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Synopsis

Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported
for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy.
However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear.
Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-
induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the
mRNA and protein levels of a Notch ligand Jaggedl1 (Jagl), Notchl and Notch target gene Hairy Enhancer of Split-1
(Hes1) were significantly increased at the wound margins. In addition, we observed that Jagl was high expressed in
ESCs. Overexpression of Jagl promotes ESCs migration, whereas knockdown Jagl resulted in a significant reduction
in ESCs migration in vitro. Importantly, Jagl overexpression improves diabetic wound healing in vivo. These results
provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a
promising potential for activation of the Notch pathway for the treatment of diabetic wound.
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INTRODUCTION

Diabetic skin ulcers are non-healing, chronic wounds that pose
a major health burden to society [1]. Up to a quarter of dia-
betic patients will develop these ulcers in their lifetime and as a
result, nearly one-fifth of these diabetic patients will require non-
traumatic lower limb amputations [2]. Numerous advanced treat-
ment options for the management of diabetic ulcers have been
explored, including bioengineered skin substitutes, hyperbaric
oxygen therapy and negative pressure dressings [3—-5]. However,
the effective therapies are still lacking.

Recently, stem cells appear to emerge as a promising wound
healing therapy [6]. Such as mesenchymal stem cells (MSCs)
[7-10], endothelial progenitor cells [11] and adipose-derived
stromal cells [12] have been reported for the cell therapies of
diabetic delayed wounds in vivo. As a practical therapeutic ap-
proach, skin has been considered most recently as a potential
adult stem cell source. It is highly accessible, and autologous
tissue can be obtained easily with minimal donor site complica-
tions. Moreover, skin is an abundant pluripotent and multipotent

cell source with an immune privilege and the potential for self-
replication [13,14]. Epidermal stem cells (ESCs) have been re-
ported as a stem cell source for the treatment of diabetic wounds
[15]. Moreover, ESCs are primitive, unique, multipotent stem
cells. Apart from their multilineage differentiation ability, ESCs
have inherent host compatibility, immunosuppressive ability, sus-
ceptibility to gene modification and extensive capacity for in vitro
expansion [16,17]. However, the effect and the mechanism of the
therapeutic properties of ESCs in the diabetic wound healing are
largely unknown.

Notch signalling pathways play key role in cell-fate decision
and differentiation in many tissues during embryonic and post-
natal development [18]. Four mammalian Notch receptors have
been identified, designated as Notchl to Notch4. Interaction of
Notch receptors with membrane-bound ligands of the Delta and
Jagged families [Delta-like1 (DII-1), Delta-like4 (DI1-4), Jagged1
(Jagl) and Jagged2 (Jag2)] induces y-secretase-mediated
cleavage and translocation of Notch intracellular domain (ICD)
into the nucleus, where it interacts with the transcription factor
C-promoter binding factor 1 (CBF-1), Suppressor of hairless
(Su(H)), Caenorhabditis elegans (Lag-1) (CSL). Once bound to

Abbreviations: DIl-1, Delta-like1; DIl-4, Delta-like4; DM, diabetes mellitus; ESC, epidermal stem cell; Hes1, Hairy Enhancer of Split-1; ICD, intracellular domain; Jagl, Jagged1; Jag2,
Jagged2; MSC, mesenchymal stem cell; gRT-PCR, quantitative real-time PCR; STZ, streptozotocin.
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CSL, Notch ICD recruits other co-activators, including master-
mind proteins, and this transcriptional activation complex in-
duces the expression of downstream target genes, such as Hairy
Enhancer of Split-1 (Hes1) [19]. Given identification of Notch
signalling in skin, the application of the pathway may be a poten-
tial avenue to improve wound healing. The underlying molecular
mechanisms for Notch signalling pathway related to wound re-
pair is not clear.

In the present study, we aimed to evaluate the therapeutic
properties of ESCs in the diabetic wound healing. Further, we
investigated the role of Notch signalling pathway that controls
the migration of ESCs involved in wound healing in vitro and
in vivo.

MATERIALS AND METHODS

Animals and diabetic model

All procedures and experiments involving animals in the present
study were performed in accordance with the National Insti-
tutes of Health Guide for Care and Use of Laboratory Anim-
als (NIH Publication No. 86-23, Revised 1985). The study pro-
tocol was approved by the Animal Ethics Committee at The
First People’s Hospital of Foshan, China. Experimental mice
(8-week-old C57BL/6 female mice) were purchased from
Shanghai SLAC Laboratory Animal and were housed in the
Animal Resource Facility. It has been reported that the mice
receiving single streptozotocin (STZ) intraperitoneal injection at
150 and 200 mg/kg showed significantly decreased body weight
and increased blood glucose. STZ injection at 200 mg/kg resul-
ted in a significantly higher mortality rate and shorter survival
time than STZ at 150 mg/kg (P < 0.05). Intraperitoneal injec-
tion of STZ at 150 mg/kg is associated with a low mortality
rate, a high successful modelling rate of diabetes and a long
survival time in mice [20]. To avoid lethality and significant
loss of body weight, the mice (n=30) were rendered diabetic
by a single intraperitoneal injection of STZ (150 mg/kg; Sigma—
Aldrich); mice in the control group (n=10) were injected with
vehicle alone (0.01 M citrate buffer, pH 4.5). Mice were con-
sidered diabetic if plasma glucose levels >300 mg/dl 1 week
after STZ injection. Mice with a successful course after diabetes
induction subsequently were allocated to diabetic wound healing
study.

Animal study design

All experiments used a diabetic wound healing model developed
and described previously and recently [15,21]. Briefly, anim-
als were anesthetized, shaved and prepared according to stand-
ard sterile procedure. Two wounds (8 mm in diameter, 3—4 mm
apart) were made on the back of each mouse by excising the
skin and underlying panniculus carnosus. The animals were then
divided into three experimental groups (n=>5 per group): group
1, 100 w1 of PBS application as control group; 1.0 x 10° cells of

ESCs suspended with 100 ul of PBS application as ESCs-treated
group; 1.0 x 10° cells of Lv-Jagl-ESCs suspended with 100 ul
of PBS application as ESCs-treated group. Cultured ESCs or
Lv-Jag1-ESCs were injected into the subcutaneous layer around
the dorsal wounds. Digital photographs were taken at days O,
5, 10, 15, 20, 28 and beginning on the day of wounding. Photo-
graphs were acquired with a 10-megapixel digital camera (Canon)
from a distance of 5.0 cm, with the lens parallel to the wound.
Time-to-closure was defined as the number of days for complete
re-epithelialization. Wound area was measured using digital se-
lection by the public domain software ImageJ (NIH). Percentage
wound closure was calculated as {1 — [(wound area)/(original
wound area)]} x 100%. At the end of the experiment, wounds
were excised with 2 mm margin beyond the wound edge. Each
sample was placed in optimal cutting temperature medium and
processed for frozen sections.

Isolation of ESCs

Skin samples from the back of 8-week-old C57BL/6 fe-
male mice were carefully and separately dissected free from
other tissue, placed in Hank’s balanced salt solution (HBSS),
and cut into approximately 1 mm? pieces using dissect-
ing scissors. Then, the segments were digested in 0.25%
trypsin/EDTA at 37°C for 45 min. The resulting cell sus-
pensions were seeded and cultured in a six-well plate in
Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12
(DMEM/F12) medium (Gibco, Invitrogen) containing 15 % em-
bryonic stem cell screened FBS (ES-FBS; Gibco), 1 % glutam-
ine (Gibco), 1% penicillin—streptomycin (Gibco) and fibro-
blast growth factor-basic (bFGF) (Invitrogen, 4 ng/ml) at 37°C
in 5% CO, in humidified air. Cells were passaged every
4-6 days.

Flow cytometry

The expression of ecto-5’-nucleotidase, cluster of differentiation
73 (CD73), cluster of differentiation 14 (CD14), Hematopoietic
progenitor cell antigen (CD34) and protein tyrosine phosphatase,
receptor type, C (CD45) were evaluated on ESCs obtained from
mouse skin. Cells (1 x 10°) were suspended in 2% BSA/PBS
and labelled with CD73, CD14, CD34 and CD45 (all from BD).
Flow cytometry was performed using a FC500 flow cytometer
(Beckman Coulter) and analysed by Beckman Coulter CXP soft-
ware.

Differentiation of ESCs

ESCs were cultured in StemXVivo MSC expansion media (R&D
Systems) and differentiation was induced as indicated using the
media supplements included in the mouse MSC functional iden-
tification kit (R&D Systems). Markers of osteocyte and chondro-
cyte lineages were detected using a sheep anti-mouse osteocalcin
polyclonal antibody and a sheep anti-mouse collagen II antigen
affinity purified polyclonal antibody respectively. In addition, the
frozen sections were prepared to do the Oil Red O for lipid stain-
ing (Sigma—Aldrich).
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Quantitative real-time PCR

Total RNA was extracted from the cells or tissues by Trizol
Reagent (Invitrogen). For mRNA detection, reverse transcribed
cDNA was synthesized with the PrimeScript RT reagent Kit
(TaKaRa) and quantitative real-time PCR (qQRT-PCR) was per-
formed with an asymmetrical cyanine dye (SYBR) Premix ExTaq
(TaKaRa) with the Stratagene Mx3000P real-time PCR system
(Agilent Technologies). S-Actin was used as internal controls
for mRNA quantification. The relative expression ratio of mRNA
was calculated by the 2~ 22€; method. PCR reactions for each
gene were repeated three times. Independent experiments were
done in triplicate. All the sequences of the PCR primers used in
the present study are shown in Supplementary Table S1.

Establishment of ESCs with stable expression of
Jagl

Lentiviral vectors which overexpress Jagl were purchased from
GeneChem. A lentiviral vector expressing scrambled RNA was
used as the control. ESCs were infected with lentiviral vector
and polyclonal cells with GFP signals (over 80 % of transfected
cells) were selected for further experiments using FACS flow
cytometry. Total RNA from these cell clones was isolated, and
levels of ESCs were quantified using qRT-PCR.

Transient transfection with siRNAs

siRNA for Jagl was designed and synthesized by Guangzhou
RiboBio. The sequence of the negative control (NC) was also
designed by RiboBio. Twelve hours prior to transfection, cells
were plated on to a six-well plate (Nest Biotech) at 30-50 %
confluence. TurboFect siRNA Transfection Reagent (Fermentas)
was then used to transfect siRNA into cells according to the
manufacturer’s protocol. Cells were collected after 48—72 h for
further experiments.

Cell migration assay

For the cell migration assay, 1 x 10* cells in 100 ul medium
without FBS were seeded on a fibronectin-coated polycarbonate
membrane insert in a transwell apparatus (Costar). In the lower
chamber, 500 ]l medium with 10 % FBS was added as chemoat-
tractant. After the cells were incubated for 6 h at 37°Cina 5%
CO, atmosphere, the insert was washed with PBS, and cells on
the top surface of the insert were removed with a cotton swab.
Cells adhering to the lower surface were fixed with methanol,
stained and counted under a microscope in five predetermined
fields (x100). All assays were independently repeated at least
three times.

Western blot analysis

The protein extracts from cells or tissues were separated in 12 %
SDS/PAGE gels and blotted on nitrocellulose membranes, and
probed with specific antibodies. The primary antibodies against
Jagl, Notchl, Hesl and B-actin were purchased from Cell Sig-
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naling Technology. After incubation with primary antibodies, the
membranes were washed with TBS/0.05% Tween-20 and in-
cubated with horseradish-peroxidase-conjugated secondary anti-
bodies at room temperature for 1 h. Signals were detected using
enhanced chemiluminescence reagents (Pierce).

Immunohistochemistry staining

Skin tissue samples were routinely fixed with formalin and em-
bedded in paraffin. The paraffin-embedded fixed tissue sections
(4 um thick) were deparaffinized and rehydrated. Following re-
hydration, antigen retrieval was carried out by placing the slides
in 10 mmol/l sodium citrate buffer (pH 6.0) at 95°C for 20 min
followed by 20 min cooling. The sections were then washed in
PBS and non-specific binding sites were blocked with 1 % BSA
with 2% goat serum in PBS before incubation with specific an-
tibody. The primary antibodies against CD73 were purchased
from Cell Signaling Technology. After washing, the sections
were incubated with biotinylated secondary antibody followed
by horseradish-peroxidase-conjugated streptavidin. The sections
were further incubated with 2,4-diaminobenzidine substrate and
counterstained with haematoxylin.

Statistical analysis

Data are presented as mean + S.D. unless otherwise indicated.
The statistical significance of the difference between the values of
control and treatment groups was determined by Student’s 7 test
using Prism version 5 (GraphPad Software). Values of P < 0.05
were considered statistically significant.

RESULTS

Characterization and differentiation of ESCs in vitro
The cells presumed to be ESCs derived from mice skin were
harvested and isolated for ESC culture. Flow cytometry was used
to detect the phenotype of the ESCs. The purity of ESCs pre-
parations was >95 %, as judged by positive surface staining for
CD73 (95.1 %), and lack of expression of CD14, CD34 and CD45
(Figure 1A). Moreover, ESCs were multipotent, as determined
by their ability to differentiate into osteoblasts, adipocytes and
chondroblasts (Figure 1B). These results indicated that mouse
skin-derived cells have the characteristics of ESCs.

High expression of Jagl in diabetic wound skin
tissues was associated with activation of the
Notch pathway

It has been shown that Notch signalling plays important roles in
cutaneous repair [22]. To elucidate the mechanism by which the
function of Notch signalling pathway relevant to diabetic wound
healing, the expression of the four Notch ligands (DII-1, D1l-4,
Jagl and Jag2), four Notch receptors (Notch1-4) and Notch target
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Figure 1 The characterization and differentiation of ESCs
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(A) Phenotype of ESCs by flow cytometry. ESCs were expanded in the culture and demonstrated positive surface staining
for CD73, but not for CD45, CD34 or CD14. (B) ESCs were able to differentiate into osteoblasts, adipocytes (Oil Red O
staining) and chondroblasts under standard in vitro differentiation conditions; Scale bars, 100 um.

gene Hesl in normal or diabetic wound skin tissues were detected.
As shown in Figure 2(A), Jagl, Notchl and Hes] mRNA levels
were significantly increased in wound skin compared with normal
control. We further confirmed that Jagl, Notchl and Hesl were
up-regulated by Western blot assay (Figure 2B). These results
suggested that the increased Jagl expression in diabetic wound
skin tissues is associated with activation of Notch signalling, with
an increased expression of Notch target gene Hesl.

Jagl expression was detected in ESCs

If Notch receptor-ligand interactions contribute to the recruit-
ment of ESCs in diabetic wound skin, the Notch ligand should
be expressed in the ESCs. Therefore, we detected four Notch
ligands (DlI-1, DII-4, Jagl and Jag2) in ESCs by qRT-PCR as-
say. The results showed that the mRNA level of Jag/ is much
higher than DII-1, D1l-4 and Jag2 (Figure 3A). These data sug-
gested that Jag1 is frequently high expressed in ESCs and likely
responsible for the constitutive activation of Notch signalling.
Therefore, to further investigate the role of Jagl in wound heal-
ing, the Jagl overexpression lentiviral vector (Lv-Jagl) and a
control lentiviral empty vector was stably transfected into ESCs.
The mRNA and protein levels of Jagl were significantly in-
creased in Lv-Jagl-ESCs compared with the control LEV group
(Figures 3B and 3C). The efficacy of Jagl overexpressed (Lv-

Jagl) ESCs in wound healing was tested in a series of in vitro

and in vivo assays.

Jagl promotes ESCs migration in vitro

Given that the expression of Jag1 is closely associated with ESCs,
we postulated that Jag1 could have an important role in ESCs mi-
gration. To further explore the role of Jagl in ESCs migration,
using a transwell chamber, we determined changes in cell mi-
gration after 8 h of incubation. Compared with the LEV cells,
Lv-Jagl-ESCs showed significantly increased migratory ability
(Figure 4A). Moreover, we suppressed Jag1 with specific siRNA—
siJagl. qRT-PCR and Western blot analysis showed that siJagl
was able to effectively knockdown the expression of Jag1 in ESCs
cells (Figures 4B and 4C). Further functional studies demon-
strated that knockdown of Jagl significantly decreased the ESCs
migration compared with the control group (Figure 4D). Taken
together, these results suggested that Jag1 promotes ESCs migra-
tion in vitro.

Jagl accelerates diabetic wound closure in vivo

To test the hypothesis that overexpression of Jagl in ESCs could
promote diabetic wound healing. First, we made a STZ-induced
diabetes mellitus (DM) mouse model, then the diabetic wounds
were treated with Lv-Jagl-ESCs, ESCs or PBS control respect-
ively. As shown in Figure 5(A), the difference in wound closure
between the ESCs treatment and PBS control group was signi-
ficantly different at day 10. Moreover, we found that the wound
closure of Lv-Jagl-ESCs group compared with ESCs treatment
was significantly different at day 15, suggesting Jagl acceler-
ates wound closure in vivo. We further examined the change in

(© 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

Licence 4.0 (CC BY).


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ESCs promote wound healing by Notch

— Normal control

A
g 4, = Diabetic wound skin
£3
z &
P
E g
£1
20
Q&
B

= - |
P-Actin. | S S—

Figure 2 The expression of Notch receptors and ligands in the
diabetic wound skin

(A) mRNA levels of four Notch ligands (DIl-1, DIl-4, Jagl and Jag2), four
Notch receptors (Notch1-4) and Hes1 in normal or diabetic wound skin
tissues were analysed by gqRT-PCR. (B) Western blot assay of Jagl,
Notchl and Hesl expression in normal or diabetic wound skin. Data
are presented as the mean + S.D. from three independent experiments;
**P < 0.01 compared with the control.
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Figure 3 The expression of Jagl in ESCs

(A) mRNA level of four Notch ligands (DIl-1, DIl-4, Jagl and Jag2) in
normal skin cells and ESCs were analysed by gRT-PCR assay. (B and
C) mRNA (B) and protein (C) levels of Jagl in Lv-Jag1l-ESCs or control
lentiviral empty vector ESCs were measured by gRT-PCR and Western
blot assay respectively. Data are presented as mean + S.D. from three
independent experiments; **P < 0.01 compared with the control group.

ESCs during wound healing by performing immunohistochem-
ical staining of the ESCs markers (CD73) on the skin sections
(Figure 5B). Of note, the Lv-Jag1-ESCs treated mice exhibited a
significantly increased number of ESCs, as compared with PBS-
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Figure 4 Effect of Jagl on ESCs migration in vitro

(A) Stably up-regulating Jagl increased the migration ability of ESCs
in vitro measured by a transwell chamber. (B and C) The expression
level of Jag1 was examined by qRT-PCR (B) and Western blot (C) analysis
in ESCs treated with siRNAs targeting Jagl. (D) Knockdown of Jagl in
ESCs reduced the migration ability. Data are presented as mean + S.D.
from three independent experiments; **P < 0.01 compared with the
control group; Scale bar, 100 um.

treated mice. Together, these results indicated that Jagl increases
ESCs migration and improves wound healing in a diabetic mouse
model.

DISCUSSION

Poor wound healing is a major complication in diabetes patients
and could result in morbidity or death [23]. Promoting diabetic
wound healing by a variety of adult progenitor cells including
bone marrow-derived MSCs (BM-MSCs) [24], amniotic MSCs
[7] and skin-derived precursor cells (SKPs) [15] have been repor-
ted in vivo. In the present study, we demonstrated for the first time
that topical applications of ESCs enhanced wound healing of dia-
betic mice. Additionally, we found that overexpression of Jagl
promotes ESCs migration, whereas knockdown Jagl resulted in
areduction in ESCs migration in vitro. Moreover, Jagl improves
diabetic wound healing in vivo. Our results provide evidence that
ESCs accelerate diabetic wound healing via the Notch signalling
pathway.

ESCs have been reported to populate the normal skin niche,
remain quiescent and become active after injury, aiding in wound
closure [6]. In addition, functional characteristics of ESCs that
may benefit wound healing include their ability to migrate to the
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Figure 5 Jagl accelerated diabetic wound closure

(A) Topical Lv-Jag1l-ESCs, ESCs or PBS control injection in the wound
edge for wound healing in the diabetic mice. Comparison of the percent-
ages of the open wound size at day 10 and day 15 between PBS control
and Lv-Jag1-ESCs or ESCs-treated diabetic mice. (B) Immunohistochem-
ical staining for CD73 in the mouse skin sections after treatment with
Lv-Jag1-ESCs, ESCs or PBS control. Five mice per group; Scale bars,
100 um. Data are presented as the mean + S.D.;**P < 0.01 compared
with the PBS control; #P < 0.05 Lv-Jag1-ESCs compared with ESCs.

site of injury or inflammation, participate in regeneration of dam-
aged tissues, stimulate proliferation and differentiation of resid-
ent progenitor cells, promote recovery of injured cells through
growth factor secretion and matrix remodelling, and exert unique
immunomodulatory and anti-inflammatory effects [25,26]. In the
present study, a dorsal skin defect in a STZ-induced DM mouse
model was used and ESCs were isolated from mouse skin. Our
study showed the accelerated healing and closure of diabetic
wounds following the local application of ESCs. However, the
mechanism of the therapeutic properties of ESCs in the diabetic
wound healing is still unclear. Therefore, we further investigated
the underlying mechanism of ESCs improving diabetic wound
healing.

Itis well known that the Notch signalling pathway is critical for
cell-fate decisions during development and wound healing [27].
The activation of Notch signalling in keratinocytes is sufficient
to cause cell cycle withdrawal and trigger terminal differenti-
ation [28]. It also has been reported that a high level of Notch
signalling activity promotes the differentiation of ESCs into ker-
atinocyte and interfollicular lineages [29]. Recently, it is reported
that one of Notch ligand Jagl overexpression in endothelial cells
increased vessel density, maturation and perfusion, thus accel-
erating wound healing [30]. The opposite effect was seen in
eJag1cKO animals [30]. Consistent with previous study [30], we
confirmed that diabetic wound skin tissues expressed higher level
of Jagl compared with normal mouse skin tissues, and that this
was associated with a significant elevated expression of Notchl
and the Notch target gene Hes /. These results indicated that Jagl

is likely a major ligand responsible for Notch signalling activation
in diabetic wound healing, and that selective targeting of this pro-
tein may present a novel therapeutic strategy. It has been reported
that Jag1 ablation results in cerebellar granule cell migration de-
fects and depletion of Bergmann glia [31]. In the present study,
we showed that Jagl is high expressed in ESCs and likely re-
sponsible for the constitutive activation of Notch signalling. We
further demonstrated that overexpression of Jagl led to an in-
creased cell migration, whereas knockdown of Jagl decreased
the ESCs migration. Previous study showed that the enhanced
Notch activity efficiently promoted the corneal wound healing by
stimulation of a rapid early cell proliferation [32]. Inhibition of
Notch activity in mice significantly delayed the healing of dermal
wounds, and activation of Notch activity in vivo boosted wound
repairing [33]. Consistent with previous report, our in vivo study
showed that overexpression of Jagl accelerates wound healing in
a diabetic mouse model, suggesting that direct up-regulation of
Jagl may present a novel therapeutic strategy in diabetic wound
healing.

In conclusion, this report provides new evidence that ESCs
accelerate diabetic wound healing via the Notch signalling path-
way. Our results suggest that Jagl may be a key player of ESCs
migration during diabetic wound healing. Therefore, direct tar-
geting Jagl may present a novel therapeutic strategy in diabetic
wound healing.
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