = t' ~ 82, and we are done.) Subterm o of  tp 
can have only operation symbols in ~o. We may assume that o is a maximal subterm 
of tp with this property. In o', at least one operation symbol to ~ ~2~ - f~o occurs, and 
all such to's must be removed in the further reduction process. We assume that this 
happens in the steps immediately after tp ~ tp+l, without being interrupted by 
reductions affecting only subterms independent from o' (those using only 82 should 
have been executed before; others can be postponed). 

Consequently, reduction goes on with equations in/~l, say tp+~ ~ . . .  ~ tp+r, until 
all to ~ f~l - ~o have been removed from subtree o' in tp+~. (Sincej~ is true, there can 
be no intermediate steps using/~[ - / ~ . )  Because of  the maximality of  o, the effect 
of  these steps can be achieved by a single step according to, say, o = o" ~ / ~ .  Since 
f i  is true, we h a v e / ~  C / ~ .  This means that there is a reduction t ~ . . .  ~ tv+r 
without using equations in/~1 - -  / ~2 .  By induction, there is a reduction t ~ . . .  ---, t '  
using only equations in/~2, that is, t = t '  E/~2. This proves that/~ ~ =/~2, that is, that 
f4 is true. By symmetry,fa is true. [] 

COROLLARY 4.4. I f  f i  and f2 are both extensions, so are f3 and fi .  I f  additionally f l  
is an enrichment, so is f4. 

5. Implementations 

Subsequent to Guttag's paper [14] there have been several approaches to making the 
notion of  implementation mathematically precise [4, 6, 7, 11, 20]. Our approach here 
is based on that given in [4], and there are some connections to the approaches of  
Goguen et al. [11] and Ehrig et al. [6, 7]. We will comment on these connections at 
the end of  this section. 

Roughly speaking, a specification D1 implements a specification Do if the opera- 
tions in Do can be associated with derived operations in D1 realizing the behavior 
expressed in the equations of  Do. If  we add new operation symbols for the derived 
operations and corresponding defining equations to D1, we get another specification 
/)2, and there are obvious morphisms from both Do and D1 to D2. 

Definitton 5.1. An implementation o f  Do by Da is a triple I = (D2, f ,  t), where 
f :  D~ --~ D2 is an f~-embedding that is full w.r.t, t and t: Do ~ D2 is a true embedding 
(cf. Figure 8). I is called a full implementation i f f f i s  full. DI implements Do (fully) 
iff there is a (full) implementation I of  Do by D~. We use the notation I :  D1 ---~ Do 
if I is an implementation of  Do by D~, and we write D1 >> Do if D~ implements Do. 

Please note that our defimtion of  implementation is general enough to include 
(1) arbitrary recursion schemes for specifying the derived operations used for 
implementation, (2) identification of  (derived) operanons that are different in D~, 
s m c e f n e e d  not be true, and (3) the existence of  "redundant" items in D2 that have 
no interpretation in Do, since t need not be full. 

Example 5.2. We give a simplified version of  Guttag's symbol table [14] (cf. also 
[6, 7]) and implement it by the specification D, of  Example 3.5. We assume that 
idenufiers and attributes have already been implemented by nat. 
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D~y is Dnb (see Example 3.3) extended by 

init :--*Sytb 
begin: Sytb ~ Sytb 

end: Sytb ---> Sytb 
add: Sytb x nat  × nat---> Syth 

retrieve:Sytb x nat---> nat  

end(init) = 
end(begin(s)) = 

end(add(s, i, a)) = 

retrieve( init, 0 = 
retrieve(begin(s), i) = 

retrieve(add(s, i, a), j )  = 

/n/t 
S 

end(s) 

0 
retrieve(s, i) 
i f  eq(i, j )  then a else retrieve(s, j )  f i  
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In order to implement Dsy by Ds, we specify D2 as follows:/)2 consists of  D8 plus the 
following operations and equations: 

init' :--->stack 
begin' : s t a c k  ~ s t a c k  

end' : s t a c k  ~ s t a c k  

add':stack x n a t  x n a t  ~ s t a c k  

retrieve' : s t a c k  x na t  ~ na t  

intt' = push(create, new) 
begin'(s) = push(s, new) 

end'(s) = push(pop(pop(s)), top(pop(s))) 
add'(s, i, a) = push(pop(s), store(top(s), i a)) 

retrieve'(create, l) = 0 
retrieve'(push(s, new), i) = retrieve'(s, i) 

retrieve'(push(s, store(a, k, e)), i) 
= i f  eq(k, i) then e else retrieve'(push(s, a), i ) f i  

Clearly, the inclusion f :  Ds ---> D2 is a full embedding, so we have a full implemen- 
tation. We define t = (h, g) : Dsy ~ / ) 2  by 

h : S y t b  ~-> s t a c k  

o ~ o for all other sorts o, 
g:to ~ ~0' for 6o E { init, begin . . . . .  retrieve}, 

~- ~ "r for all other operations r. 

The correctness proof for this implementation consists of  showing that t is a true 
embedding. The first part is to show that t is a morphism, that is, that the constant 
equations of  D,y carry over to valid equations in D2. This is a straightforward exercise, 
and it has been done for several examples in [14]. The second part is to show that t 
is true. In our example it is easy to see that init', begin'(s), begin'(t), add'(s, i, a), 
add'(t, i, a) are pairwise unequal in D2 if s and t are unequal. A general possibility for 
giving this part of  the correctness proof is to give an "interpretation function" • as 
is done in [6, 7, 14]: 

• [create]= init 
¢P[push(s, new)] = begm(tb[s]) 

alP[push(s, store(ar, i, at)] = add(tb[push(s, ar)], i, at) 

Next we consider the semantic issues of our notion of  implementation, that is, its 
effect on the associated initial algebras. 
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FIGURE 9 

PROPOSITION 5.3. I f  I = (D2, f  t) is an implementation of  Do by D1, we have 

(1) an f~l-algebra morphism Of: in i t  D1 --~ (init D2) 1 and 
(2) an injective~o-algebra morphism O~:init Do --~ (init D2) ° such that 
(3) (init D1)(f~f)U1 D (init Do)(f~)Uo. 

I f  I is full, f~f  is a surjective f~ralgebra morphism. (init Dz) 1 and init Dz have the same 
carrier. 

The proof is immediate from the definitions and from Proposition 3.11. 
The following proposition gives some more simple consequences that are useful 

for getting new implementations from given ones. 

PROPOSITION 5.4. Let I = (Dz, f ,  t) : DI - -~Do be an implementation. 

(1) I f  (D4,f ' ,  t ') : Da --~ 192 ts a (full) implementation, then we have a (full)  imple- 
mentation (D4, f ' ,  tt') : D3 --~ Do (cf. Figure 9a). 

(2) l f  (D4, f ' ,  t '):D2 - -~Da is a (full) implementation and I is full, then we have a 
(full) implementation (D4, f f ' ,  t') : D1 - -~  D3 (cf. Figure 9b). 

(3) I f  f "  : D3 ~ D1 is a full  ~-embedding, then we have an implementation (D2, f ' f ,  t) : 
Dz - -~  Do that ,s full  iff l is full  (cf. Figure 9c). 

(4) I f  t' :Da ~ Do is a true embedding, then we have an implementation (D2, f ,  t't): 
D1 ---~ Da that is full  iff l is full  (cf. Figure 9d). 

For the special case where Do = D1 = D2, we see from (3) and (4) that a true 
embedding t:D3 --~ Do yields a full implementation in the opposite direction, Do 
---~ D3, and a full f~-embedding f : D3 ~ Do yields a full implementation in the same 
direction, D3 ----~ Do. 

In practice, it is essential that implementations can be done stepwise in multiple 
levels. For example, if we have an implementation 11 of a symbol table in terms of 
stacks (like that in Example 5.2), and if we have another implementation 12 of stacks 
in terms of, say, arrays with integer top pointers, then it should be possible to 
construct an implementation I of a symbol table in terms of arrays with integer top 
pointers that is in some sense the composition of  11 and/2.  

Considering Figure 10, we show that there is always an overall implementation 
I :  D2 ---~ Do if we are given 11 and 12. This will be an easy consequence of our next 
theorem, which tells us that there is always an implementation of any Do by any D~, 
provided that D1 supports a "sufficient number of items." Of course, this is a 
necessary condition, too. 

THEOREM 5.5. Let D~ = {S,, f~,, E,}, t = O, 1, be specifications. D1 implements Do 
(D~ >> Do) iff there are two injective mappings 

h : So --* $1 ~ set, 
a:f~T~gh ~ O T ~  ~ setsr 
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PROOF. In order to facilitate notation, we assume that h is an inclusion. Then we 
construct I = (D2, f ,  t):D1 --->Do as follows: D2 = ($1, ~o + ~21, Eo + El + E') ,  
where + denotes disjoint union, f is the obvious inclusion, t = (h, g) where g is the 
obvious inclusion, and E'  = (t '  = t"]([ t ' ]  ~ [t"]) E a}. Here It'] denotes the 
congruence class containing t'. Actually, it would be sufficient if we include in E '  
just one pair of representatives t '  = t" for each element (It'] ~ [t"]) E a. Then we 
have a = ~t,  that is, t is true, and for each t' E ~3T~ o there is a t" E [t']a such that 
t' = t" ~ E'. Hencef i s  full w.r.t.t. [] 

This theorem holds for full implementations, too. This can be proved following 
the lines of the above proof, but we must introduce more equations in order to define 
the derived operations co E ~1 totally: for each w E ~1 and each argument p-tuple 
([tl], . . . ,  [tp]) of constant term classes (in OT~) ,  where at least one [t,] is not in 
(OT~°h)a, we must introduce an equation (tl . . . . .  tp)~o = t, for some representatives 
tl . . . . .  tp and some t ~ OTu 1 of the appropriate sort. 

COROLLARY 5.6. D2 >> DI and Dt >> Do implies Dz >> Do. 

Again, under the above mentioned condition, this corollary holds for full imple- 
mentations too. 

The proof of Theorem 5.5 is, practically, not very useful. Proposition 5.4, however, 
gives some suggestions on how to construct compositions of implementations: con- 
sidering Figure 10, we get an overall implementation I :  D2 --->Do if we succeed m 
finding an implementation I23:D2 --~,D3 or I43:D4 - -÷  1)3 or, in case /2 is full, 
140 :/)4 - -÷  Do. I2a must give derived operations based on D2 not only for the D~ 
operations, but also for the derived operations based on DI, given in /1  for the Do 
operations. This means, practically, that 123 explicitly "reprograms" implementation 
11 in terms of Dz. Considering Go, we must give derived operations for the Do 
operations in terms of the/)4 operations, and these consist of all D2 operations plus 
the derived operations used in/2  for the D~ operations. This means, practically, that 
implementation 12 is extended explicitly in order to implement Do. The third 
possibility, finding implementation 143, combines these features. It means, practically, 
that I1 is "reprogrammed" in terms of I2. 

In these constructions we uulize only part of the information available. For I23 we 
do not make use of the derived operations of 12, and for/4o we do not exploit I~. 143 
gives only a little improvement: it allows the use of 12, but still, not only the DI 
operations but also the derived operations of 11 have to be implemented. The question 
is whether we can do better. 

In the case where f3 is an enrichment w.r.t, t3, Theorems 3.13 and 4.3 give a 
pleasant construction of an overall implementation D2 ---~ Do (cf. Figure 11): the 
pushout (Ds, fs, ts) of f3 and t4 gives immediately a true t5 and a composite 
implementation, 

(Ds, f4fs, t3ts) : D2 --->Do. 

This means, practically, that the derived operauons for Do in terms of D~ (represented 
by f3) have been translated automatically to derived operations for Do in terms of D2 
(represented by f4fs), so that we have fully utilized what we had already. 
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Unfortunately, in most practical cases f3 is not an enrichment w.r.t, t3. For example, 
if we consider a stack implemented by an array with an integer top pointer, we would 
like to express the idea that arrays whose contents differ only beyond the top are 
equal as stacks. The correspondingfwould then not be true. 

In such cases pushouts do not give composite implementations in general. This is 
demonstrated by the following counterexample. We give only D1, D3,/)4,/)5 and fs, 
t4, f i ,  t5, assuming that t3 and f4 are identities. 

Example  5.7 (due to U. Lipeck) 

DI:  c l ,  c2 : ---*s f 3  D3: c l ,  c2 : --->s 

dl, d2, d3:--*r ) dl, d2, d3:--->r 

t4 t5 

D4: e b  ¢2 : --->$ D5: ¢1, c2 : ---*$ 

d l ,  d2, d3:-->r f5 d l ,  d2, da:---~r 
b:s--->r > b:s--~r  

dl = b(Cl) Cl - -  c2 
d2 ffi b(c2) d~ = b(cl) 

d~ = b(c~) 

The morphisms are the obvious inclusions given by equal denotations. It is easily 
checked that (Ds, fs, t0 is a pushout of  f3 and t4, f3 is full, and t4 is an extension. 
However t5 is not true, since in D5 we can conclude that dl ffi b(Cl) = b(c2) = d2. 

This counterexample shows that implementations cannot be composed in general 
by just taking the pushout. Moreover, pushouts are not extendible in general to 
implementations by some simple modifications, for example, adding equations. 

In a less direct sense, however, we can utilize pushouts very well in practical cases. 
Let us consider a full w.r.t, t3 but nontrue f3. Such an f3 is most often given by two 
nontrivial factors, f3 = f31f32, where f31 is true and f32 just adds equations (i.e., h32 
and g32 are both bijective, thus f32 is full). Intuitively speaking, f3~ represents the 
addition and definition of  derived operations terminating for the relevant arguments, 
while f32 expresses which items should be considered equal with respect to the 
implementation. 

Let f32: D~ ~ D3, and suppose we have an implementation (cf. Figure 12) 18 = 
(D'3',f'3, t'3):D'3--~, 1)3, where f~  is an enrichment w.r.t, t~. Then we can construct 
(Ds, f~, ts) as the pushout off31f'3 and t4. Theorem 4.3 guarantees that t5 is true, and 
Theorem 3.13 gives us the desired result that I = (1)5, f4 f i ,  t3t'ats) is an implementation 
of  Do by D2. 

The only nonconstructive step in getting I is to find an appropriate 18 such that f~  
is an enrichment w.r.t, t~. But here we have a very special situaUon, and 18 has a 
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natural practical interpretation: finding la means intuitively that we must implement 
a quotient structure, obtained by adding equations, in terms of  the original structure. 
This can be done by a "canonical term algebra" specification [6, 11] describing how 
the operations on congruence classes are implemented as operations on a system of 
distinguished representatives. It is well known that such a canonical term algebra 
always exists [11], but it cannot be constructed by a general method [6]. 

I f  11 and Iz are full implementations and we want to get a full composite 
implementation, we can do so by extending the above approach, making use of 
Theorem 4.2, and Theorem 4.3 and Corollary 4.4, respectively. 

Practically, a true but nonfull t4 decomposes most often into two nontrivial factors 
t4 ~- t4tt42, where t4t is an extension and t42 describes the true injection of  that 
subspecification of D4 actually used for implementation into/)4. Let t42: D~ ~ / 9 4 ,  
and suppose we have an implementation 14 = (D~', f~, t~):D4 ---~ D~, where t~ is an 
extension. Then we have an implementation I = (Ds, f4f'4fs, tat'~t~):D2---> Do if 
(Ds, fs, tD is the pushout of f3~f'3 and t4xt'4. Here we have another nonconstructive 
step, namely, finding an appropriate/4. A practical way to find it is to add equations 
that "make t42 full" to D4 thus getting D~'. Intuitively, this means that we have to 
identify items not used for implementation (like an array with negative top pointer 
in our example of stack implementation) with some items used for implementation. 
Normally this is done by introducing exceptional "error" constants. 

A more detailed discussion of application issues lies outside the scope of this paper. 
One important aspect is that if we have proven implementation steps 11 and/2 correct 
separately, we cannot conclude that an overall implementation built on these is 
correct unless we have found la (and, in the case of  full implementations, 14) and 
corresponding correctness proofs. 

The approach to implementation taken in [11] is related to a composition of two 
special implementations in our sense. Considering Figure 10, implementation 
De---> D1 corresponds to a Goguen-Thatcher-Wagner derivor from ~21 to f~2 (with 
injective sort mapping f )  if t4 is an extension, ~24 = ~21 + f~2, and f4 is the enrichment 
where each operation o~ ~ ~21 is defined explicitly by equations of  the form 
w(x~ . . . . .  xn) = t and t is an ~ - t e rm over variables Xl . . . . .  x,,. If, in the second 
implementation D~ ---->Do in Figure 10, )ca is bijective on sorts and operations, it 
corresponds to the Goguen-Thatcher-Wagner congruence -=. Since ta is true, we 
have init Do C init Da = init D 1 / -  (cf. Theorem 3.8 and Proposition 3.11). Ehrig et 
al. [6, 7] generalize the Goguen-Thatcher-Wagner derivor by a functor. An imple- 
mentation in their sense is obtained by giving a functor from D2-alg to Dl-alg, 
sending init De to init D1. Then f3 defines a surjective homomorphism from init D1 
to init Do if t3 is an identity and fa has the above property. 
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6. Parametric Specificatzons 

Most specifications of parts of programming systems are parametric; that is, they 
refer to other parts of the system by means of formal entities to be substituted later, 
possibly in different ways. We g~ve the well known example of  a "stack of something." 

Example 6.1 
P~ create :-*stack 

push : stack x entry -~ stack 
pop: stack --, stack 
top: stack --> entry 

e0 :-->entry 

pop(create) = create top(create) = e0 
pop(push(s, e)) -- s top(push(s, e)) = e 

Again we avoid introducing errors (cf. Example 3.5). What entry and eo are is left 
open. They are formal parameters that can be substituted by actual parameters to get 
stack of nat, stack of array, etc. The formal parameter part constitutes a specification 
itself: 

F~ = ( (entry}, (eo:-->entry}, O), 

and we have an embedding p~: F~ ---> P~ (here, p~ is an inclusion). 

Definition 6.2. A paramemc spectfication p is an embedding p:F---> P in spec. F 
is called the formal parameter part ofp. 

We identify nonparametric specifications D with the parametric speofications 
(0,  O, O) ---, D. The generality of the above definition allows not only formal sorts 
and operations, but formal equations too. The idea is that only actual parameters 
satisfying these equations can be substituted. Thus, in order to substitute an actual 
parameter for a formal one, we have to give an assignment of actual sorts to formal 
sorts and of actual operations to formal operations such that the equations resulting 
from the formal equations are valid in the actual parameter. 

The actual parameter may itself be a parametric specification. For example, stack 
of (stack of entry) may be a useful concept. So, in general, we have the situation 
depicted in Figure 13a. We utihze pushouts in order to define what comes out ifpo 
is applied top1 by means of parameter assignment f (Figure 13b). We must, however, 
first define what a parameter assignment is, making precise what it means that the 
formal equations are valid in the actual parameter. We do this in two steps, defining 
the special case of a nonparametric actual parameter first. 

Definition 6.3. Let p~:F~ --> P~, i = 0, 1, be parametric specifications, and let 
f : Fo ---> P1 be a morphism in spec. f is called a parameter assignment from po to pl 
in each of the following cases: 

(1) F1 = (0,  0 ,  0 )  and init P1 satisfies E0f, where E0 are the equations of Fo. 
(2) F~ ~ (0,  0 ,  O) and, for each parameter assignment f~ : F~ ---> D in the sense of 

A H ! 

case (1), init P2 satisfies Eof~, where f~' = ff~ and (/)2, pl, f~) is the pushout of 
pl and fl .  

The second part of this definition implies that the parameter conditions E0 hold in 
each actual parameter that can be obtained as a result of applying p~ to some 
nonparametric specification in the sense of the following definition. 

Definition 6.4. Let p~ :F~ ~ P ,  i = 0, 1, be parametric specifications, and let 
f : Fo --~ P~ be a parameter assignment from po to p1. By an applicanon ofpo to p1 by 
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f we mean the pushout of Figure 13b. The result of this application is the parametric 
P .  specification p2 = pxpo. F~ ~ P2. 

That p2 is indeed a parametric specification is clear from the remark preceding 
Theorem 4.2. It follows immediately from our pushout theorems in Section 4 that if 
po, p~, and f are either full or true or both, then the same holds forp2. 

Example 6.5 
Pa new:--->array 

store:array x key x entry---> array 
read: array x key--> entry 

read(new, k) = eo 
read(store(a, k, e), h) = i f  equ(k, h) then e else read(a, h) f i  

Fa e0 :--->entry 
equ:key x key--> bool 
true :-->bool 

false :-->booi 
if-then-else-fi: bool x entry x entry--> entry 

equ(k, k) = true 

Pa is understood to consist of all the sorts, operations, and equations given 
above. Then pa : Fa ~ Pa IS a parametric specification, and each actual relation sub- 
stituted for equ is required to be reflexive. Of course, additional equations, say, for 
symmetry and transitivity of equ, should be added, together with equations for if- 
then-else-ft. 

Let f : Fa --o Dnb (cf. Example 3.3) be given by 

h: entry ~-> nat g: e0 ~-> 0 
key ~-> nat equ ~-> eq 

bool ~-> bool true ~ true 
false ~-> false 

lf-then-else-j~ ~ if-then-else-ft 

In order to prove tha t f i s  a parameter assignment, we must prove that eq(n, n) = true 
holds in init Dnb. This can be proved by induction. The result of applying pa to Dnb 
by means o f f  is D~ (cf. Example 3.4). Now le t f ' :  Fs --> Pa (cf. Example 6.1) be given 
by 

h': entry ~ array g' : eo ~-> new 

Since Fs has no equations, f '  trivially is a morphism. The result of applying pe to pa 
by means o f f '  is 

p~a:F, ~ Psa, 

where Pea IS P~ extended by the sort stack and the stack operations and equations, 
with entry replaced by array and eo replaced by new. 

The result of first applying pa to p~ to get pea A stack of  array of  key and entry and 
then applying pea to Dnb tO get D, A stack of array of  nat and nat (cf. Example 3.5) 
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is the same as the result of  first applying pa to Dnb to get Da ~ array of  nat and nat 
and then applying p~ to D~. That this is not incidentally so is shown by the next 
theorem. 

THEOREM 6.6. The application of  parametric specifications to parametric specifi- 
cations by means of parameter assignments is associative. 

PROOf. Let p, : F, --~ P ,  i = 0, 1, 2, andfj :Fj-1 ~ P:,j  = 1, 2, be given (cf. Figure 
14). We have to show that application ofpo top~ b y f i  and then ofplp~ top2 b y f i  
yields the same result as first applying pa to p2 by f2 and then applying p0 to p2p'l by 
fzf~. That means that we must show that (a) and (c, b) are pushouts iff (c) and (a, b) 
are pushouts. But both properties hold iff (a), (b), and (c) are pushouts, as we 
conclude from well known universal pushout properties [23]. []  

We now study some consequences of  our notion of  parameter substitution. For 
ease of  notation we restrict ourselves to nonparametric actual parameters. The ideas 
can be carried over to the parametric case without any complication. 

Let p:F--*  P be a parametric specification, and let spec(F, -)  be the set of  
morphisms with source F. We take spec(F, -)  to be the objects of  a new category 
morph(F). The morphisms g:fo ~ f i  in morph(F) are those morphisms g in spec  
satisfying fog ffi ./'1. There is an obvious forgetful functor U(F):morph(F) ~ spec 
sending e a c h f t o  its target. 

Let param(F) be the full subcategory of  morph(F) consisting of  all parameter 
assignments. By our pushout approach to parameter substitution we can associate 
with each parametric specification p : F--> P a functor 

II  : param(F)  ---> morph(P),  

sending the left side of a pushout diagram like Figure 13b to its right side. To be 
more precise, let fi ,  f i  E Iparam(F) l and g:fo ~ fx E param(F). Furthermore, let 
f6, f~ ~ [ morph(P) [ result from the pushout of f i  andfi ,  respectively, and p, as shown 
in Figure 15. Then there is exactly one g' :f6 --~f~ E morph(P) making the diagram 
commutative, as follows easily from the definition of  a pushout. 

We now define II as sending each object f ~ I param(F)[ to the corresponding 
f '  ~ I morph(P) I forming the opposite side of  the pushout, and sending each morphlsm 
g to the unique g'  as explained above. The functor 

H U(P) : param(F)  ~ spec 

reflects the effect of  parameter substitution in that each actual parameter (together 
with a parameter assignment) is sent to the resultant specification. 

Considering the initial algebr l: a parametric specification p : F --, P gives a rule 
telling how to send an actual parameter type to a resultant type: If  f :  F - - ,  D is a 
parameter assignment, then init D is sent to init(f~IU(P)). Let this mapping be 
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denoted by ~. Lehmann and Smyth [15] as well as Thatcher et al. [25] insist that a 
parametric data type be a functor from a category of parameter types to a category 
of resultant types. We could easily extend • to a functor by introducing appropriate 
morphisms between initial algebras, as suggested by our specification morphisms. 
We feel, however, that this would be somewhat artificial in our approach. 

In practice, it is desirable that an actual parameter type A be "preserved" by ~, 
that is, that A be isomorphic to a reduct of A alp. Thatcher et al. [25] confine themselves 
to such cases by requiring "persistency." Corollary 4.4 and Proposition 3.11 give us 
sufficient conditions under which we can guarantee this: If  a parametric specification 
p:F---> P and a parameter assignment f :  F ~ D are both extensions, then init D is 
isomorphic to a reduct of (init D)~ = init( ~f~-I U(P)). It seems to be quite natural to 
have p be an extension and f be true, but unfortunately this is not the case with f 
being full, as Example 6.5 shows. If  we allow, however, for nonful lf ' s ,  the parameter 
type is not preserved in general. This is illustrated by the following example. 

Example 6.7 

F a:-->s P a:---~s 
b :-->r P > b :-->r 

c:s--> r 
d:r--> s 

D1 a :-->s 
e :-*s 
b :-->r 

p.o. 

p,  

c(a) = b 
d ( b )  = a 

D2 a : ---~$ 

e :--.->s 
b :--->r 

e : 3 - - >  r 

d:r--> s 

c(a) = b 

d(b) = a 

Obviously p is an extension a n d f i s  true but not full. init Da has carrier {a, e, b}, 
disregarding the sorts, but init D2 has carrier {a, e, b, c(e), d(c(e)) . . . .  }. So we cannot 
have isomorphism. 

The situation is more satisfactory if we are content with preserving the actual 
parameters only as subalgebras of reducts of the resultant types, since p and f need 
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only be true in order to guarantee this. In such cases the actual parameter type can 
be "polluted" only by introducing new elements. Actually, this is desired in some 
cases, for example, if exception or error constants are to be added. 

7. Conclusion 

We have introduced a conceptually simple but powerful notion of  implementation of  
abstract data types as a relation between their equational specifications, and we have 
made precise the operations of  parameter assignment and substitution when dealing 
with parametric specifications. In both cases we have made profitable use of  pushouts 
in the category spec of specifications. 

Corollary 5.6 shows that the steps of a multilevel implementation can always be 
composed to form an overall implementation. While there is no general composition 
construction, our results suggest a method utilizing pushouts that seems to cover most 
practical cases. There is one nonsystematic step consisting of, roughly speaking, 
finding a canonical term algebra. In the case of  full implementations, the same 
method works with one additional nonsystematic step consisting of, roughly speaking, 
the completion of  partially defined operations. 

The notion of  implementation developed so far does not apply directly to para- 
metric specifications. Of course, we can first substitute actual parameters until we 
have a nonparametric speofication and implement the latter. It would, however, be 
important to have "parametric implementations" that transform to implementations 
in our sense if actual parameters are substituted consistently. 

Our approach to parametric specifications and parameter substitution defines the 
rules telling how to construct new specifications by substituting actual parameters for 
formal ones. The concept of parameter assignment as a morphism in spec allows for 
rather loose and flexible relationships between formal and actual parameters: para- 
metric actual parameters and different sorts and signatures can be handled as well as 
the assignment of  the same actual sort or operation to different formal sorts and 
operations, respectively. Formal parameter conditions can be formulated as equa- 
tions, and the existence of  a parameter assignment implies that the actual parameter 
satisfies these equations. 

The definition of parameter substitution by pushouts implies a functor from the 
category of  parameters to the resultant specifications, where the category of  param- 
eters depends on the parametric specification at hand. We briefly indicate a connec- 
tion to the semantical approach in [25], where parametnzation is understood to 
define a functor between categories of  algebras. Quite a different semantical approach 
to parametrization is given in [15] in connection with the stepwise solution of  systems 
of domain equations as introduced by Scott [24]. A critical comparison of  these two 
semantical approaches is given in [25]. 
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