
On the Theory of Specification, Implementation,
and Parametrization of Abstract Data Types

H . - D . E H R I C H

Umversttat Dortmund, Dortmund, West Germany

ABSTRACT. In the framework of a category spec of equational speoficatlons of abstract data types,
tmplementations are defined to be certain pairs of morphlsms with a common target Th~s concept covers,
among others, arbitrary recurslon schemes for defining the derived operations It is shown that for given
single steps of a multilevel tmplementatlon, there is always a multtlevel tmplementatlon composed of
these steps, but there ts no effective construction of th~s overall implementauon Some suggestions are
gtven for practtcal composition of tmplementat~ons Utdlzmg pushouts Parametric specifications and
parameter assignments are defined to be spectal morphlsms in spec, and parameter substitution ~s made
precise by means of pushouts Since actual parameters can agam be parametrtc, parameter subsututton
can be tterated. Thts tterauon ts shown to be assoctatwe Whtle the subject is being treated on a syntactical
level in terms of speclfieauons, the imtlal algebra approach ts adopted as providing an appropriate
semantics for spec~ficauons, and the effects of the present concepts and results on the initial algebras are
studied

Categories and Subject Descriptors: D.3 1 [Programming Languages] Formal Definmons and Theory,
D 3 3 [Programming Languages] Language Constructs--abstract data types, F.3.1 [Logics and Meanings
of Programs] Specifying and Verifying and Reasomng about Programs--specificatwn techmques, F 3 2
[Logics and Meanings of Programs] Semantics of Programming Languages--algebrmc approaches to
semantics

General Terms: Languages, Theory

Addmonal Key Words and Phrases" abstract ~mplementaUon, algebraic speclficauon, algebras, category
theory, data types, equational specification, ~mplementat~on, parametrization, parametnzed specification

1. Introduction

Equat iona l specifications of data abstractions and abstract data types are considered
to be a promising design tool m software engineer ing [14, 16, 28]. The theoretical
basis of this method has been investigated by several authors [4-11, 14, 20, 25-27]
utilizing initial algebras or algebraic theories.

In this paper we concentrate on two concepts that are central to the theory of
abstract data types, namely, implementa t ions and parametr ic specifications. There
are several approaches to make the not ion of implementa t ion precise: as a relat ionship
between algebras [14] or between specifications and algebras [6, 7, 11]. A more
general funct ional approach is described in [20]. The approaches to parametr iza t ion
[15, 25] model the idea of a type constructor: a parametr ic data type is considered to
be a functor sending parameter types to a resultant type.

We consider the concepts of implementa t ion and parametr iza t ion on a syntactical
level, that is, as a relationship between specifications. Our choice of terminology and
no t auon may need some justif ication, since it is not yet widely used in computer
science. We use the language (but no deeper results) o f category theory because we

Author's address Abtedung Informatlk, Umversitat Dortmund, Postfach 500500, 4600 Dortmund 50,
West Germany

Permission to copy without fee all or part of this material is granted provided that the cop~es are not made
or distributed for d~rect commercial advantage, the ACM copyright notice and the title of the publication
and ~ts date appear, and notice Is given that copying is by permission of the Association for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific permission

© 1982 ACM 0004-5411/82/0100-0206 $00 75

Journal of the Assoclauon for Compuung Machinery, Vol 29, No I, January 1982, pp 206-227

Abstract Data Types 207

feel it is most appropriate for the material presented here. A great deal of the
literature cited in this paper makes more or less explicit use of categorical concepts,
and we are also encouraged by the availability of excellent introductory texts in
category theory [1, 12]. The language of categories provides a clean and perspicacious
way to deal with objects, together with certain relationships (morphisms) between
them, in a closed and consistent system of notation. In comparison with more
conventional notations, it helps to reduce the amount of notational detail, thus
achiewng more concise and elegant formulations. We found it especially advanta-
geous to utilize the categorical concept of a pushout, both for implementation
composition and parameter substitution.

Our mathematical framework is a category named spec: the objects are specifica-
tions, and the morphisms are certain pairs of mappings on the sorts and the
operations. Associated with each specification there is a category of algebras (satis-
fying the specification), and there is an initial algebra in this category determined
uniquely up to isomorphism [11-13]. This imtial algebra serves as a semantics of the
specification. While we develop our notions on a purely syntactical level, we discuss
semantical issues by considering the effects on the associated initial algebras.

In Section 2 we give a brief exposition of the general algebraic background used
in the paper. For more details we refer to the literature [1, 12, 13, 19]. In Sections 3
and 4 we develop our specific mathematical machinery, that is, the category s0ec of
specifications. The notions of sufficient completeness and consistency in [14] are
reflected by special morphisms.

In Section 4 we show that soec has pushouts (in fact, s0ec is cocomplete), aiad we
prove some useful theorems about what properties of morphisms carry over to
opposite sides of a pushout. The main idea in utilizing the categorical pushout
construction is that pushouts describe, roughly speaking, how to build a new object
by combining two objects while identifying certain parts of them. A simple instance
of a pushout in the category of sets is the union of two sets. Pushouts have been used
in the algebraic theory of graph grammars [21, 22] to describe the substitution of
subgraphs by graphs and to handle at the same time the connections to the rest
graph. In this paper we have two applications for pushouts: they describe how to
glue implementation steps together and how to substitute actual parameters into
parametric specifications.

In Section 5 we define implementations to be certain pairs of morphisms with a
common target. This definition is general enough to include arbitrary recursion
schemes for defining the derived operations used for implementation. Our main
results concern the composability of implementations. We show that the single steps
of a multilevel implementation can always be composed, but there Is no general
effective composition method. We give some hints and suggestions for a practical
composition method utilizing pushouts, where the single nonsystematic step consists
of finding a canomcal term algebra [6, 11]. Special cases of interest, called full
implementations, can be composed in nearly the same way, but there is one more
nonsystematic step consisting of, roughly speaking, the completion of partially
defined operations.

Parametric specifications are defined in Section 6 to be certain morphisms in spec,
embedding a formal part into a specification. This notion coincides with that in [25]
for the special case where the parameter conditions are equations. For parameter
assignments we allow for a great deal of flexibility by requiring that they are
morphisms in spec. Thus actual parameters may have more operations than pre-
scribed by the formal parameter, and different formal sorts and operations can be
assigned the same sort and operation, respectively. For example, from array of key

208 H.-D. EHRICH

and entry we can get array of nat and int, array of int and (stack of entry), array of
int and int with the same int, etc.

Parameter substitution is made precise by means of pushouts. Since it should again
be possible to have parametric specifications as actual parameters, parameter substi-
tution can be iterated. We show that this iteration is associative.

A given parametric specification defines a category of possible parameters that
may be substituted for the formal part. Our pushout approach results in a functor
from this parameter category to spec. Thus, we are not so much concerned with type
constructors as in [15, 25] but with "specification constructors" as proposed in [3].

2. Algebraic Background

Let set be the category of sets with functions as morphisms. If S ~ I set I (the class of
objects in set), we denote by sets the comma category whose objects are functions
,4 :.4 -~ S, S f'Lxed, and morphismsf:,4 --~ B are functionsf:~,/--, B such that .4 = f B
(cf. Figure 1). Morphism composition is written from left to right, that is, xfg instead
of the conventional g(f (x)) .

If we call the elements of S sorts, we may view objects in sets to be "S-sorted sets,"
that is, sets with a sort in S attached to each element. The objects of sets are in
bijective correspondence with S-indexed families of disjoint sets; for ,4 :.4--~ S define
,4~ to be the set of all a E .4 such that a,4 = s. Many authors use S-indexed families
without the disjointness requirement. Morphisms in sets are mappings leaving the
sort fixed.

Let S E I setl be a set of sorts. By S*(S +) we denote the set of (nonempty) words
over S. An object ft E Isets+l is called a signature over S. I f x E S* and s ~ S, an
element (w ~-~ xs) E ~ is called an operation (-symbol), xs its index, x its domain, and
s its codomain. Goguen et al. [11] use "type," "arity," and "sort" for our "index,"
"domain," and "codomain," respectively.

Given a signature ~t over S we define an endofunctor

: sets --~ sets,

as follows: Each S-sorted set X of "variables" (or "constants") is sent to the S-sorted
set X~ := {([xl xp]w ~-, sp+l) l w E ~, x, E X, wf~ = sl . . . s~p+l, x ,X = s, for
1 _< i _< p} of all simple or atomic formal expressions consisting of an operation
symbol applied to an appropriate p-tuple of variables. The source set of ~Y~ is a
set of strings over an alphabet consisting of X, f~, and the symbols [,], and ,. Mor-
phismsf: X--* Y E sets are sent to the corresponding variable substitutions, that is,

. . . , xp] ,o [x , f , xd] ,o .

Definition 2.1. An ~2-algebra is a pair ~¢ -- (,4, 6), where .4 ~ I sets I is an S-sorted
carrier set and 6 :,4 ~ ~ .4 ~ sets is the operational structure.

6 describes the operations of the algebra by associating a value with each formal
expression [al av]w. Thus, for fixed operation symbol w we have the associated
operation

6o:A,, x . . . x A~p---~ A,p+,:(al av) ~ ([al av]w)&

where "4s is the subset of all elements in ,4 of sort s.

Definition 2.2. ~-alg is the category of all ~2-algebras. The morphisms
f:(,4, 6) --* (`4', 6') are mappings of the carriers f : ,4 ---, `4' such that 6 f = (f ~) 6 '
(see Figure 2).

Abstract Data Types

FIGURE 2

S

FIGURE !

A ~ ~ , A [al ap]w, ~ ~a

^ ~' ~,
A ' a , A ' [a~f, avfl¢o , a f

209

Let f~o, f~l be signatures over sort sets So and S1, respectively. I f So C S1 and
9,o C ~1, there is a forgetful functor

U: f~l-alg ---> f~o-alg,

sending each f~l-algebra d = (A1, 81) to the f~0-algebra d U - (Ao, 8o), where Ao is the
sorted subset of all elements in A 1 with a sort in So, and & is the restriction of 81 to
operation symbols in f~o and carder elements in Ao. Algebra morphisms f :d - - ->
d ' ~ Ol-alg are sent t o f U : d U - - * d ' U E ~o-alg, w h e r e f U is the restriction o f f to
Ao. I f d E Ol-alg, d U is called the reduct o f d induced by So and f~o or the (So, f~o)-
reduct of d .

A signature f~ over a sort set S determines an endofunctor

T~: sets ---> sets,

associating the sorted set XTa of all ~-terms over variables X with each sorted set X
of variables. Formally, XTe is the least sorted set Y containing X and being dosed
with respect to an application of ~, that is, the least Y such that (1) X C Y and
(2)WC Y ~ W~ C Y. Morphismsf: X---> X' are sent tofT~ given by (1) x (fT~) =
x f and (2) It1 tp]~(fTa) = [t~(fTu), . . . , tp(fTn)]o~; that is, fTa is the variable
substitution corresponding tof .

It is well known that for each X E I sets I, (XTn, Xy), where Xy: [tl tj,]¢o
[t~ t~,]o~, is a free f~-algebra over X, that is, for each f~-algebra (,4, 8) and each
mapping g: X---> A there is a unique ~-algebra morphism g'~:(XTa, Xy) ~ (.4, d)
extending g such that g = ,/g'~, where ~: X ~ XTu is the inclusion of generators.

Definition 2.3. The mapping Xa : XTu ---> [[X---> A] ~ A] : t ~ [g ~ tg*] is called
the evaluation of terms over X in (14, 8).

We are especially interested in equationally defined f~-algebras. Let E C YT~ x
YTn, given Y E I sets l. E is an S-sorted set, and its elements are called f~.equations
(or simply equations ff ~ is clear from the context). For each equation e = (t, t ') let
Ye be the S-sorted set of variables occurring in e (i.e., in t or t'). An ~-algebra
(A, 8) is said to satisfy equations E iff t(Yea) = ((Yea) for each equation e --
(t, t ') ~ E. Equations (t, t ') E E are conventionafiy denoted by t = t'.

Definition 2.4. An f~E-algebra is an ~-algebra satisfying the given set E of
equations, f~E-alg denotes the full subcategory of all f~E-algebras in ~-alg.

For each [2-algebra d = (A, 8), a given set E of equations determines a congruence
ce generated by the relation rE:

areb: a = t g " ~ A b = t ' g ~' for some (t = t ') E E and some g:Y--*A.

210 H.-D. EHRICH

The quotient algebra (XTEu, XT E) := (XTa, X'/)IcE is known to be a free f~E-algebra
over X [19]. Thus (OT~, ~) is an initial object in ~E-alg: since there is a unique
mapping from O to each X, there is a unique morphism from this initial algebra to
each f~E-algebra.

Initial objects in categories are unique up to isomorphism. Therefore isomorphism
classes of initial algebras are useful semantic domains for interpreting syntactic
structures [11, 13]. We will not differentiate between isomorphic algebras. By "the"
initial algebra we thus mean its isomorphism class or any representative of it.

3. Specifications

Definition 3.1. A specification is a triple D = (S, ~, E) , where S is a set of sorts,
f~ is a signature over S, and E is an S-sorted set of f~-equations.

As shown in the previous section, with each specification D and each S-sorted set
Xof variables the free algebra over X can be associated uniquely (up to isomorphism).
The initial algebra, that is, the free algebra over O, is called init D.

We give some examples using the notation of Guttag [14]. Thus to:s1 × s2 x . . .
x sp ~ Sp+l means that sis2 .. • spsp+l is the index of the operation ~o. Signatures and
equations are separated by horizontal lines.

Example 3.2

Db true:-->bool Dn 0 :--->nat

false :-->bool succ: n a t --> n a t

These are very basic specifications without equations. Clearly, init Db is a two-
element set, and init Dn is isomorphic to the set of natural numbers generated by the
constant 0 and the successor function.

Example 3.3.
items:

D,,b is obtained by taking Db and Dn and adding the following

eq:nat x n a t - - * b o o l

if-then-else-fi:bool × n a t x n a t ~ n a t

eq(O, O) = true
eq(O, succ(n)) =false if true then n else m f i = n
eq(succ(n), O) =false i f false then n else m f i = m

eq(succ(n), succ(m)) = eq(n, m)

The initial algebra init Dnb has as reducts init Db and init D,,, connected by an
equality test and a branching operation.

Example 3.4

Da new:-->array
store: array x n a t x n a t ~ array

read: array x nat---> n a t

read(new, n) = 0
read(store(a, n, m), p) -- if eq(n, p) then m else read(a, p) f i

Specification Dnb must be added to obtain a complete specification, init Da behaves
like an array with indexes and entries in init Dab • Actually, Da specifies an array
whose entries are stacks of nat, but only the top element of the stack can be accessed.
Thus Da does not specify array of nat according to correctness criteria imposed by
Goguen et al. [l l]. However, it serves its purpose as a useful example in our context.

Abs t rac t Da ta Types

f~o g ' ~ o x f ,o 2

s~ ,st ko h ,s, }o h ~s,

FIGURE 3 FIGURE 4

211

E x a m p l e 3.5

Ds create :--->stack
push : s t a c k × array --> s t a c k

pop: s t a c k ---> s t a c k

top: s t a c k ---> array

pop(create) = create top(create) = n e w

pop(push (s , a)) = s top(push(s , a)) = a

Specification Da has to be added in order to complete this specification. In the first
equations, errors are usually introduced. We avoid doing so in order to keep the
examples small and complete. Equational specification of error handling is treated in
[11], and [10] contains a semantic approach to errors, in i t Ds is a stack whose entries
are taken from in i t Da.

Relationships between different specifications are generally given by relationships
among their sorts, signatures, and equations. Let D~ = (S,, f~, E~), i -- 0, 1, be
specifications. The sorts arc related by a mapping

h : So ---> SI .

Let h + : S~0 --> S~1 be the string homomorphism determined by h. Then we can relate
operation symbols by a mapping g: ~o ~ ~ , where ~,, i -- 0, 1, are the domains of
f~, such that f~oh + = gf~l (cf. Figure 3). Thus g is a morphism g: f toh ÷ ---> ~'~1 ~ sets~-.

Given h and g, we can m a p each term t over signature f~o and So-sorted set of
variables X to a term t (X f) over signature ~'~1 by simply replacing each operation
symbol ~:s~ x s2 x . . • x sv---~ sp+i by its image o~g: slh x s2h × . . . x sph ~ sp+lh.
Formally, for each X we have a morphism

X f : X T ~ o h ---> X h Tn I E setsi

(cf. Figure 4) sending each variable x of sort s to the "same" variable x but viewed
as having sort sh, and sending each term [tl tp]o~, where each t, has sort s, and
o~ has index s~ x . . . x sp --~ s,+l, to the term [t ~ (X f) t v (Xf)] (o~g) , where each
t d X f) has sort s,h and w g has index slh x . . . x sph --* Sp+xh.

Letting X vary over So-sorted sets, we get a natural transformation

7: T.oh ~ hT.,,

where Taoh and h Te, are functors from setso to sets, sending So-sorted sets of variables
X to S~-sorted sets of terms.

Let Eo C YoT~ o × YoT~ o be an So-sorted set of equations. By mapping both sides
of each equation by Y o f , we get an Sl-sorted set of equations

E o f : - {t(Yof) = t ' (Yo]')] t = t ' e Eo) .

If E C YT~ x Y T , is a set of equations over some signature f~ and some variable
set Y, we can deduce other equations from E by the usual rules of equational calculus,

212 H.-D. EHRICH

that is, substitution of terms for variables and the laws of equality. We write E t--
t = t ' if equation t = t' is deducible from E. Let

~ ' := { t = t ' l E F - t = t ' andt, t' E(3Ta}

be the set of equations without variables, also called constant equations, deducible
from E.

Definition 3.6. The category spec has specifications D = (S, f~, E) as objects, and
its morphisms f : Do ~ D1 are pairs of mappings f = (h, g), h: So ---* S~, g: f?,o ---> ~1,
such that (1) fl~h + = gf~l and (2)/~o2 ~ C El.

Condition (2) means that all and only the constant equations deducible from Eo
map to valid equations deducible from El. The obvious alternative of requiring that
all equations in Eo (and thus all those deducible from Eo) map to valid equations
deducible from E1 is too restrictive for our purpose. This would, for instance, restrict
proof methods for the correctness of implementations (cf. Section 5) to deductions in
equational calculus, whereas our weaker condition allows for term induction, as
suggested by Guttag's approach [14].

Each morphism f E spec determines a natural transformation f , as shown above.
Condition (2) in the above definition means that congruent (w.r.t. Eo) constant terms
map to congruent (w.r.t. E0 constant terms. Thus we can factorize O f by sending
each congruence class (w.r.t. Eo) of constant 9,o-terms to that congruence class (w.r.t.
E 0 of constant f~-terms that contains its image. This defines a mapping

Definition 3.7. A morphism f = (h, g) E spec is called an embedding iff h and g
are injective, f is called an [2-embedding iff h is bijective and g is injective.

Up to renaming, an embedding f : Do ~ D1 describes the situation in which Do is
a subspecification of D~, that is, So C S~, 9~o C f~ and/~o C / ~ (note that Eo C E1 is
not required). ~-embeddings denote the special cases where the sort sets are equal,
that is, only operation symbols are added.

I f f = (h, g) and X E Isetsol, let (init DO ° be the reduct induced by Soh and
(f/~h+)g. Clearly, i f f is an embedding, there is an isomorphism from (f~oh+)g-alg to
~o-alg. We do not make this isomorphism explicit in our notation but consider
(init D1) ° to be an algebra in [~0-alg (i.e., we take h, g to be inclusions). The next
theorem relates embeddings to morphisms between the associated initial algebras.

THEOREM 3.8 Let f = (h, g) : Do --~ D1 be an embedding. Then ~ f : init Do
(init D0 ° is an f~o-algebra morphism.

The proof is straightforward by the definitions of j~ and f .
In what follows, special embeddings to be defined now will be of essential interest.

I f f = (h, g,) : D, ---> D2, i = 0, 1, are embeddings, let S~ = S,h, and f~' = (f~,h+,)g,.
Furthermore, let Tj = OTu,, j = 0, 1, 2, and T~ = f~Tu, h,, i = O, 1.

Definition 3.9. jq is called

(1) full w.r.t, fo i fffor each term to E T~ with a sort in St, there is a term t~ E T] such
that to = t~ ~/~2.

(2) full lff for each term t2 E T2 with a sort in S~, there is a term t~ E T] such that
t2= h E l~2.

(3) true iff for all terms t~, t2 E T], t~ = t2 E/~2 implies t~ = t2 E /~ f~ .
(4) extension (w.r.t. fo) ifff~ is a full (w.r.t. fo) and true embedding.
(5) enrichment (w.r.t. fo) i f f f i is a full (w.r.t. fo) and true ~-embedding.

Abstract Data Types

D., DI Do

\ /
Ds

FIGURE 5

213

These notions of extension and enrichment are compatible with those given in
[6, 7, 11]. Clearly, i f f l is full, it is full w.r.t, any f0. Full embeddings correspond to
sufficiently complete specifications, and true embeddings correspond to consistent
specifications, both in the sense of Guttag [14].

Referring to Examples 3.2-3.5, all inclusions Db --* Dnb, 1), ---* D,b, Dnb ~ Da,
Da ~ D,, Db ~ D~, etc., are extensions. If we add, for example, the equation
top(create) = top(push(s, a)) to Ds, we have a full inclusion D~ ~ D~ that is not true.
If we drop, for example, the equation top(create) --- new in D~, the inclusion D~ ~ Ds
is not full but true.

We give some immediate consequences of the above definitions.

PROPOSITION 3.10. I f f and g are both full (true) embeddings (extensions, enrich-
ments), so is fg.

PROPOSITION 3.11. Let f , : D, --~ D2, i = O, 1, be embeddings. With the notation of
Definition 3.9 we have

(1) I f S~ C S',, then f , is full w.r.t, fo /ff (init DO(Of,)U, D (initDo)(Ofo)Uo. Here U,
is the respective forgetful functor sending algebras to their carriers.

(2) f l is full i f f ~ is surjective.
(3) f , is true ifff~f, ts injective.
(4) f , is an extension iff Ofl is an isomorphism.
(5) f~ is an enrichment iff fDfl is an isomorphism and h is btjective. In this case,
(init D1) ° and init D1 have the same carrier set.

PROPOSITION 3.12. Let f , :D, ---> D2 be embeddmgs, i = O, 1, and let f~ be full
w.r.t, fo.

(1) I f f~:D~ --~ Do is any embedding, then f , is full w.r.t, f'ofo.
(2) I f f', : D', ---> D~ is a full embedding, then f~ f l is full w.r.t, fo.

THEOREM 3.1 3. Consider the situation depicted in Figure 5, and suppose that all the
morphisms are embeddings. I f fia is full w.r.t, fo3 and f24 is full w.r.t, fi4, then f24fi5 is full
w.r.t, fo3fls. (Note that the square need not be commutanve.)

PROOF. In order to facilitate notatmn we assume that all morphisms are inclu-
sions. Let 7", = ~Tu,, i = 0 5. Let to ~ To. Since fi3 is full w.r.t, fo3, there is a term
t, E /'1 such that to = t, E/~3. Thus we have to = t, E ~5, since f15 is a morphism.
Moreover, since fi4 is full w.r.t, fi4, there is a term t2 E T2 such that t~ = t2 E/~4 C/~5.
It follows that to = t2 ~ / ~ , proving the theorem. []

This theorem is of a more technical nature and will be utilized m Section 5 when
we are discussing constructions for the composition of implementations.

4. Pushouts

The categorical pushout construction provides our main technical tool for describing
how to put implementation steps together (Section 5) and how to apply parametric

214

FIGURE 6

H.-D. EHRICH

Do fi ,D, So h, ,$1 ~0 gl ,ill

D2 f4 , D3 $2 h4 ~ Sa ~ g4 ~ 03

(a) (b) (c)

specifications to actual parameters (Section 6). In this section we give the mathemat-
ical justification for these constructions by showing that they can be done in spec
and behave as desired.

Formally, a pushout diagram in a category is a square like that in Figure 6a (that
is commutative and has the additional property that whenever there are two morph-
isms f~: D1 ~ D~ and f] : /) 2 ~ D~ such that f , f~ = f2f'4, there is a unique morphism
k:D3 ~ D'3 such that fak = f'a and f4k = f'4. In this case the pair of morphisms
(fa, f i) is called the pushout ofjq and f2, and Da is called the pushout object. If a
pushout exists, it is determined up to isomorphism. A category has pushouts iff a
pushout exists for each pair of morphisms (fl, f2) with a common source.

The relevance of pushouts for our purposes lies in the fact that they gwe a neat
and concise description of the following situation: Given two objects (D1 and D2 in
Figure 6a), we want to construct a new object (/93) by combining them while
identifying certain parts of them (as given by Do, f i , and f2). The pushout construction
gives--in a rough sense--the "minimal" such Da, and the morphisms fa and f i tell
us what happens to the components D1 and D2, respectively, in the "combination"
Da. That is why it is important to know which properties fa and jq have, dependent
on those o f f i and f2.

We show that there are pushouts in spee, and we investigate how relevant
properties of morphisms carry over to opposite sides of pushouts.

THEOREM 4.1. spee haspushouts.

PROOF. Let f l : Do ~ D1 and f2 : Do ~ /) 2 be given. We construct fa: O1 "~ Da and
f i :D2 ~ Da such that the diagram in Figure 6a is a pushout. Let f -- (h, g,) and
D~ = (Sj, f~, E~) for 1 _< i ___ 4 and 0 _< j _< 3. Let ha, h4 and ga, g4 be given by the
pushouts in set depicted in Figures 6b and c, respectively. Then we have the
commutative diagram depicted in Figure 7 (without arrow £a). Since the front
diagram (6c) is a pushout, there is a unique mapping £a:£3 ~ Sj- making the
diagram in Figure 7 commutative.

Now we have Sa, £a andfa = (ha, ga),fi = (h4, g4), and we know that fhh~- = ga£a
and £zh~ = g4~a hold. We still have to construct equations E~ such that for D3 =
(Sa, £3, Ea), the diagram in Figure 6a is a pushout.

Equation set Ez is defined as follows:

It is evident thatfa and f4 are morphlsms in spec.
That the diagram in Figure 6a is a pushout follows directly from those m Figures

6b and c being pushouts: if f5 : D, ~ /) 4 and f6:1)2 ~ D4 are any morphisms such that
flJ~ = f2j~, there are morphisms hs, h6 and g~, g6 in set such that h,h5 = h2h6 and
g,g5 = g2g6; respectively. Since Figures 6b and c are pushouts, there is exactly one
h:S3 ~ $4 and exactly one g:0a ~ ~4 such that hah = hs, h4h = h6 and gag = gs,
g4g = g6, respectively. Thus there is at most one morphism f : D3 --~ D4 in spec such
that f a f = f5 and f 4 f = f6, namely, f = (h, g). That f is indeed a morphism follows
easily from its construction and that of Ea. []

Abstract Data Types 215

g2

s~

_JI

s~

fi2

gl

g4

hi"

h~

- s~

/

~3 ~'~" ~3

FIGURE 7

We note in passing that (0, O, 0) is an initial object in spec. Thus spec has fimte
colimits [23]. spec can even be shown to be cocomplete since there are arbitrary
coproducts.

There is some similarity between pushout constructions in spec and those in the
category of graphs [21, 22] as used in the theory of graph grammars. The connection
is established by associating the syntax graph [11] with each specification: the edges
are fL and the incident nodes are those elements in S* occurring as domains or
codomains of operations in f]. Then the forgetful functor sending specifications to
their syntax graphs preserves pushouts (cf. [5]).

Consider Figure 6a. From the construction of pushouts in spec we have immedi-
ately that iff i is an (~2-) embedding, the same holds forfi.

THEOREM 4.2. I f f , and fz are both full embeddings, so are f3 and f4.

PROOF. Since f i , fz and consequently f3, Jq are embeddings, we facilitate our
notation by assuming that they are inclusions. Then we have $3 = $1 tJ $2, So =
S~ n $2 and ~23 = ~'~1 [-J ~'~2, ~~0 = ~'~1 ('~ ~2, as well as E3 =/~1 tO/~2,/~0 C/~, O ~2, by
the pushout construction in spec. If bothf i andf2 are full, we can reduce each term
t ~ 7"3 (again, T, := OTs~,) with a sort in $2 to an equivalent term t ' E 7"2 (actually, To)
by a bottom-up reduction, removing operation symbols in ~2I - ~22 and f~2 - ~2,,
respectively, by applying ~ and ~2, respectively. Thusf i is full. By symmetry, f3 is
full too. []

THEOREM 4.3. I f f l and fz are both true embeddings, so are f3 and f4.

PROOF. Again we assume that f i )q are inclusions, that is, that we have the
same situation concerning the sorts and operations as in the previous proof. Let/~;,
i = 1, 2, be the subset of/~, consisting of all equations in which only operation
symbols from f~o occur. Trueness off i andf i means that

Go = ~ i = ~ = ~ , n ~.,.

We now want to show that f i is true, that Is,/72 = / ~ , w h e r e / ~ is the subset of/~3
consisting of all equations in which only operation symbols from f~z occur. That f3 is
true will then follow from the symmetry of the situation.

Clearly/~2 C / ~ , by definition of morphism in spec. Let t = t ' E / ~ , and let

t = to --> tl --> t2 --> • • • --> tn = t '

be a sequence of terms such that t,+t results from t, by substituting ~',+1 for a subterm
~', of t,, accordingotO the equation z, = ~-,+, E E3. From the pushout construction we
have E3 = E~ U E2.

216

FIGURE 8

D I -*Do

D2

H.-D. EHRICH

Let tp ~ tp+~ be the first step in which an equation in/~1 - /~2 is applied, say
o = o'. (If there is no such step, then t = t' ~ 82, and we are done.) Subterm o of tp
can have only operation symbols in ~o. We may assume that o is a maximal subterm
of tp with this property. In o', at least one operation symbol to ~ ~2~ - f~o occurs, and
all such to's must be removed in the further reduction process. We assume that this
happens in the steps immediately after tp ~ tp+l, without being interrupted by
reductions affecting only subterms independent from o' (those using only 82 should
have been executed before; others can be postponed).

Consequently, reduction goes on with equations in/~l, say tp+~ ~ . . . ~ tp+r, until
all to ~ f~l - ~o have been removed from subtree o' in tp+~. (Sincej~ is true, there can
be no intermediate steps using/~[- / ~ .) Because of the maximality of o, the effect
of these steps can be achieved by a single step according to, say, o = o" ~ / ~ . Since
f i is true, we h a v e / ~ C / ~ . This means that there is a reduction t ~ . . . ~ tv+r
without using equations in/~1 - - / ~2 . By induction, there is a reduction t ~ . . . ---, t '
using only equations in/~2, that is, t = t ' E/~2. This proves that/~ ~ =/~2, that is, that
f4 is true. By symmetry,fa is true. []

COROLLARY 4.4. I f f i and f2 are both extensions, so are f3 and fi . I f additionally f l
is an enrichment, so is f4.

5. Implementations

Subsequent to Guttag's paper [14] there have been several approaches to making the
notion of implementation mathematically precise [4, 6, 7, 11, 20]. Our approach here
is based on that given in [4], and there are some connections to the approaches of
Goguen et al. [11] and Ehrig et al. [6, 7]. We will comment on these connections at
the end of this section.

Roughly speaking, a specification D1 implements a specification Do if the opera-
tions in Do can be associated with derived operations in D1 realizing the behavior
expressed in the equations of Do. If we add new operation symbols for the derived
operations and corresponding defining equations to D1, we get another specification
/)2, and there are obvious morphisms from both Do and D1 to D2.

Definitton 5.1. An implementation o f Do by Da is a triple I = (D2, f , t), where
f : D~ --~ D2 is an f~-embedding that is full w.r.t, t and t: Do ~ D2 is a true embedding
(cf. Figure 8). I is called a full implementation i f f f i s full. DI implements Do (fully)
iff there is a (full) implementation I of Do by D~. We use the notation I : D1 ---~ Do
if I is an implementation of Do by D~, and we write D1 >> Do if D~ implements Do.

Please note that our defimtion of implementation is general enough to include
(1) arbitrary recursion schemes for specifying the derived operations used for
implementation, (2) identification of (derived) operanons that are different in D~,
s m c e f n e e d not be true, and (3) the existence of "redundant" items in D2 that have
no interpretation in Do, since t need not be full.

Example 5.2. We give a simplified version of Guttag's symbol table [14] (cf. also
[6, 7]) and implement it by the specification D, of Example 3.5. We assume that
idenufiers and attributes have already been implemented by nat.

Abstract Data Types

D~y is Dnb (see Example 3.3) extended by

init :--*Sytb
begin: Sytb ~ Sytb

end: Sytb ---> Sytb
add: Sytb x nat × nat---> Syth

retrieve:Sytb x nat---> nat

end(init) =
end(begin(s)) =

end(add(s, i, a)) =

retrieve(init, 0 =
retrieve(begin(s), i) =

retrieve(add(s, i, a), j) =

/n/t
S

end(s)

0
retrieve(s, i)
i f eq(i, j) then a else retrieve(s, j) f i

217

In order to implement Dsy by Ds, we specify D2 as follows:/)2 consists of D8 plus the
following operations and equations:

init' :--->stack
begin' : s t a c k ~ s t a c k

end' : s t a c k ~ s t a c k

add':stack x n a t x n a t ~ s t a c k

retrieve' : s t a c k x na t ~ na t

intt' = push(create, new)
begin'(s) = push(s, new)

end'(s) = push(pop(pop(s)), top(pop(s)))
add'(s, i, a) = push(pop(s), store(top(s), i a))

retrieve'(create, l) = 0
retrieve'(push(s, new), i) = retrieve'(s, i)

retrieve'(push(s, store(a, k, e)), i)
= i f eq(k, i) then e else retrieve'(push(s, a), i) f i

Clearly, the inclusion f : Ds ---> D2 is a full embedding, so we have a full implemen-
tation. We define t = (h, g) : Dsy ~ /) 2 by

h : S y t b ~-> s t a c k

o ~ o for all other sorts o,
g:to ~ ~0' for 6o E { init, begin retrieve},

~- ~ "r for all other operations r.

The correctness proof for this implementation consists of showing that t is a true
embedding. The first part is to show that t is a morphism, that is, that the constant
equations of D,y carry over to valid equations in D2. This is a straightforward exercise,
and it has been done for several examples in [14]. The second part is to show that t
is true. In our example it is easy to see that init', begin'(s), begin'(t), add'(s, i, a),
add'(t, i, a) are pairwise unequal in D2 if s and t are unequal. A general possibility for
giving this part of the correctness proof is to give an "interpretation function" • as
is done in [6, 7, 14]:

• [create]= init
¢P[push(s, new)] = begm(tb[s])

alP[push(s, store(ar, i, at)] = add(tb[push(s, ar)], i, at)

Next we consider the semantic issues of our notion of implementation, that is, its
effect on the associated initial algebras.

218 H.-D. EHRICH

D1 *Do D1 Do D3 Da

Da *De Dz -~ Da D1 *Do D1 " D o

, \ / \ / \ /
1)4 1)4 D2 D2

(a) (b) (c) (d)

FIGURE 9

PROPOSITION 5.3. I f I = (D2, f t) is an implementation of Do by D1, we have

(1) an f~l-algebra morphism Of: in i t D1 --~ (init D2) 1 and
(2) an injective~o-algebra morphism O~:init Do --~ (init D2) ° such that
(3) (init D1)(f~f)U1 D (init Do)(f~)Uo.

I f I is full, f~f is a surjective f~ralgebra morphism. (init Dz) 1 and init Dz have the same
carrier.

The proof is immediate from the definitions and from Proposition 3.11.
The following proposition gives some more simple consequences that are useful

for getting new implementations from given ones.

PROPOSITION 5.4. Let I = (Dz, f , t) : DI - -~Do be an implementation.

(1) I f (D4,f ' , t ') : Da --~ 192 ts a (full) implementation, then we have a (full) imple-
mentation (D4, f ' , tt') : D3 --~ Do (cf. Figure 9a).

(2) l f (D4, f ' , t '):D2 - -~Da is a (full) implementation and I is full, then we have a
(full) implementation (D4, f f ' , t') : D1 - -~ D3 (cf. Figure 9b).

(3) I f f " : D3 ~ D1 is a full ~-embedding, then we have an implementation (D2, f ' f , t) :
Dz - -~ Do that ,s full iff l is full (cf. Figure 9c).

(4) I f t' :Da ~ Do is a true embedding, then we have an implementation (D2, f , t't):
D1 ---~ Da that is full iff l is full (cf. Figure 9d).

For the special case where Do = D1 = D2, we see from (3) and (4) that a true
embedding t:D3 --~ Do yields a full implementation in the opposite direction, Do
---~ D3, and a full f~-embedding f : D3 ~ Do yields a full implementation in the same
direction, D3 ----~ Do.

In practice, it is essential that implementations can be done stepwise in multiple
levels. For example, if we have an implementation 11 of a symbol table in terms of
stacks (like that in Example 5.2), and if we have another implementation 12 of stacks
in terms of, say, arrays with integer top pointers, then it should be possible to
construct an implementation I of a symbol table in terms of arrays with integer top
pointers that is in some sense the composition of 11 and/2.

Considering Figure 10, we show that there is always an overall implementation
I : D2 ---~ Do if we are given 11 and 12. This will be an easy consequence of our next
theorem, which tells us that there is always an implementation of any Do by any D~,
provided that D1 supports a "sufficient number of items." Of course, this is a
necessary condition, too.

THEOREM 5.5. Let D~ = {S,, f~,, E,}, t = O, 1, be specifications. D1 implements Do
(D~ >> Do) iff there are two injective mappings

h : So --* $1 ~ set,
a:f~T~gh ~ O T ~ ~ setsr

Abstract Data Types

D z ~ D 1 -*DO

FIGURE 10

219

PROOF. In order to facilitate notation, we assume that h is an inclusion. Then we
construct I = (D2, f , t):D1 --->Do as follows: D2 = ($1, ~o + ~21, Eo + El + E') ,
where + denotes disjoint union, f is the obvious inclusion, t = (h, g) where g is the
obvious inclusion, and E' = (t ' = t"]([t '] ~ [t"]) E a}. Here It'] denotes the
congruence class containing t'. Actually, it would be sufficient if we include in E '
just one pair of representatives t ' = t" for each element (It'] ~ [t"]) E a. Then we
have a = ~t, that is, t is true, and for each t' E ~3T~ o there is a t" E [t']a such that
t' = t" ~ E'. Hencef i s full w.r.t.t. []

This theorem holds for full implementations, too. This can be proved following
the lines of the above proof, but we must introduce more equations in order to define
the derived operations co E ~1 totally: for each w E ~1 and each argument p-tuple
([tl], . . . , [tp]) of constant term classes (in OT~) , where at least one [t,] is not in
(OT~°h)a, we must introduce an equation (tl tp)~o = t, for some representatives
tl tp and some t ~ OTu 1 of the appropriate sort.

COROLLARY 5.6. D2 >> DI and Dt >> Do implies Dz >> Do.

Again, under the above mentioned condition, this corollary holds for full imple-
mentations too.

The proof of Theorem 5.5 is, practically, not very useful. Proposition 5.4, however,
gives some suggestions on how to construct compositions of implementations: con-
sidering Figure 10, we get an overall implementation I : D2 --->Do if we succeed m
finding an implementation I23:D2 --~,D3 or I43:D4 - -÷ 1)3 or, in case /2 is full,
140 :/)4 - -÷ Do. I2a must give derived operations based on D2 not only for the D~
operations, but also for the derived operations based on DI, given in /1 for the Do
operations. This means, practically, that 123 explicitly "reprograms" implementation
11 in terms of Dz. Considering Go, we must give derived operations for the Do
operations in terms of the/)4 operations, and these consist of all D2 operations plus
the derived operations used in/2 for the D~ operations. This means, practically, that
implementation 12 is extended explicitly in order to implement Do. The third
possibility, finding implementation 143, combines these features. It means, practically,
that I1 is "reprogrammed" in terms of I2.

In these constructions we uulize only part of the information available. For I23 we
do not make use of the derived operations of 12, and for/4o we do not exploit I~. 143
gives only a little improvement: it allows the use of 12, but still, not only the DI
operations but also the derived operations of 11 have to be implemented. The question
is whether we can do better.

In the case where f3 is an enrichment w.r.t, t3, Theorems 3.13 and 4.3 give a
pleasant construction of an overall implementation D2 ---~ Do (cf. Figure 11): the
pushout (Ds, fs, ts) of f3 and t4 gives immediately a true t5 and a composite
implementation,

(Ds, f4fs, t3ts) : D2 --->Do.

This means, practically, that the derived operauons for Do in terms of D~ (represented
by f3) have been translated automatically to derived operations for Do in terms of D2
(represented by f4fs), so that we have fully utilized what we had already.

220

FIGurtE 11

/)2 ~D, -"Do \ / \ /
D4 Da

H.-D. EHRICH

Unfortunately, in most practical cases f3 is not an enrichment w.r.t, t3. For example,
if we consider a stack implemented by an array with an integer top pointer, we would
like to express the idea that arrays whose contents differ only beyond the top are
equal as stacks. The correspondingfwould then not be true.

In such cases pushouts do not give composite implementations in general. This is
demonstrated by the following counterexample. We give only D1, D3,/)4,/)5 and fs,
t4, f i , t5, assuming that t3 and f4 are identities.

Example 5.7 (due to U. Lipeck)

DI: c l , c2 : ---*s f 3 D3: c l , c2 : --->s

dl, d2, d3:--*r) dl, d2, d3:--->r

t4 t5

D4: e b ¢2 : --->$ D5: ¢1, c2 : ---*$

d l , d2, d3:-->r f5 d l , d2, da:---~r
b:s--->r > b:s--~r

dl = b(Cl) Cl - - c2
d2 ffi b(c2) d~ = b(cl)

d~ = b(c~)

The morphisms are the obvious inclusions given by equal denotations. It is easily
checked that (Ds, fs, t0 is a pushout of f3 and t4, f3 is full, and t4 is an extension.
However t5 is not true, since in D5 we can conclude that dl ffi b(Cl) = b(c2) = d2.

This counterexample shows that implementations cannot be composed in general
by just taking the pushout. Moreover, pushouts are not extendible in general to
implementations by some simple modifications, for example, adding equations.

In a less direct sense, however, we can utilize pushouts very well in practical cases.
Let us consider a full w.r.t, t3 but nontrue f3. Such an f3 is most often given by two
nontrivial factors, f3 = f31f32, where f31 is true and f32 just adds equations (i.e., h32
and g32 are both bijective, thus f32 is full). Intuitively speaking, f3~ represents the
addition and definition of derived operations terminating for the relevant arguments,
while f32 expresses which items should be considered equal with respect to the
implementation.

Let f32: D~ ~ D3, and suppose we have an implementation (cf. Figure 12) 18 =
(D'3',f'3, t'3):D'3--~, 1)3, where f~ is an enrichment w.r.t, t~. Then we can construct
(Ds, f~, ts) as the pushout off31f'3 and t4. Theorem 4.3 guarantees that t5 is true, and
Theorem 3.13 gives us the desired result that I = (1)5, f4 f i , t3t'ats) is an implementation
of Do by D2.

The only nonconstructive step in getting I is to find an appropriate 18 such that f~
is an enrichment w.r.t, t~. But here we have a very special situaUon, and 18 has a

Abstract Data Types

D 2 lip D 1 ~ D O

D" 3 ~'~ D 3 D4

f5 ~ Dg

5

FIGURE 12

221

natural practical interpretation: finding la means intuitively that we must implement
a quotient structure, obtained by adding equations, in terms of the original structure.
This can be done by a "canonical term algebra" specification [6, 11] describing how
the operations on congruence classes are implemented as operations on a system of
distinguished representatives. It is well known that such a canonical term algebra
always exists [11], but it cannot be constructed by a general method [6].

I f 11 and Iz are full implementations and we want to get a full composite
implementation, we can do so by extending the above approach, making use of
Theorem 4.2, and Theorem 4.3 and Corollary 4.4, respectively.

Practically, a true but nonfull t4 decomposes most often into two nontrivial factors
t4 ~- t4tt42, where t4t is an extension and t42 describes the true injection of that
subspecification of D4 actually used for implementation into/)4. Let t42: D~ ~ / 9 4 ,
and suppose we have an implementation 14 = (D~', f~, t~):D4 ---~ D~, where t~ is an
extension. Then we have an implementation I = (Ds, f4f'4fs, tat'~t~):D2---> Do if
(Ds, fs, tD is the pushout of f3~f'3 and t4xt'4. Here we have another nonconstructive
step, namely, finding an appropriate/4. A practical way to find it is to add equations
that "make t42 full" to D4 thus getting D~'. Intuitively, this means that we have to
identify items not used for implementation (like an array with negative top pointer
in our example of stack implementation) with some items used for implementation.
Normally this is done by introducing exceptional "error" constants.

A more detailed discussion of application issues lies outside the scope of this paper.
One important aspect is that if we have proven implementation steps 11 and/2 correct
separately, we cannot conclude that an overall implementation built on these is
correct unless we have found la (and, in the case of full implementations, 14) and
corresponding correctness proofs.

The approach to implementation taken in [11] is related to a composition of two
special implementations in our sense. Considering Figure 10, implementation
De---> D1 corresponds to a Goguen-Thatcher-Wagner derivor from ~21 to f~2 (with
injective sort mapping f) if t4 is an extension, ~24 = ~21 + f~2, and f4 is the enrichment
where each operation o~ ~ ~21 is defined explicitly by equations of the form
w(x~ xn) = t and t is an ~ - t e rm over variables Xl x,,. If, in the second
implementation D~ ---->Do in Figure 10,)ca is bijective on sorts and operations, it
corresponds to the Goguen-Thatcher-Wagner congruence -=. Since ta is true, we
have init Do C init Da = init D 1 / - (cf. Theorem 3.8 and Proposition 3.11). Ehrig et
al. [6, 7] generalize the Goguen-Thatcher-Wagner derivor by a functor. An imple-
mentation in their sense is obtained by giving a functor from D2-alg to Dl-alg,
sending init De to init D1. Then f3 defines a surjective homomorphism from init D1
to init Do if t3 is an identity and fa has the above property.

222 H.-D. EHRICH

6. Parametric Specificatzons

Most specifications of parts of programming systems are parametric; that is, they
refer to other parts of the system by means of formal entities to be substituted later,
possibly in different ways. We g~ve the well known example of a "stack of something."

Example 6.1
P~ create :-*stack

push : stack x entry -~ stack
pop: stack --, stack
top: stack --> entry

e0 :-->entry

pop(create) = create top(create) = e0
pop(push(s, e)) -- s top(push(s, e)) = e

Again we avoid introducing errors (cf. Example 3.5). What entry and eo are is left
open. They are formal parameters that can be substituted by actual parameters to get
stack of nat, stack of array, etc. The formal parameter part constitutes a specification
itself:

F~ = ((entry}, (eo:-->entry}, O),

and we have an embedding p~: F~ ---> P~ (here, p~ is an inclusion).

Definition 6.2. A paramemc spectfication p is an embedding p:F---> P in spec. F
is called the formal parameter part ofp.

We identify nonparametric specifications D with the parametric speofications
(0, O, O) ---, D. The generality of the above definition allows not only formal sorts
and operations, but formal equations too. The idea is that only actual parameters
satisfying these equations can be substituted. Thus, in order to substitute an actual
parameter for a formal one, we have to give an assignment of actual sorts to formal
sorts and of actual operations to formal operations such that the equations resulting
from the formal equations are valid in the actual parameter.

The actual parameter may itself be a parametric specification. For example, stack
of (stack of entry) may be a useful concept. So, in general, we have the situation
depicted in Figure 13a. We utihze pushouts in order to define what comes out ifpo
is applied top1 by means of parameter assignment f (Figure 13b). We must, however,
first define what a parameter assignment is, making precise what it means that the
formal equations are valid in the actual parameter. We do this in two steps, defining
the special case of a nonparametric actual parameter first.

Definition 6.3. Let p~:F~ --> P~, i = 0, 1, be parametric specifications, and let
f : Fo ---> P1 be a morphism in spec. f is called a parameter assignment from po to pl
in each of the following cases:

(1) F1 = (0, 0 , 0) and init P1 satisfies E0f, where E0 are the equations of Fo.
(2) F~ ~ (0, 0 , O) and, for each parameter assignment f~ : F~ ---> D in the sense of

A H !

case (1), init P2 satisfies Eof~, where f~' = ff~ and (/)2, pl, f~) is the pushout of
pl and fl .

The second part of this definition implies that the parameter conditions E0 hold in
each actual parameter that can be obtained as a result of applying p~ to some
nonparametric specification in the sense of the following definition.

Definition 6.4. Let p~ :F~ ~ P , i = 0, 1, be parametric specifications, and let
f : Fo --~ P~ be a parameter assignment from po to p1. By an applicanon ofpo to p1 by

Abstract Data Types

(a) Fo P ,Po (b) F0 po ,Po

F~ P~ ~P~ F~ Pt ~Pm p~P '~

FmtJRE 13

223

f we mean the pushout of Figure 13b. The result of this application is the parametric
P . specification p2 = pxpo. F~ ~ P2.

That p2 is indeed a parametric specification is clear from the remark preceding
Theorem 4.2. It follows immediately from our pushout theorems in Section 4 that if
po, p~, and f are either full or true or both, then the same holds forp2.

Example 6.5
Pa new:--->array

store:array x key x entry---> array
read: array x key--> entry

read(new, k) = eo
read(store(a, k, e), h) = i f equ(k, h) then e else read(a, h) f i

Fa e0 :--->entry
equ:key x key--> bool
true :-->bool

false :-->booi
if-then-else-fi: bool x entry x entry--> entry

equ(k, k) = true

Pa is understood to consist of all the sorts, operations, and equations given
above. Then pa : Fa ~ Pa IS a parametric specification, and each actual relation sub-
stituted for equ is required to be reflexive. Of course, additional equations, say, for
symmetry and transitivity of equ, should be added, together with equations for if-
then-else-ft.

Let f : Fa --o Dnb (cf. Example 3.3) be given by

h: entry ~-> nat g: e0 ~-> 0
key ~-> nat equ ~-> eq

bool ~-> bool true ~ true
false ~-> false

lf-then-else-j~ ~ if-then-else-ft

In order to prove tha t f i s a parameter assignment, we must prove that eq(n, n) = true
holds in init Dnb. This can be proved by induction. The result of applying pa to Dnb
by means o f f is D~ (cf. Example 3.4). Now le t f ' : Fs --> Pa (cf. Example 6.1) be given
by

h': entry ~ array g' : eo ~-> new

Since Fs has no equations, f ' trivially is a morphism. The result of applying pe to pa
by means o f f ' is

p~a:F, ~ Psa,

where Pea IS P~ extended by the sort stack and the stack operations and equations,
with entry replaced by array and eo replaced by new.

The result of first applying pa to p~ to get pea A stack of array of key and entry and
then applying pea to Dnb tO get D, A stack of array of nat and nat (cf. Example 3.5)

224

F1ourtE 14

F2 p2

FI

p0
Fo ,Po

I

fi (a)] f~
pl ,j P° ~P3"I"

/

(c) :~ (b) [f~'

H.-D. EHRICH

is the same as the result of first applying pa to Dnb to get Da ~ array of nat and nat
and then applying p~ to D~. That this is not incidentally so is shown by the next
theorem.

THEOREM 6.6. The application of parametric specifications to parametric specifi-
cations by means of parameter assignments is associative.

PROOf. Let p, : F, --~ P , i = 0, 1, 2, andfj :Fj-1 ~ P:,j = 1, 2, be given (cf. Figure
14). We have to show that application ofpo top~ b y f i and then ofplp~ top2 b y f i
yields the same result as first applying pa to p2 by f2 and then applying p0 to p2p'l by
fzf~. That means that we must show that (a) and (c, b) are pushouts iff (c) and (a, b)
are pushouts. But both properties hold iff (a), (b), and (c) are pushouts, as we
conclude from well known universal pushout properties [23]. []

We now study some consequences of our notion of parameter substitution. For
ease of notation we restrict ourselves to nonparametric actual parameters. The ideas
can be carried over to the parametric case without any complication.

Let p:F--* P be a parametric specification, and let spec(F, -) be the set of
morphisms with source F. We take spec(F, -) to be the objects of a new category
morph(F). The morphisms g:fo ~ f i in morph(F) are those morphisms g in spec
satisfying fog ffi ./'1. There is an obvious forgetful functor U(F):morph(F) ~ spec
sending e a c h f t o its target.

Let param(F) be the full subcategory of morph(F) consisting of all parameter
assignments. By our pushout approach to parameter substitution we can associate
with each parametric specification p : F--> P a functor

II : param(F) ---> morph(P),

sending the left side of a pushout diagram like Figure 13b to its right side. To be
more precise, let fi , f i E Iparam(F) l and g:fo ~ fx E param(F). Furthermore, let
f6, f~ ~ [morph(P) [result from the pushout of f i andfi , respectively, and p, as shown
in Figure 15. Then there is exactly one g' :f6 --~f~ E morph(P) making the diagram
commutative, as follows easily from the definition of a pushout.

We now define II as sending each object f ~ I param(F)[to the corresponding
f ' ~ I morph(P) I forming the opposite side of the pushout, and sending each morphlsm
g to the unique g' as explained above. The functor

H U(P) : param(F) ~ spec

reflects the effect of parameter substitution in that each actual parameter (together
with a parameter assignment) is sent to the resultant specification.

Considering the initial algebr l: a parametric specification p : F --, P gives a rule
telling how to send an actual parameter type to a resultant type: If f : F - - , D is a
parameter assignment, then init D is sent to init(f~IU(P)). Let this mapping be

Abstract Data Types 225

DO

Pl

~ P
7 F

f p.o.

D2 P2

J g' FIGURE 15

D 3

denoted by ~. Lehmann and Smyth [15] as well as Thatcher et al. [25] insist that a
parametric data type be a functor from a category of parameter types to a category
of resultant types. We could easily extend • to a functor by introducing appropriate
morphisms between initial algebras, as suggested by our specification morphisms.
We feel, however, that this would be somewhat artificial in our approach.

In practice, it is desirable that an actual parameter type A be "preserved" by ~,
that is, that A be isomorphic to a reduct of A alp. Thatcher et al. [25] confine themselves
to such cases by requiring "persistency." Corollary 4.4 and Proposition 3.11 give us
sufficient conditions under which we can guarantee this: If a parametric specification
p:F---> P and a parameter assignment f : F ~ D are both extensions, then init D is
isomorphic to a reduct of (init D)~ = init(~f~-I U(P)). It seems to be quite natural to
have p be an extension and f be true, but unfortunately this is not the case with f
being full, as Example 6.5 shows. If we allow, however, for nonful lf ' s , the parameter
type is not preserved in general. This is illustrated by the following example.

Example 6.7

F a:-->s P a:---~s
b :-->r P > b :-->r

c:s--> r
d:r--> s

D1 a :-->s
e :-*s
b :-->r

p.o.

p,

c(a) = b
d (b) = a

D2 a : ---~$

e :--.->s
b :--->r

e : 3 - - > r

d:r--> s

c(a) = b

d(b) = a

Obviously p is an extension a n d f i s true but not full. init Da has carrier {a, e, b},
disregarding the sorts, but init D2 has carrier {a, e, b, c(e), d(c(e)) }. So we cannot
have isomorphism.

The situation is more satisfactory if we are content with preserving the actual
parameters only as subalgebras of reducts of the resultant types, since p and f need

226 H.-D. EHRICH

only be true in order to guarantee this. In such cases the actual parameter type can
be "polluted" only by introducing new elements. Actually, this is desired in some
cases, for example, if exception or error constants are to be added.

7. Conclusion

We have introduced a conceptually simple but powerful notion of implementation of
abstract data types as a relation between their equational specifications, and we have
made precise the operations of parameter assignment and substitution when dealing
with parametric specifications. In both cases we have made profitable use of pushouts
in the category spec of specifications.

Corollary 5.6 shows that the steps of a multilevel implementation can always be
composed to form an overall implementation. While there is no general composition
construction, our results suggest a method utilizing pushouts that seems to cover most
practical cases. There is one nonsystematic step consisting of, roughly speaking,
finding a canonical term algebra. In the case of full implementations, the same
method works with one additional nonsystematic step consisting of, roughly speaking,
the completion of partially defined operations.

The notion of implementation developed so far does not apply directly to para-
metric specifications. Of course, we can first substitute actual parameters until we
have a nonparametric speofication and implement the latter. It would, however, be
important to have "parametric implementations" that transform to implementations
in our sense if actual parameters are substituted consistently.

Our approach to parametric specifications and parameter substitution defines the
rules telling how to construct new specifications by substituting actual parameters for
formal ones. The concept of parameter assignment as a morphism in spec allows for
rather loose and flexible relationships between formal and actual parameters: para-
metric actual parameters and different sorts and signatures can be handled as well as
the assignment of the same actual sort or operation to different formal sorts and
operations, respectively. Formal parameter conditions can be formulated as equa-
tions, and the existence of a parameter assignment implies that the actual parameter
satisfies these equations.

The definition of parameter substitution by pushouts implies a functor from the
category of parameters to the resultant specifications, where the category of param-
eters depends on the parametric specification at hand. We briefly indicate a connec-
tion to the semantical approach in [25], where parametnzation is understood to
define a functor between categories of algebras. Quite a different semantical approach
to parametrization is given in [15] in connection with the stepwise solution of systems
of domain equations as introduced by Scott [24]. A critical comparison of these two
semantical approaches is given in [25].

ACKNOWLEDGMENTS. I am much indebted to H.-J. Kreowski and U. Lipeck for
giving valuable comments and criticism on an earlier draft of this paper. I also want
to thank H. Ehng, V. G. Lohberger, J. Thatcher, and E. Wagner for helpful
discussions.

REFERENCES

(Note References [2, 17, 18] are not oted m the text)
1. ARBIB, M A, AND MANES, E G Arrows, Structures, and Functors Academic Press, New York, 1975.
2 BERGSTRA, J What is an abstract data type 9 Tech Rep No 77-12, Institute ofApphed Mathemaucs

and Computer Soence, Umv of Leiden, The Netherlands, 1977
3 BURSTALL, R M, AND GOGUEN, J A Putting theories together to make speoficatlons Proc 5th lnt

Joint Conf. on Araficlal Intelhgence, Cambridge, Mass., 1977, pp. 1045-1058.

Abstract Data Types 227

4 ENRICH, H -D. Extensions and implementations of abstract data type specifications. In Proc. 7th
Syrup on the Mathematical Foundations of Computer Science, Lecture Notes in Computer Science
64, J. Wmkowskl, Ed, Sprtnger-Verlag, Berlin, 1978, pp. 155-164

5 EHRICH, n -D, AND LOHBERGER, V G Parametric specification of abstract data types, parameter
substitution, and graph replacements. In Graphs, Data Structures, Algomhms, Applied Computer
Science, Carl Hanser Verlag, Munich, Vienna, 1979, pp 169-182

6 EHRIG, H, KREOWSKI, H -J, AND PADAWlTZ, P Some remarks concerning correct specification and
implementation of abstract data types Ber Nr 77-13, Institute fur Software und Theoretlscbe
lnformatlk, Technlsche Unlv Berlin, FB 20, 1977

7. EHRIG, H, KREOWSKI, H - J , AND PADAWITZ, P Stepwise specification and implementation of
abstract data types Internal Rep, Institute fur Software und Theoretlsche lnformatlk, Technische
Unlv Berlin, FB 20, 1977

8. GIAgRATANA, V, GIMONA, F., AND MONTANAR], U Observablhty concepts in abstract data type
specification In Proc. 5th Symp on the Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science 45, A Mazurklewlcz, Ed, Sprlnger-Verlag, Berlin, 1976, pp 576-587

9 GOGUEN, J A Correctness and equivalence of data types In Proc 1975 Conf on Mathematics and
Systems Theory, Lecture Notes in Economics and Mathematical Systems 131, G Marchesin, Ed,,
Sprmger-Verlag, Berlin, 1976, pp 576-587

10 GOGUEN, J A Abstract errors for abstract data types In Proc Conf. on Formal Description of
Programming Concepts, E.J. Neuhold, Ed., North-Holland, Amsterdam, 1978, pp. 491-525.

11 GOGUEN, J A, THATCHER, J W, AND WAGNER, E G An initial algebra approach to the specification,
correctness, and implementation of abstract data types In Current Trends in Programming Methodology
IV Data Structuring, R Yeh, Ed., Prentice Hall, Englewood Cliffs, N J , 1978, pp 80-149.

12 GOGUEN, J A, THATCHER, J W, WAGNER, E G , AND WRIGHT, J B An introduction to categories,
algebraic theories and algebras. Tech Rep. RC 5369, IBM Thomas J Watson Lab, Yorktown
Heights, N Y 1975

13 GOGUEN, J A, THATCHER, J W, WAGNER, E G., AND WRIGHT, J B Initial algebra semantics and
continuous algebras J ACM 24, 1 (Jan 1977), 68-95

14 GUTTAG, J V The specification and application to programming of abstract data types. Tech Rep
CSRG-59, Unlv of Toronto, Toronto, Ontario, Canada, 1975

15 LEHMANN, D J , AND SMYTH, M B Data types Theory of computation Tech Rep. No. 19, Univ. of
Warwick, Coventry, England, 1977

16 LlsKOV, B H, AND ZILLES, S.N Specification techniques for data abstractions IEEE Trans. Softw
Eng SE-1 (1975), 7-19

17 MAJSTER, M E Data types, abstract data types and their specification problem Tech. Rep TUM-
INFO-7740, Technische Umv MuncheD, 1977

18 MAJSTER, M E Limits of the algebraic specification of data types SIGPLAN Notwes 12 (1977),
37-42.

19 MANES, E G Algebraic Theories Sprtnger-Verlag, New York, 1976
20 MAYOH, B H Data types as functions Tech Rep DAIMI PB-89, Computer Science Dep, Aarhus

Univ., Aarhus, Denmark, 1978
21 ROSEN, B K Deriving graphs from graphs by applying a production Acta Inf. 4 (1975), 337-357
22 SCHNEIDER, H -J, AND EHRIG, H Grammars on partial graphs Acta lnf 6 (1976), 297-316
23 SCHUBERT, H Kategonen Springer-Verlag, Berlin, 1970
24 SCOTT, U S Data types as lattlces SIAMJ Comput 5(1976),522-587
25 THATCHER, J W, WAGNER, E G , AND WRIGHT, J B Data type specification, parameterizatlon and

the power of specification techniques Proc SIGACT 10th Ann Symp on Theory of Computing, San
Diego, Cahf, May 1978, pp 119-132

26 WAND, M First-order identities as a defining language Tech Rep No 29, Computer Science Dep.,
Indiana Umv, Bloomington, Ind, 1976

27 WAND, M Final algebra semantics and data type extensions Tech Rep No 65, Computer Science
Dep, lndmna UnlV, Bloomington, lnd, 1977

28 ZILLES, S N Algebraic specification of data types M 1 T ProJect MAC, Computation Structures
Group Memo 119, M I T , Cambridge, Mass 1975, pp 1-12

RECEIVED FEBRUARY 1979, REVISED MARCH 1980, ACCEPTED NOVEMBER 1980

Journal of the Association for Computing Machinery, Vol 29, No 1, January 1982

