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ABSTRACT 
 
Today's typical probabilistic cost analysis assumes an "ideal" project that is devoid of the 
human and organizational considerations that heavily influence the success and cost of 
real-world projects.  In the real world “Money Allocated Is Money Spent” (MAIMS 
principle); cost underruns are rarely available to protect against cost overruns while task 
overruns are passed on to the total project cost.  Realistic cost estimates therefore require 
a modified probabilistic cost analysis that simultaneously models the cost management 
strategy including budget allocation.  Psychological influences such as overconfidence in 
assessing uncertainties and dependencies among cost elements and risks are other 
important considerations that are generally not addressed.  It should then be no surprise 
that actual project costs often exceed the initial estimates and are delivered late and/or 
with a reduced scope.  This paper presents a practical probabilistic cost analysis model 
that incorporates recent findings in human behavior and judgment under uncertainty, 
dependencies among cost elements, the MAIMS principle, and project management 
practices.  Uncertain cost elements are elicited from experts using the direct fractile 
assessment method and fitted with three-parameter Weibull distributions.  The full 
correlation matrix is specified in terms of two parameters that characterize correlations 
among cost elements in the same and in different subsystems.  The analysis is readily 
implemented using standard Monte Carlo simulation tools such as @Risk and Crystal 
Ball.  The analysis of a representative design and engineering project substantiates that 
today's typical probabilistic cost analysis is likely to severely underestimate project cost 
for probability of success values of importance to contractors and procuring activities.  
The proposed approach provides a framework for developing a viable cost management 
strategy for allocating baseline budgets and contingencies.  Given the scope and 
magnitude of the cost-overrun problem, the benefits are likely to be significant. 
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1.  INTRODUCTION 
 
Real-world experience and intuition both suggest that project costs depend on many 
factors including technical, organizational, and behavioral considerations.  It seems that 
based on brilliant insight Thucydides got to these as the very root of cost overruns over 
2000 years before the formal development of probability and risk analysis when he stated 
[Augustine, 1997: 255]: 
 

"Their judgment was based more on wishful thinking than on sound calculation of 
probabilities."1 
 

This observation is still very insightful and applicable to today's cost-overrun problem.   
 
Numerous and significantly different models and techniques have been developed to 
estimate costs.  There is an on-going shift in R&D and complex engineering projects 
from deterministic to probabilistic approaches.  The deterministic approach has major 
shortcomings such as specifying a single point estimate for each cost element and 
calculating contingency as a percentage of the total.  The probabilistic approach provides 
the proper framework for handling cost uncertainties based on probability distributions 
and contingencies based on a desired probability of success.  Unfortunately, today’s 
typical Probabilistic Cost Analysis (PCA) seldom addresses the behavioral and 
organizational considerations that have been documented by Sage [1981] as essential to 
project success.  It therefore generates "mythical project costs" that are based on what 
Brooks [1995] has termed the "mythical man-month".  Monte Carlo simulation being a 
mathematical tool cannot by itself compensate for "Garbage In…Garbage Out" [Walker 
II and Cox III, 2003].  It should then be no surprise that actual project costs often exceed 
the initial estimates and are delivered late and/or with a reduced scope.  These include the 
full spectrum of projects: remodeling one's residence, complex infrastructure construction 
projects such as Boston's Central Artery/Tunnel Project [Hughes, 1998], R&D oriented 
projects such as the spectacular Hubble Space Telescope and the canceled 
Superconducting Super Collider, and multitudes of commercial ventures.  Projects that 
come-in under cost, within schedule, and meet all requirements (including non-functional 
ones such as quality/reliability) do not necessarily deserve kudos.  They may have carried 
budgets with excessive padding that lead to unnecessarily high costs and misallocation of 
resources.  In today's highly competitive business environment, it is therefore critical to 
improve the realism of cost estimates and how cost budgets are managed. 
 
In recent years psychologists have studied and quantified human behavior and judgment 
under uncertainty.  Their findings are having a profound influence in many fields 
including decision-making, management, and economics [Rabin, 1998].  Goldratt [1997], 
focusing on negative human behavior as major causes of project-scheduling problems, 
developed the Critical Chain Project Management (CCPM) as a management philosophy 
and solution that simultaneously reduces project duration and protects against schedule 
risk.  Some of the identified negative behaviors, such as Parkinson's Law - "Work 
                                                           
1 The ancient Greek word, "eikos", encapsulates ideas of the modern concept of probability [Bernstein, 
1996: 16].   
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expands to fill the time allotted" - and "padding schedule estimates”, directly contribute 
to cost overruns.  One of the key principles of CCPM is to aggregate task buffers at the 
project-level for use where and when needed.  The original CCPM also proposed the 
following guidelines for sizing buffers: (1) Cut task duration estimates in half, and (2) 
Add approximately 25% of the original estimate to the project buffer.  These guidelines 
appear to be rather arbitrary and many technical managers are uncomfortable with them 
[Givens Filiatrault and Peterson, 2000].  Another shortcoming of the original method is 
that it only approximately treats the probabilistic nature of project risks.  A number of 
simple alternatives to estimate and sum buffers have been proposed [Newbold, 1998].  
We think that their use is now no longer justifiable because of the availability of MCS 
tools such as @Risk and Crystal Ball®.  Schuyler [2000: 187] proposes integrating the 
CCPM into a full probabilistic analysis.  In a detailed report, Herroelen et al [2002] state: 
"The critical chain scheduling/buffer management methodology has much to offer if 
applied wisely and if the practical implications and limitations are well understood."  
There are numerous real-world applications that substantiate this conclusion 
[Schragenheim and Dettmer, 2001].   
 
In the 1990's the Lockheed Missiles and Space Co. carried out a study which concluded 
that the following deficiencies in cost modeling and contingency management have been 
major contributors to both project high costs and overruns [Gordon, 1997]: 
 
1. Invalid mathematics such as arithmetically summing uncertain cost elements instead 

of using statistical methods  
2. "Money Allocated Is Money Spent" (MAIMS principle) 
3. Failure to coordinate cost analysis and cost management 
4. Hidden incentives in management styles 
5. Hidden incentives in procurement processes. 
 
It is standard practice for project management to allocate definite budgets to cost 
elements and maintain a budget contingency for dealing with unforeseen in-scope events.  
The MAIMS principle captures the fact that given this situation, cost under runs are 
rarely available to protect against cost overruns while task overruns are passed on to the 
total project cost.  Gordon’s [1997] numerical studies strongly indicate that a realistic 
PCA needs to account for the MAIMS principle.  Unfortunately today's typical PCA 
assumes an "ideal" project where cost savings achieved by cost elements which are under 
cost are passed on to elements requiring additional resources.  Given the wide use of this 
unrealistic assumption, it is not surprising that cost overruns are the rule rather than the 
exception.  The MAIMS principle has important implications for budget allocation and 
contingency management.  To deliver a successful project at an optimal cost, project 
management needs to allocate "reasonable" budgets to the cost account managers and 
dynamically manage the contingency funds as a risk portfolio at the project level 
[Kujawski, 2002a and 2002b]. 
 
The premise of this paper is that PCA needs to integrate psychological findings with 
mathematically valid models and sound management techniques to obtain realistic cost 
estimates and achieve project success.  Building on these concepts, we develop a 
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practical yet realistic and mathematically valid model that remedies several shortcomings 
that are prevalent in today's PCAs and adversely impact project management.  In Section 
2 we review findings on human behavior under uncertainty and organizational 
considerations that contribute to cost overruns on R&D and complex engineering 
projects.  In Section 3 we examine some mathematical properties of statistical sums and 
their implications for structuring the cost model and correlations among cost elements.  In 
Section 4 we advocate the use of the Direct Fractile Assessment (DFA) method for 
subjectively assessing cost elements and fitting them with three-parameter Weibull 
distributions.  In Section 5 we develop a correlation model that accounts for correlations 
among cost elements at both the subsystem and project levels.  In Section 6 we apply the 
proposed approach to a representative design and engineering project.  In Section 7 we 
integrate the presented concepts into a comprehensive approach to budget management 
including realistic cost estimates, efficient budget allocation, and dynamic management 
of contingencies.  We conclude in Section 8 with a summary and recommendations for 
further development. 
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2.  PSYCHOLOGICAL ASPECTS OF COST OVERRUNS 

 
"Seek simplicity, then distrust it." 

Alfred North Whitehead 
 
2.1. Causes of Cost Overruns  
 
As discussed in the Introduction, there are numerous elements that contribute to project 
cost overruns.  For the purpose of this paper, we offer the following candidate "Top 10 
List" sequentially ordered by the project activities of procurement, cost estimation, and 
budget management:  
 
R.1. Ineffective procurement processes that encourage unrealistic low bids  
R.2. Management pressure to produce low, can-do estimates  
R.3. Cost estimates based on poor project definition 
R.4. Overly optimistic assessment of unknowns  
R.5. Use of deterministic rather than probabilistic methods 
R.6. Use of inadequate data elicitation methods 
R.7. Use of improper cost distributions  
R.8. Neglect of interrelationships among cost elements and risks 
R.9. Inadequate allocation of budgets  
R.10. Inadequate management of cost contingencies.    
 
These causes are not simply a lack of technical expertise.  They are often driven by 
psychological, organizational, and institutional considerations.  There is no unanimous 
"Top 10 List" and we apologize for listing these and omitting others.   
 
Causes R.1, R.2, and R.3 are often institutional and organizational problems and they are 
outside the scope of this paper.  These can be addressed through legislation that deals 
with reforms in procurement or acquisition [Senator William Cohen, 1982].  
 
Cause R.4 is a characteristic of human behavior and judgment under uncertainty.  As 
indicated in the Introduction, psychologists are quantifying these effects and behavioral 
economists [Rabin, 1998] are building models that remove some of the assumptions of 
the 100% rational economic person.  PCA needs to account for these psychological 
influences to provide realistic cost estimates and result in successful projects for lower 
costs.    
 
Causes R.5, R.6, R.7, and R.8 are often justified on the basis of simplicity and 
expediency.  Whether or not they are caused by a lack of technical expertise, they 
represent over-simplified approaches and invalid assumptions that lead to erroneous cost 
estimates.  We speculate that they may also be symptomatic of analysts and decision 
makers who have succumbed to Russo and Schoemaker' s [1990: 16] Decision Trap 
Number 2, Frame Blindness, that leads them to develop only a partial view of the 
problem.  
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Causes R.9 and R.10 are often categorized as managerial errors that arise from a lack of 
coordination between the project cost analysis and management activities.  We think that 
they are also intertwined with a lack of appreciation of the probabilistic concepts and 
psychological influences.  Causes R.9 and R.10 lead to cost overruns on top of high cost 
estimates.  High contingencies by themselves are not sufficient to prevent cost overruns; 
they also need to be dynamically managed as a portfolio at the project level [Kujawski, 
2002a and 2002b]. 
 
 
2.2. Some Heuristics for Cost Analysis 
 
We now present several heuristics that provide useful insights into the psychological 
considerations of the cost-overrun problem and lay the foundation for the proposed 
approach. 
 
2.2.1 Systems Thinking 

 
“Dividing an elephant in half does not produce two small elephants.” 

Law # 10 of the Fifth Discipline [Senge, 1994: 66] 
 
Similarly, it would be misleading to think that the total cost of R&D and complex 
engineering projects consists simply of the sum of the individual cost elements.  Project 
characteristics and risk events are likely to affect multiple cost elements in a common 
way, either negative or positive.  The realization of any risk can start a ripple effect, and 
if uncontrolled it can snowball into catastrophic consequences.  The implications are that 
PCA requires systems thinking to go beyond the individual hardware and software 
components and that it needs to focus on the overall project structure with emphasis on 
the interrelationships among project elements.  A realistic cost analysis takes a 
multidisciplinary effort with a systems engineering approach [Garvey, 2000]. 
 
2.2.2. Estimating Cost Elements 
There are numerous conflicting psychological and organizational influences that motivate 
technical leads to provide either low or high cost estimates.  These need to be considered 
on a case-by-case basis when calibrating subjectively assessed cost elements.  We do not 
think that there is a one-size-fits-all solution for assessing and calibrating uncertain cost 
elements.  The one rule is to use experienced and knowledgeable analysts.  
 
Underestimates.  Overconfidence tends to be a prevalent behavioral trap in human 
judgment and it can lead to catastrophic consequences [Pious, 1993].   Numerous studies 
[Alpert and Raiffa, 1982] have found that people, including experts, tend to be 
overconfident when assessing uncertain quantities and risks.  Alpert and Raiffa  [1982: 
300] strongly advise: 
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"For heaven's sake, Spread Those Fractiles! Be honest with yourselves! Admit 
what you don't know!" 2, 3 

 
In R&D and complex engineering projects there are additional considerations that further 
motivate cost estimates that are biased towards low values.  These include (1) R&D folks 
are intrinsically optimistic regarding new technologies, especially those coming from 
their own laboratories, (2) psychological influences, such as "impress your boss", (3) 
organizational influences, such as "hidden incentives", and (4) market forces.   
 
Inflated Estimates.  Some project management experts [Goldratt, 1997; Newbold, 1998] 
believe that technical leads inflate cost and schedule estimates to make it easier to 
achieve success.  This is not our experience on R&D and complex engineering projects, 
and we surmise that the noted negative behavior depends on the work environment and 
project type.  In organizations where cost overruns are considered unacceptable the staff 
quickly learns to pad estimates.  But the project managers, having risen through the 
ranks, are familiar with the rules of the game and automatically reduce the estimates 
often in an ad-hoc manner.  PCA cannot work in such an environment; the net result is a 
lose-lose situation.   
 
2.2.3. The MAIMS Principle  

 
"Money Allocated Is Money Spent." 
            Gordon [1997] 

 
As discussed in the Introduction, the MAIMS principle is the money-analog of 
Parkinson's Law and it has been identified as a major cause of significant cost overruns.  
Unfortunately, today’s typical PCA assumes an "ideal" project with a 100% rational 
economic staff with the consequences that whenever a cost element comes in low the 
savings are available where they are needed.  It is no surprise that actual projects exceed 
these “ideal” cost estimates.   
 
2.2.4. Assessing Analysis Uncertainties 
 

"It’s not what we don’t know that gives us trouble, it’s what we know that ain’t 
so." 

     Will Rogers [Russo and Schoemaker, 1990: 95] 
 
PCA is an important and powerful tool when used correctly; but it can also be a minefield 
for the unwary.  The literature abounds with PCAs that contain some or all of the 
following oversimplifications: use of triangular distributions, omission of 
interrelationships among cost elements, no treatment of budget allocation and 
contingency management, no estimates of confidence level or uncertainty for the high 
percentiles.  Such oversimplified PCAs provide erroneous information that can lead cost 

                                                           
2 Emphasis in the original text.   
3 "Fractile" is a mathematical concept.  Details are given in Section 4.1. 
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account managers and other decision-makers into a false sense of confidence and 
incorrect decisions [Conrow, 2003]. 
 
It is important that the PCA be properly performed and documented in accordance with 
good practices of probabilistic risk assessment [EPA/630/R-97/001, 1997].  Relying on a 
poorly documented PCA is well characterized by Russo and Schoemaker's [1990: 95] 
Decision Trap Number 5, "implicitly trusting the most readily available information or 
anchoring too much on convenient facts."  In order for a PCA to be a viable tool for 
analyzing and managing costs and cost risks, its documentation should include: 
 
1. The rationale for the selection of the model 
2. The methods for evaluating the uncertain cost elements, modeling correlation effects, 

and performing the statistical sum  
3. Graphical representations and statistical parameters of the input and output 

distributions  
4. Sensitivity studies or other appropriate investigations of the data, modeling, and 

numerical uncertainties 
5. Explicit discussion of the range of applicability of the results. 
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3.  STRUCTURING THE PROBABILISTIC COST ANALYSIS 
 
In this section we present a few analytical and numerical results that illustrate the 
importance of correlations among cost elements and the Cost Work Breakdown Structure 
(CWBS) to the validity of the PCA. Detailed models and additional analyses are 
presented in Sections 4, 5, and 6. 
 
 
3.1. Some Analytical Results 
 
To focus on PCA we consider a generic project with WBS level-3 cost elements [MIL-
HDBK-881, 1998].  In general, there are interrelationships among the cost elements 
because of their dependence on common factors such as state of technology, complexity, 
criticality, management, staff, and product development process [Browning and 
Eppinger, 2002].  In anticipation of the treatment of cost correlation presented in Section 
5, we denote the cost elements as Ci.j, where the 1st set of integers refers to the WBS level 
2 and the 2nd set of integers refers to the WBS level 3.  The total project cost is then a 
random variable given by 
 

CT = C∑
jm.

m.j. 

 
The expected value of CT is simply the sum of the expected values of the individual cost 
elements, 
 

E(CT) = E(C∑
jm.

m.j ).     (1) 

 
In contrast, the variance of CT depends on the variances of the individual cost elements 
and the correlation among them [Garvey, 2000], 
 
  Var(CT) = Var(C∑

jm.
m.j) + Corr(C∑

jm.
∑
≠ jmln ..

m.j,Cn.l) *[Var(Cm.j)* Var(Cn.l)]1/2.    (2) 

 
The correlation coefficients are dimensionless parameters with values between 1.0 for 
correlated random variables and a value of 0.0 for independent random variables.  

±

 
Equations (1) and (2) provide much insight into how to structure the cost model and the 
validity of the PCA.  Consider the case of n correlated cost elements Cm.j.  Let σM

2 denote 
the largest Var(Cm.j).  Since the correlation coefficients range between 1.0, Var(C± T) 
satisfies the following inequality, 
 

Var(CT)  n*σ≤ M
2

 + n*(n -1)*σM
2.    (3a) 

 
The 2nd term dominates as the number of correlated cost elements increases.  The 
behavior is significantly different if the cost elements are treated as independent random 
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variables.  In the absence of correlations the 2nd term vanishes and the CT distribution 
narrows as n increases: 
   

 )Var(CT  / E(CT) ∝ 1/ n .     (3b) 
 
Equation (3b) clearly flags the trap or fallacy of using low-level cost elements and 
neglecting their interrelationships.  If correlations among cost elements at all levels were 
negligible, analysts theoretically could arbitrarily reduce the uncertainty in project costs 
by simply decomposing the total cost into lower and lower level cost elements.  
Furthermore the Central Limit Theorem [Garvey, 2000] becomes applicable and one 
would conclude that the total cost of any complex system is adequately characterized by a 
Gaussian normal distribution.  In reality, the costs of R&D and complex engineering 
projects are best characterized by distributions that are skewed to the right and are 
relatively broad.  In Section 5 we go beyond these mathematical arguments and identify 
physical causes for the existence of correlations and more complex dependencies among 
cost elements within a single project.   
 
 
3.2. Some Quantitative Studies 
 
To illustrate the above observations and gain additional insight into the accuracy of MCS, 
we present the results for the sum of ten correlated three-parameter Weibull distributions.  
The calculations were performed using Crystal Ball.  An accurate MCS of the low 
probability values is challenging especially for open-ended PDFs because even with 
many trials the number of samples in the tail is small.  The reported results with both 
10,000 and 100,000 trials are indistinguishable up to and including the 95th percentiles; 
but, the differences or numerical uncertainties become significant the closer one gets to 
the extremes even for the closed-ended PDFs. 
 
Figure 1a depicts the impact of different correlations among cost elements.  For 
positively correlated cost elements, a high value of one is likely to be associated with a 
high value of the other and similarly a low value with a low value.  The net effect is to 
spread the PDF of the total cost.  Some of the statistics are summarized in Table I.  The 
PDF for independent cost elements (correlation coefficient ρ = 0.0) is approximately 
given by a Gaussian normal distribution with mean µT = 10*µi and standard deviation σT 

= 10 *σi, where µi and σi denote the mean and standard deviation of the individual cost 
element.  This is consistent with the Central Limit Theorem [Garvey, 2000].  For ρ = 1.0 
the ten identical Weibull distributions are perfectly correlated and their sum is simply the 
individual component multiplied by 10.  This results in a Weibull distribution with µT = 
10*µi and σT = 10*σi.  The plots for intermediate values of the correlation coefficients ρ 
= 0.5 and 0.3 are almost indistinguishable.  Figure 1b compares the corresponding 
Cumulative Distribution Functions (CDFs).  The impact of correlations among the cost 
elements appears to be less dramatic, and for greater clarity we explicitly plot the 
differences in Fig. 1c.  It should be noted that we manually set the different 0th and 100th 
percentile values equal to compensate for numerical uncertainties.  The correlation effects 
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are significant over a wide range of percentiles of interest to PCA such as the 75th to 95th 
values.  The 90th percentile values corresponding to ρ = 0.0 and 1.0 differ by ~ 10%.  
Since the above illustrative examples consist of only ten identical elements, the results 
should be principally viewed as qualitative.  The correlation effects increase with the 
number of cost elements [Book, 1999 and 2000/2001].  In general, subdividing the 
project cost into too many bite-size pieces has several negative consequences including 
an unwarranted level of analysis, an increased likelihood of erroneous results, and a false 
sense of confidence.  We also note that, independent of any model, correlation effects 
vanish for the mean, 0th and 100th percentile values. 
 

11 



4.  SUBJECTIVE ASSESSMENT OF COST ELEMENTS 
  
R&D and complex engineering projects rely heavily on engineering/expert judgment for 
the assessment of uncertain cost elements.  Unfortunately the subjective assessments are 
often performed in a rather ad-hoc manner, and they have been identified as a critical 
source of uncertainty in probabilistic risk analyses [Keeney and von Winterfeld, 1991].  
In this section we advocate the use of the Direct Fractile Assessment (DFA) method for 
data elicitation and fitting each cost element with realistic continuous PDFs. 
 
 
4.1. The Direct Fractile Assessment Method 
 
The DFA method has been investigated in numerous psychological experiments and 
found to provide one of the most reliable and least bias-prone procedures for eliciting 
uncertain quantities [Alpert and Raiffa, 1982].  Individuals are asked to assess uncertain 
quantities by providing several values, referred to as percentiles or fractiles.  The kth 

percentile or fractile xk is the value that is assessed to have a k% probability of exceeding 
the actual value x*; mathematically speaking, P(x*  x≤ k) = k%.  We summarize some of 
Alpert and Raiffa's findings: 
 
1. People have a systematic bias toward overconfidence.  The subjective probability 

distributions tend to be too tight.  Typically 33% rather then 50% of the actual values 
fell within the 0.25 to 0.75 fractiles.   

2. The judgment of extreme values is significantly worse.  Typically, 20% rather than 
2% of the actual values fell outside the 0.01 to 0.99 fractiles.   

3. Minimum and maximum values are vague terms.  "We really don't know what that 
means." 

 
The above findings are based largely on laboratory experiments, but they deserve the 
critical consideration of cost and risk analysts.  The DFA has been used in numerous 
applications including the cost assessment of large technology projects [Dillon et al, 
2002].  Based on this experience, we propose the following guidelines for subjectively 
estimating cost elements of R&D and engineering design projects: 
 
1. Use experts to provide the 10th, 50th, and 90th percentiles of the uncertain cost 

elements.  While other percentiles may be used, these seem to be more easily assessed 
by experts [Dillon et al, 2002].  For similar reasons, analysts should avoid seeking 
extreme values, abstract measures such as the mean and the standard deviation, or 
specific distribution functions.  Dillon et al [2002: 56] propose an additional step of 
“educating the experts about the possibility of bias and discussing what the base cases 
were and were not.” 

2. Calibrate each set of percentiles to reflect individual and project specific 
considerations be it optimism or pessimism.  Several different approaches have been 
proposed, but there is need for further studies [Clemen and Lichtendahl, 2002].  As a 
default calibration to account for overconfidence and as a defense against overly 
optimistic estimates, cost analysts might opt to shift the assessed 90th percentile to the 
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80th or 75th percentiles.  Because of the MAIMS modification (see Section 4.3) 
calibration of the low-end percentiles such as 10 vs. 20% is of negligible importance. 

3. Explicitly model decision points and low-probability/high-consequence events using 
scenarios as discussed in Section 4.4.  

4. Regularly update the cost analysis.  Cost uncertainties decrease as the design matures 
and the project evolves. 

 
 
4.2. Selection of a Probability Distribution Function  
 
There are many good reasons for modeling the cost elements with continuous PDFs:  
 
1. Uncertain cost elements are continuous rather than discrete random variables.  
2. There are several well-known analytic PDFs with adequate characteristics. 
3. There are several commercial tools such as @Risk and Crystal Ball that provide 

extensive choices of PDFs. 
 
To realistically reflect cost uncertainties and readily support the proposed data elicitation 
method, the selected PDFs should be flexible enough to satisfy the following criteria: 
 
C1.  Capable of fitting three arbitrary percentiles 
C2.  A finite lower range 
C3.  An infinite upper range with reasonable behavior  
C4.  Physically meaningful and easy to estimate parameters. 
 
The need for criteria C1, C2, and C4 is self-evident.  Criterion C3 is more subjective, but 
we consider it to be important because of the difficulty of assessing maximum values and 
the risks associated with the use of overly restrictive or unreasonably large ranges.  We 
use the above four criteria to evaluate the suitability of the following four PDFs for 
characterizing uncertain cost elements: triangular, generalized Beta, three-parameter 
lognormal, and three-parameter Weibull.   Analysts and assessors should always verify 
that they feel comfortable with the shape of the fitted distribution. 
 
4.2.1. The Triangular Distribution  
The standard form of the triangular distribution is to specify its minimum, most-likely 
value or mode, and maximum.  Because of its very restrictive shape, it is often impossible 
to fit a triangular distribution to three arbitrary percentiles and it gets a very low score for 
C1.  It also gets a low score for C3.  The triangular distribution has been blamed for both 
unrealistically low and high estimates.  Graves [2001] argues that it leads to 
underestimates because it has a finite upper bound.  Moran [1999] argues that it leads to 
overestimates because it does not capture the expert's confidence level of achieving the 
most-likely value and/or knowledge of the shape of the distribution.   
 
4.2.2. The Generalized Beta Distribution   
The generalized Beta distribution, Beta (a, b, α, β), is a very flexible PDF with lower 
range a, upper range b, and two shape parameters α and β.  Depending on the values of α 
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and β, the shape varies from uniform to bell-shaped to U-shaped.  Because of this 
flexibility, it is often used for modeling construction activities [Fente et al, 1999].  Since 
the generalized Beta distribution has four independent parameters, three percentiles do 
not uniquely specify it and additional information is required to select a best shape.  The 
generalized Beta distribution scores low on C3 and C4. 
 
4.2.3. The Three-Parameter Lognormal Distribution 
The three-parameter lognormal distribution, logN(L, µ, σ), is an open-ended distribution 
with location L, mean µ, and standard deviation σ.  It arises when many factors interact 
in a multiplicative way.  It is used in diverse situations including reliability analysis 
[McCormick, 1981], cost analysis [Graves, 2001], and financial analysis [H. Forsey, 
2001].  Because of its relatively slow fall-off it has been criticized for providing 
unreasonably high probabilities at high values.  We give it a marginally acceptable score 
for C3.   Since the lognormal distribution is always positively skewed, it scores low on 
C1.  
 
4.2.4. The Three-Parameter Weibull Distribution 
The three-parameter Weibull distribution, W(L, α, β), is an open-ended distribution with 
location L, scale parameter α, and shape parameter β.   It is a very flexible PDF that can 
assume a wide variety of shapes depending on the value of β.  It is used in numerous 
applications including reliability analysis [McCormick, 1981] and cost analysis [Dillon et 
al, 2002].  It is more flexible than the three-parameter lognormal even though both are 
characterized by three independent parameters [AbouRizk and Halpin, 1992].  We score 
it high on all four criteria.  We consider the three-parameter Weibull well suited for use 
in PCA.  Furthermore we think that the use of more complex PDFs is unwarranted when 
the input data is based on subjective assessments. 
 
4.2.5. Some Numerical Comparisons 
We use the cost element C1.1 in Table IV (see Section 6) to quantitatively investigate the 
above PDFs and the effects of calibrating percentiles.  The three-parameter Weibull, the 
three-parameter lognormal, and the generalized Beta distributions are flexible enough to 
provide successful fits in all of the examined cases; the triangular distribution is not.  The 
three-parameter Weibull and generalized Beta PDFs and CDFs are shown Figs. 2a and 
2b, respectively.  Table II summarizes some key statistical parameters.  The differences 
or errors of the means and standard deviations are minor compared with those of the 
high-percentile values.  For a given set of three percentiles, the CDFs corresponding to 
the three-parameter Weibull and the generalized Beta distributions differ mainly outside 
of the specified ranges, where expert opinion is likely to be highly unreliable.  The results 
suggest that while it is important to select suitable PDFs to fit the assessed percentiles, it 
is unwarranted to further discriminate among these fits because the differences are of 
secondary importance compared to the accuracy of the assessed percentiles.  
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4.3. MAIMS-Modified PDFs 
 
The MAIMS principle accounts for the fact that account managers rarely under-run their 
original allocated budgets.  This has important implications for PCA.  Once a cost 
element is allocated a budget x* it becomes a random variable with minimum value x* 
rather than the lower range L of the original PDF.  We refer to these PDFs as the 
MAIMS-modified PDFs.  They are proper PDFs with a delta-like function at x* that 
accounts for all random values less than or equal to x*.  We stress that the MAIMS-
modified PDFs are not the same as the Crystal Ball® and @Risk truncated PDFs.  The 
latter are generated by only considering the trials with random values between the 
specified ranges.   
 
We use the Weibull (20/50/80) distribution in Table II to illustrate the consequences of 
the MAIMS principle for the following budget allocations: values of x* equal to the 
mean, 50th, 75th, and 85th percentiles.  The results are summarized in Table III and Fig. 3.  
Each MAIMS-modified CDF has a step-function behavior at x* and is identical to the 
original CDF above x*.  Applying the MAIMS principle to a PDF increases its mean 
value and reduces its standard deviation.  The impact increases with increasing values of 
x*.  The results strongly suggest that the MAIMS principle is likely to play a significant 
role in PCA.  We further investigate this in Section 6 for a representative design and 
engineering project. 
 
 
4.4. Modeling Specific Risks 
 
The PDFs in Section 4.2 provide a macroscopic rather than a microscopic view of the 
project cost risk.  They effectively model those factors or project characteristics that are 
ever present and contribute to cost uncertainties.  But complex projects often involve a 
number of key or critical decisions and high-impact risks that need to be explicitly 
analyzed and risk responses developed.  It is tempting to assume or claim that the cost 
PDFs also quantify these situations.  We think that this is an invalid and 
counterproductive argument because it leads to the loss of valuable information and 
visibility into the high-consequence events.  The analysis of specific risks and risk 
response actions requires a microscopic view and is best carried out using tools such as 
decision trees, influence diagrams, or other discrete representations [Kujawski, 2002b].  
The microscopic perspective also assists risk analysts and domain experts to think about 
low-probability/high-consequence events and better deal with overconfidence or 
optimism biases.  But it is too cumbersome and unrealistic to individually analyze every 
risk and source of cost uncertainties.  In this paper we focus on the macroscopic 
perspective and acknowledge that work is needed to develop an integrated PCA that 
explicitly models risk reduction activities and provides a better decision-making tool. 
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5.  A TWO-LEVEL CORRELATION MODEL (TLCM) 
 
As discussed in the Introduction and Section 2, psychological influences and project 
characteristics such as complexity, dependencies, criticality, management, staff, and 
product development process are likely to simultaneously impact multiple cost elements 
at the subsystem and system levels.  Furthermore, the realization of any one risk is likely 
to increase the probability and/or consequences of other risks.  The cost elements are 
therefore correlated, and in general given N cost elements there are N*(N - 1)/2 
correlation coefficients.  These cannot assume arbitrary values between ± 1.0 because the 
correlation matrix must satisfy certain mathematical properties [Embrechts et al, 1999].  
Some MCS tools including Crystal Ball® check the correlation coefficients for 
consistency and offer the option of adjusting them to construct a consistent correlation 
matrix.  But there is danger in relying on an algorithm that may not capture the 
characteristics of correlation among cost elements [Hulett, 1999].  Clemen and co-
workers [1999 and 2000] have done research on using expert judgment to assess 
correlation coefficients.  Dillon and co-workers [Dillon et al, 2002] estimate correlations 
based on expert judgment about relationships between correlation and shared variance.  
The assessment of correlation coefficients is a difficult problem, and there is a definite 
need for a realistic and practical model that accounts for interrelationships among cost 
elements.   
 
In this section we develop a correlation model that greatly reduces the number of 
parameters needed to specify a mathematically valid correlation matrix and accounts for 
the following two types of correlations: 
 
1. Correlations among the cost elements within a given subsystem.  These dependencies 

arise principally from the subsystem characteristics such as complexity and common 
staff. 

2. Correlations among the cost elements in different subsystems.  These dependencies 
arise principally from the organizational and programmatic considerations that are 
common to all cost elements because they are in the same project. 

 
The model is based on Markowitz's multi-factor model [Markowitz, 1997].  Given its 
properties, we refer to it as the Two-Level Correlation Model (TLCM).    
 
 
5.1. Development of the TLCM 
 
Consider the cost elements at the WBS level 3 defined in Section 3.  We model them as a 
sum of two random variables Rm.j and Fm: 
 

Cm.j = Rm.j + αm.j *Fm.      (4) 
 
The αm.j are constants.  Rm.j and Fm have the following properties: 
 
1. The Rm.j are independent random variables.  Cov(Rm.j, Rn.k) = 0 for m.j n.k. ≠
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2. The Fm are correlated random variables.  Cov(Fm, Fn)  0 for m ≠ n.   ≠
3. Rm.j and Fn are independent.  Cov(Rm.j, Fn) = 0 for all m and n. 
 
Following some algebraic manipulations, it can be shown that the TLCM correlation 
coefficients satisfy the following interesting relationship: 
 

Corr(Cm.j, Cn.k) = Corr(Fn, Fm)* αm.j*αn.k.   (5) 
 

The above expression provides a simple model for correlation coefficients that account 
for interrelationships among cost elements at both the project-wide (WBS level 2) and 
subsystem (WBS level 3) levels.  
 
 
5.2. Some Properties of the TLCM 
 
Consider a WBS that consists of M level-2 elements each of which consists of J level-3 
cost elements, Cm.j where m = 1,…,M and j = 1,…,J, for a total of M*J cost elements.  
From Eq. (5) it is seen that the TLCM requires M*(M-1)/2 values of Corr(Fm, Fn) and 
M*J values of αm.j.  The number of parameters in the TLCM is then M*(M - 1)/2 + M*J 
versus M*J*(M*J - 1)/2 for the general case.  For example, for M = J = 10 the TLCM 
requires a total of 145 distinct correlation coefficients, which is a sharp reduction from 
the mathematically feasible number of 4,950.  But even specifying this reduced number 
of parameters is a sizeable task and is not justified given the lack of relevant data.  We 
therefore propose a simplified version of the TLCM that depends on only two parameters. 
 
5.2.1. A Two-Parameter Model for the Correlation Coefficients 
To further simplify the determination of the correlation matrix, we characterize the 
correlation coefficients with only two parameters, ρint and ρext, that provide measures of 
the correlation among the cost elements of the same subsystem and different subsystems.  
The full correlation matrix is then given by 
 
1.  Corr(Cm.j, Cm.k) = ρint  for all values of m and j ≠  k  (i.e. correlation among cost 
elements in the same subsystem) 
2.  Corr(Cm.j, Cn.k) = ρext  for all values of j, k, and m  n (i.e. correlation among cost 
elements in different subsystems) 

≠

3.   ρint > ρext .  
 
 
5.3. Some Limitations of Correlation Coefficients 
 
A correlation coefficient is a scalar quantity that only provides a measure of the linear or 
monotonic relationship between two random variables.  It does not account for any non-
linear dependencies.  This limited information is somewhat analogous to the situation of 
different PDFs that have the same mean and variance but different higher-order moments.  
There is also a lack of statistical data and limited experience with subjectively assessing 
correlations [Clemen et al, 2000].  But these limitations and difficulties do not warrant 
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PCAs that assume no correlation among the cost elements.  We agree with Book [1999 
and 2000/2001] and others [Chapman and Ward, 2000] who advocate the use of 
reasonable correlation values because it provides more realistic and credible estimates of 
project costs and cost risks than assuming either no correlation (ρ = 0.0) or perfect 
correlation (ρ = 1.0).  Studies in various fields, including financial risk management, 
have shown that correlation coefficients are often a satisfactory measure of association 
among uncertain elements [Embrechts et al, 1999].  These authors also make the point 
that rank-order correlation coefficients can assume any value between +/-1.0 and do not 
depend on any specific PDF.  Rank-order correlation is implemented in several 
commercially available MCS tools including Crystal Ball® and @Risk.  But there are 
other correlation measures, and they are not mathematically equivalent.  Pearson's 
correlation measures linearity rather than monotonicity.  Garvey [1999] stresses that the 
latter should be used for cost risk analysis with a CWBS because the cost variance 
depends on it.  Recent studies on a realistic cost model [Smith and Hu, 2003] indicate that 
these differences do not have much of an impact on the total cost.  We think that at the 
present time this is more of an academic than a practical issue.   
 
In this paper we deal principally with cost elements that are assessed using expert 
judgment.  But there are numerous projects that use Cost Engineering Relationships 
(CERs) that model functional relationships and thereby introduce correlations among the 
cost elements [Garvey, 2000].  For example, the integration and testing costs depends on 
common factors such as the complexity of the hardware and software, power, weight… 
There are also functional and statistical dependencies between cost and schedule.  Cost-
schedule joint probability distributions provide some modeling help, but they also have 
serious shortcomings.  Embrechts et al [1999] stress that "marginal distributions and 
correlation do not determine the joint distribution."  Garvey [2000: 332] states "…they do 
not capture causal impacts that schedule compression or extension has on cost."4  The 
treatment of dependencies in PCA is an active area of research and development.  For the 
general situation, we propose integrating the TLCM with CERs and other functional 
relationships to account for behavioral and organizational dependencies. 

                                                           
4 Italics in the original text. 
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6.  APPLICATION TO A REPRESENTATIVE DESIGN AND ENGINEERING 
PROJECT 
 
To investigate the concepts and issues discussed in the previous sections we consider the 
hypothetical project with the Work Breakdown Structure (WBS) in Table IV.  It is both 
rich and simple enough to illustrate the following effects on a PCA: (1) the assessment of 
the cost elements, (2) the modeling of correlation among them, and (3) the allocation of 
budgets and management of contingencies.   
 
Given a WBS, the first step of a PCA is to develop an appropriate Cost Work Breakdown 
Structure (CWBS).  Assume that the resulting CWBS is the WBS level 3 in Table IV.  
The second step is to systematically assess the cost elements using the DFA method.  
Assume that the 10th, 50th, and 90th percentiles in Table IV specify the assessed cost 
elements.  These values may be further calibrated for biases in the assessments.  The third 
step is to fit realistic PDFs to these percentiles.  We use three-parameter Weibull 
distributions.  At this step, the proposed approach further deviates from today’s typical 
PCA and it implements a MCS with the following variations: 
 
1. A baseline or budget is allocated to each cost element.  Their sum constitutes the 

Project Baseline Cost (PBC). 
2. Each cost element PDF is modified by setting its lower value to its allocated budget. 
3. Statistical interrelationships among the cost elements are modeled using the TLCM. 
 
Figure 4 depicts different budget allocation strategies for a given set of PDFs and 
correlation matrix.  All calculations were performed with Crystal Ball and 10,000 trials.  
The “ideal curve” corresponds to the model where each cost account manager rationally 
spends money only as necessary to satisfy the project requirements.  The actual costs may 
be less than the budgeted costs and the savings are available to support other project 
elements on an as-needed basis.  In the MAIMS_@_X50 and MAIMS_@_X75 curves all 
cost elements are allocated equal percentiles of 50% and 75%, respectively5.  In the 
MAIMS_@_mean curve each cost element is allocated its mean or expected value.  Each 
cost element is then budgeted at a percentile that depends on the PDF.  Some interested 
parties may not consider this to be equitable; but in its defense we note that this approach 
has mathematical merit and compensates somewhat for high risks [Kindinger, 1999].  
The results in Fig. 4 are consistent with those of Section 4.3.  The MAIMS effects 
increase with increased allocated budgets.  They depend on and are substantial over a 
wide range percentile values.  We note that the MAIMS principle has little impact at very 
high confidence levels (CL > 95%) because at these CL values each contributing cost 
element must be near its maximum or 100th percentile value.   
 
Figure 5 depicts the effects of different correlation values.  The behavior is consistent 
with the results of Section 3.2.  The effects of correlation are significant over a wide 
range of cost percentiles important to PCA.  We note that the correlation effects peak 

                                                           
5 We use Xn to denote the nth percentile of a cost element to differentiate it from the project cost PoS or 
percentile. 
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near the 0th and 100th percentile values and that they vanish at the mean, 0th and 100th 
percentile values.   
 
Figure 6 depicts the effect of "spreading those fractiles" for a given correlation matrix 
and two different budget allocations.  It has a substantial impact and it increases in 
importance with high Probability of Success (PoS) values.  For example, in the 
MAIMS_@_mean situation, the effects of calibrating the assessed x10 and x90 values to 
the 20th and 80th percentile values dominate the effects of the MAIMS principle for 
greater than 60% PoS values.  For completeness and convenience, some of the data is 
summarized in Table V. 
 
Based on this analysis, we note that the assessment of the cost elements, the 
interrelationships among them, the budget allocation and management of contingencies 
constitute important and confounding factors [Freedman et al, 1991].  The results 
strongly suggest that realistic cost predictions require PCAs that simulate these effects 
simultaneously rather than individually.   
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7.  BUDGET ALLOCATION, CONTINGENCY, AND PROJECT COST 
 
In this section we integrate the concepts presented in the previous sections into a sound 
methodology for determining the Total Estimated Cost (TEC), allocating the baseline 
budgets, and managing the Management Cost Contingency6 (MCC).  Our objective is to 
develop an optimal but realistic TEC for a given PoS that we assume has been specified 
by either project management, based on the desire to win the project and risk tolerance, 
or by the procuring activity.   
 
The project manager or a designee, because of either contractual requirement or 
management expediency, allocates definite budgets that constitute the Project Baseline 
Cost (PBC) to the cost managers.  Typically, he/she also establishes a MCC for 
management flexibility in executing in-work scope and dealing with unforeseen in-scope 
events, and allocates available contingency funds on an as-needed basis during the life of 
the project.  Procuring activities in government [NASA, 2002; U.S. Department of 
Defense, 2002; U.S. Department of Energy, 2000] and commercial organizations [Smith 
and Merritt, 2002] often establish additional contingencies for work scope changes and 
other "unknown unknowns".  The PBC and MCC represent snapshots in time and they 
need to be reassessed periodically as the project evolves.  Given adequate risk 
management, the cost uncertainties should decrease and the MCC should track above or 
at the planned margin [Forsberg et al, 2000].  The MAIMS principle and probabilistic 
aspects of the project costs complicate the situation.  As we have already shown, the TEC 
depends not only on the desired PoS but also the budget allocation and the management 
of contingencies.  The project cost cannot be estimated until the cost management 
strategy including budget allocation is specified.  We like to think that this contains a 
flavor of the Heisenberg Uncertainty Principle. 
 
Much has been written on cost contingency; but there is still much confusion [Baccarini, 
1999; INCOSE, 2003].  To shed some additional light on this topic, we express the MCC 
in a form that exhibits its dependence on the PoS and the cost management strategy, 
 

MCC(PoS, PBC1,…,PBCn)  TEC(PoS, PBC≡ 1,…,PBCn) – PBC. (6)  
 
PBCi is the baseline budget for cost element Ci; PBC is the sum over all cost elements.  
Equation (6) contrasts with both the deterministic practice that allocates a percentage of 
the PBC as MCC and today's typical PCA that models an "ideal project" devoid of the 
MAIMS principle.  In contrast to Eq. (6), the MCC based on today's typical PCA is 
independent of the budget allocation strategy.  
 
Consider the illustrative project in Section 6 and the following budget management 
strategies: (1) all cost elements are baselined at their mean values; (2) all cost elements 
are baselined at the 50% CL; and (3) all cost elements are baselined at the 75% CL.  
Figure 7 depicts the resulting TECs and MCCs and the “ideal” project TEC.  The budget 
management strategy has a significant impact on the project cost and PoS.  The cost 
penalty, either increased budget or reduced PoS, increases with increasing budget 
                                                           
6 There is no standard terminology and usage of terms and definitions vary widely with organizations. 
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allocation and is substantial for all but the very high PoS values.  For example, dramatic 
cost reductions are achieved by allocating budgets to the cost elements at the 50% CL 
rather the 75% CL.  The standard PCA that assumes an “ideal” project provides a false 
sense of confidence and it may be a major source of cost overruns even for budgets with 
high contingencies. 
 
Figure 7 has important implications for both the procuring activity and the contractor.  
Consider a hypothetical request for proposal for the project in Table IV.  To level the 
playing field, the procuring activity specifies that all bids should provide the 50% CL 
cost.  Contractor A has a certain level of sophistication.  He prepares a PCA with every 
bid; he systematically assesses the cost elements including uncertainties; he baselines and 
allocates budgets to the cost elements at their mean values; management establishes and 
controls a contingency that equals the difference between the bid and the mean TEC.  But 
Contractor A is not cognizant of the MAIMS principle and other psychological 
considerations that impact project cost.  He performs the standard PCA and obtains the 
CDF in Fig. 7 labeled “TEC Ideal” and a P50 TEC of 7,348 K$.   The P50 value or 
median is 317 K$ less than the mean value of 7,655 K$ because the cost elements are 
given by positively skewed PDFs.  To increase the chance of winning the project, 
Contractor A submits a bid of 7,348 K$ and rationalizes that his practices are too 
conservative given that this value is 30% above the low estimate of 5,633 K$.  But 
because of the MAIMS principle Contractor A's risks are significantly greater than he 
thinks.  Given that the cost elements are budgeted at their mean values, the TEC is really 
given by the CDF in Fig. 7 labeled “PEC MAIMS_@_mean”, the P50 TEC is 8,071 K$, 
and the PBC of 7,665 K$ is the lowest achievable cost.  Based on our analysis we 
conclude that there is a negligible likelihood that Contractor A given his practices can 
deliver the project for the submitted bid of 7,348 K$.  The criticality of the situation is 
further aggravated by the fact that Contractor A has stumbled onto Russo and 
Schoemaker's [1990: 95] Decision Trap Number 5 [see Section 2.2.4]; he is implicitly 
relying on misleading information.  Table VI summarizes this and several other 
scenarios.  
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8.  SUMMARY AND RECOMMENDATIONS 
 
This paper begins by exploring some of the limitations of today's typical probabilistic 
cost analysis that assumes an “ideal” world devoid of the psychological considerations 
and other complexities that are so critical to project success.  It then proceeds to develop 
a practical and theoretically valid framework for quantifying the influences of human 
behavior, judgment under uncertainty, management practices and interrelationships 
among cost elements presents.  The key elements include: 
 
1. The use of an appropriate cost work breakdown structure.  Subdividing the project 

costs into too many bite-size pieces is likely lead to erroneous results and false sense 
of confidence.  Analysts should be wary of the pitfalls of performing a probabilistic 
cost analysis that consists of hundreds of cost elements that are subordinate to level 3. 

2. The assessment of uncertain cost elements using the direct fractile assessment method 
and findings about human judgment.  We recommend that analysts elicit uncertain 
cost elements at the 10th, 50th, and 90th percentiles and, if judged appropriate, calibrate 
them to account for human and organizational behaviors, be it overconfidence or 
cost/schedule padding.   

3. The selection of flexible and realistic probability distribution functions.  We favor the 
three-parameter Weibull distribution for fitting uncertain cost elements; but there are 
many other suitable distributions.  The values of the input percentiles are much more 
likely to have a significant impact on the probabilistic cost analysis than the choice of 
the fitted distributions.   

4. A realistic and practical treatment of correlation among cost elements.  We propose a 
model for the full correlation matrix that depends on two parameters: ρin for 
correlation among cost elements in the same subsystem, and ρext for correlation 
among cost elements in different subsystems.  Reasonable correlation values in the 
range 0.3 to 0.6 should lead to more realistic cost estimates than the overly optimistic 
values assuming independence or the overly pessimistic values assuming perfect 
correlation 

5. Incorporation of the “Money Allocated Is Money Spent” (MAIMS principle) and 
budget management practices.  In the Monte Carlo simulation, all sampled values less 
than their associated cost baseline budgets are set equal to the latter. 

6. The explicit treatment of confounding effects. The assessment of the cost elements, 
correlation effects, budget allocation, human behavior, and organizational 
considerations items all influence each other and have a significant impact on the 
project cost and/or probability of success.  For enhanced credibility and realism, we 
recommend that the probabilistic cost analyses consider these influences 
simultaneously rather than individually. 

7. The use of commercially available and widely used software.  The proposed analysis 
is readily implemented using standard Monte Carlo simulation tools such as Crystal 
Ball and @Risk. 

 
We think that the proposed approach provides a framework for obtaining more accurate 
predictions than those provided by today's typical probabilistic cost analysis.  With more 
accurate predictions and realistic expectations project managers can develop more viable 
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plans and make better decisions.  The results are projects that are delivered for a lower 
cost and higher probability of success.  We acknowledge that it takes effort to develop 
these more realistic models and that all models are only approximations to reality.  But 
given the magnitude of the cost overrun problem, there is no excuse for accepting the 
status quo; the benefits are likely to be significant.  
 
We, however, do not claim that the proposed approach is the silver bullet that will slay 
the cost overrun monster.  We have focused only on cost and the macroscopic 
perspective.  Cost is but one element of the performance-cost-schedule triad.  By their 
very nature R&D and complex engineering projects are susceptible to high-consequence 
risks that are better modeled with decision trees, influence diagrams, and other decision 
tools.  The ever present and more generic cost uncertainties are better and more 
conveniently modeled with continuous probability distribution functions.  In the near 
future, probabilistic cost analysis should integrate the microscopic and macroscopic 
approaches to ensure that they properly address all risks and cost uncertainties and that 
they adequately support risk reduction activities.  Other areas that need additional 
research and development include (1) eliciting and integrating data from multiple experts 
[Clemen and Winkler, 1999]; (2) budgeting and managing contingencies for multiple 
projects [Dillon and Paté-Cornell, 2001]; and (3) quantifying human and organizational 
behaviors of R&D and complex engineering projects.  Our experience is that the single 
greatest challenge to the development and use of improved probabilistic cost analysis is 
the implementation of systems thinking [Richmond, 2000] at the personnel, 
organizational, and institutional levels. One of the anonymous referees has suggested the 
development of a tracking system that identifies the assumptions for the high, medium, 
and low percentiles and tracks their evolution. This would provide management with a 
powerful forecasting tool and the ability to dynamically adjust the budget of each cost 
element.   He states " …in the future -accurately watching and forecasting - can grow into 
the aspects of controlling and suppressing adverse behaviors."  We agree and think that 
this paper offers a springboard to develop and implement more refined cost models and 
improved budget management practices. 
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ACRONYMS 
 
CCPM  Critical Chain Project Management 
CDF  Cumulative Distribution Function 
CER  Cost Engineering Relationship 
CL  Confidence Level 
CWBS  Cost Work Breakdown Structure 
DFA  Direct Fractile Assessment 
MAIMS Money Allocated Is Money Spent 
MCC  Management Cost Contingency 
MCS  Monte Carlo Simulation 
PBC  Project Baseline Cost 
PCA  Probabilistic Cost Analysis 
PDF  Probability Distribution Function 
PoS  Probability of Success 
TEC  Total Estimated Cost 
TLCM  Two-Level Correlation Model 
WBS   Work Breakdown Structure 
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Table I.  Some Summary Statistics for the PDFs in Figure 1a   
 

Statistics ρ = 1.0 ρ = 0.8 ρ = 0.5 ρ = 0.3 ρ = 0 .1 ρ = 0. 0 
Mean, K$ 4,326 4,326 4,326 4,326 4,326 4,326 
Median, K$ 4,210 4,230 4,266 4,263 4,307 4,318 
Standard Deviation, K$ 481 433 350 350 206 153 
Skewness 1.31 1.22 1.00 1.03 0.56 0.38 
Kurtosis 5.13 4.85 4.27 4.45 3.30 3.06 
 
 
Table II.  Parameters and some statistics for different PDFs fitted to three 
percentiles 
 

Distribution 
(fractiles*) 

 Fitted 
Parameters+ 

  Mean 
K$ 

SD^ 
K$ 

Weibull(10/50/90) L = 370 K$ α = 67 K$ β = 1.29  432 49 
Weibull(20/50/80) L = 364 K$ α = 83 K$ β = 0.97  448 85 
Beta(10/50/90) a = 375 K$ b = 607 K$ α = 0.94 β = 2.91 432 45 
Beta(20/50/80) a = 375 K$ b = 584 K$ α = 0.49 β = 1.10 439 60 
* 10/50/90: x10 = 382 K$, x50 = 421 K$, x90 = 499 K$ 
   20/50/80: x20 = 382 K$, x50 = 421 K$, x80 = 499 K$. 
+ Parameters defined in text. 
^ SD: Standard deviation. 
 
 
Table III.  Means and standard deviations for an illustrative cost element with and 
without the MAIMS principle 
 

Probability Distribution ^ 
 

Mean 
K$ 

Percentile of 
mean 

SD 
K$ 

W(x20 = 382, x50 = 421, x80 = 499) 448 63 85 
WM(x20 = 382, x50 = 421, x80 = 499; x* = mean = 448) 479 75 66 
WM(x20 = 382, x50 = 421, x80 = 499; x* = x50 = 422 ) 463 72 73 
WM(x20 = 382, x50 = 421, x80 = 499; x* = x75 = 482) 502 81 55 
WM(x20 = 382, x50 = 421, x80 = 499; x* = x85 = 521) 535 87 48 
^ W( ) is the three-parameter Weibull distribution in Table II.  The WMs are the corresponding MAIMS-
modified distributions with the specified values of x*.  All percentiles are in units of K$. 
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Table IV.  Sample project WBS and assessed cost elements 
 

 
WBS Cost Elements ^ 

 Estimated Percentiles 
 K$  

 X10
 X50

 X90
 

1.0  Total project/system, CT    

  1.1  Project/system-level, C1    

      1.1.1   Project management, C1.1 382 421 499 

      1.1.2   Systems engineering, C1.2 220 232 257 

      1.1.3   Integration & test, C1.3 887 1,010 1,256 

  1.2  Subsystem X, C2    

     1.2.1   Mechanical components, C2.1 970 1088 1,323 

     1.2.2   Electrical components, C2.2 742 846 1,054 

     1.2.3   Integration & test, C2.3 596 724 980 

  1.3  Subsystem Y, C3    

     1.3.1   Software development, C3.1 1,069 1,282 1,708 

     1.3.2   Firmware, C3.2 634 743 961 

     1.3.3   Integration & test, C3.3 541 656 886 

^ Cm.j is defined in Section 3.1. 
 
 
Table V.  Some summary data of the PCA for the project in Table IV  
 

     Model^    Estimated Project Cost*, K$  

ρint/ρext^ Budget 
Allocation+ 

Mean SD P0 
Min value 

P50 P80 P95 

0.0/0.0 Ideal 7,676 785 5,633 7,576 8,295 9,114 
0.6/0.4 Ideal 7,661 1,367 5,633 7,348 8,626 10,301 
0.6/0.4 X50 8,059 1,145 7,002 7,692 8,771 10,427 
0.6/0.4 Mean 8,438 1,010 7,665 8,071 8,987 10,494 

^ Cost elements with 10th and 20th percentile values calibrated to the 20th and 80th percentiles, respectively. 
  ρint/ρext: TLCM coefficients. 
  Ideal: Today's typical analysis; no MAIMS principle. 
  X50: MAIMS principle with cost elements allocated budgets at the 50th percentile. 
  Mean: MAIMS principle with cost elements allocated budgets at the mean. 
* SD: Standard deviation. 
  Pn: Value with n% probability of success or confidence level. 
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Table VI.  Some summary data of the different cost management strategies depicted 
in Figure 7 
 
Management  Strategy MAIMS-Modified PCA   Typical PCA   

Budget 
Allocation 

Desired 
PoS 

TEC    
$K 

MCC   
$K 

MCC   
% 

Real. 
PoS 

TEC    
$K 

MCC   
$K 

MCC   
% 

Real. 
PoS 

  20% 7,673 0 0% 20% 6,445 -1,220 -16% 0% 
Mean 50% 8,071 406 5% 50% 7,348 -317 -4% 0% 

  80% 8,987 1,322 17% 80% 8,626 961 13% 73% 
  20% 7,111 0 0% 20% 6,445 -557 -8% 0% 

50% CL 50% 7,692 690 10% 50% 7,348 346 5% 37% 
  80% 8,771 1,769 25% 80% 8,626 1,624 23% 77% 
  20% 8,466 0 0% 20% 6,445 -2,021 -24% 0% 

75% CL 50% 8,613 147 2% 50% 7,348 -1,118 -13% 0% 
  80% 9,330 864 10% 80% 8,626 160 2% 52% 
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LIST OF FIGURE CAPTIONS 
 
Figure 1a.  Illustrative example of the impact of correlations on the probability 
distribution of the sum of ten cost elements.  Each cost element is given by a three-
parameter Weibull distribution with location L = 370 K$, scale parameter α = 67.5 K$, 
and shape parameter β = 1.3. The distribution and notation are defined in Section 4.2.  
The units of K$ are introduced for additional relevance to PCA.   
 
Figure 1b.  Comparison of the impact of correlations on the cumulative distribution 
functions corresponding to the data in Figure 1a. 
Figure 1c.  Quantitative comparison of the impact of correlations for the illustrative 
example in Figure 1b.   
 
Figure 2a.  Illustrative example of the differences between the fits provided by the three-
parameter Weibull and generalized Beta distributions to the two sets of three percentiles 
in Table II.  W10/50/90: Weibull(10/50/90), B10/50/90: Beta(10/50/90), W20/50/80: 
Weibull(20/50/80), B20/50/80: Beta(20/50/80).   
Figure 2b.  Comparison of the cumulative distribution functions corresponding to the 
probability distributions in Figure 2a. 
 
Figure 3.  Comparison of CDFs with and without the MAIMS principle for the PDFs in 
Table III.  W: original PDF; WM_@_mean: allocated budget x* = mean; WM_@_X50: 
x* = x50; WM_@_X75:  x* = x75;  WM_@_X85:  x* = x85. 
 
Figure 4.  Impact of different budget allocation strategies on the PCA for the project in 
Table IV.  Cost elements with Weibull distributions fitted to the 10th, 50th, and 90th 
fractiles; TLCM parameter values of 0.6 and 0.4. 
 
Figure 5.  Impact of different correlation models on the PCA for the project in Table IV. 
Cost elements with Weibull distributions fitted to the 10th, 50th, and 90th fractiles. 
 
Figure 6.  Impact of calibrating cost elements on the PCA for the project in Table IV. 
The 10th and 90th fractiles are equated to the 20th and 80th fractiles and fitted with Weibull 
distributions; TLCM parameter values of 0.6 and 0.4. 
 
Figure 7.  Impact of different cost management strategies on the cost and contingency for 
the project in Table IV.  This is a different representation of the data in Figure 4. 
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Figure 1a.  Illustrative example of the impact of correlations on the probability 
distribution of the sum of ten cost elements.  Each cost element is given by a three-
parameter Weibull distribution with location L = 370 K$, scale parameter α = 67.5 K$, 
and shape parameter β = 1.3. 
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Figure 1b.  Comparison of the impact of correlations on the cumulative distribution 
functions corresponding to the data in Figure 1a. 
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Figure 1c.  Quantitative comparison of the impact of correlations for the illustrative 
example in Figure 1b.   
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Figure 2a.  Illustrative example of the differences between the fits provided by the three-
parameter Weibull and generalized Beta distributions to the two sets of three percentiles 
in Table II.  W10/50/90: Weibull(10/50/90), B10/50/90: Beta(10/50/90), W20/50/80: 
Weibull(20/50/80), B20/50/80: Beta(20/50/80).   

34 



0%

20%

40%

60%

80%

100%

300 400 500 600 700 800 900

Cost, K$

C
os

t p
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

W 10/50/90 W 20/50/80

B 10/50/90 B 20/50/80
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

300 400 500 600 700 800 900 1,000 1,100 1,200

Cost, K$

Pr
ob

 (<
 C

os
t) W

WM @ mean

WM @ X50

WM @ X75

WM @ X85

 
 
Figure 2b.  Comparison of the cumulative distribution functions corresponding to the 
probability distributions in Figure 2a. 
 

 
 
Figure 3.  Comparison of CDFs with and without the MAIMS principle for the PDFs in 
Table III.  W: original PDF; WM_@_mean: allocated budget x* = mean; WM_@_X50: 
x* = x50; WM_@_X75:  x* = x75; WM_@_X85:  x* = x85. 
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Figure 4.  Impact of different budget allocation strategies on the PCA for the project in 
Table IV.  Cost elements with Weibull distributions fitted to the 10th, 50th, and 90th 
fractiles; TLCM parameter values of 0.6 and 0.4.   
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Figure 5.  Impact of different correlation models on the PCA for the project in Table IV. 
Cost elements with Weibull distributions fitted to the 10th, 50th, and 90th fractiles. 
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Figure 6.  Impact of calibrating cost elements on the PCA for the project in Table IV. 
The 10th and 90th fractiles are equated to the 20th and 80th fractiles and fitted with Weibull 
distributions; TLCM parameter values of 0.6 and 0.4. 
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Figure 7.  Impact of different cost management strategies on the cost and contingency for 
the project in Table IV.  This is a different representation of the data in Figure 4. 
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