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Abstract—In this paper, a method for maximizing the proba-
bility of prostate cancer detection via biopsy is presented, by com-
bining image analysis and optimization techniques. This method
consists of three major steps. First, a statistical atlas of the spa-
tial distribution of prostate cancer is constructed from histological
images obtained from radical prostatectomy specimen. Second, a
probabilistic optimization framework is employed to optimize the
biopsy strategy, so that the probability of cancer detection is maxi-
mized under needle placement uncertainties. Finally, the optimized
biopsy strategy generated in the atlas space is mapped to a specific
patient space using an automated segmentation and elastic regis-
tration method. Cross-validation experiments showed that the pre-
dictive power of the optimized biopsy strategy for cancer detection
reached the 94%-96% levels for 6-7 biopsy cores, which is sig-
nificantly better than standard random-systematic biopsy proto-
cols, thereby encouraging further investigation of optimized biopsy
strategies in prospective clinical studies.

Index Terms—Biopsy optimization, prostate cancer, spatial nor-
malization, statistical image analysis.

1. INTRODUCTION

ITH an aging population, prostate cancer has become a

major medical and socioeconomic problem. It continues
to be the second leading cancer death course for American men.
Since prostate cancer is relatively less aggressive and slowly
progressing, if the cancer can be found while it is still con-
fined in the prostate, the 5-year relative survival rate after the
treatment is nearly 100% [1]. Therefore, early diagnosis is crit-
ically important for treating prostate cancer. In the absence of
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an imaging modality that can reliably detect prostate cancer in
the majority of cases, needle biopsy of the prostate following an
elevated prostate specific antigen (PSA) levels or an abnormal
digital rectal examination (DRE) has been widely used as a gold
standard for the diagnosis of prostate cancer. The most pop-
ular sampling method has been the sextant biopsy [2], which
divides the left and right parts of the prostate into three regions
each, then randomly samples each of them. This approach has
been shown to have a large false negative detection rate ranging
from 27% to 39%, depending on cancer stage [3], [4]. For ex-
ample, the study in [5] showed that 23% of initially positive
sextant biopsies were followed by a negative repeat biopsy, in-
dicating the significant error of the technique. Similar data have
been published by others showing 31% [6] and 23% [7] nega-
tive repeat sextant biopsy of patients with positive first biopsy.
Enhanced biopsy methods have also been employed, with the
number of needles varying from 8 to 14, or, in the case of satu-
ration biopsy, up to 45 core needle samples [8]-[14], generally
displaying improved detection rates. However, each additional
puncture on the rectal wall increases the possibility of infec-
tion and makes the patients more uncomfortable even when the
biopsy is performed under local anaesthesia.

The low predictive accuracy of the random systematic biopsy
strategies is partly due to their highly empirical nature, i.e.,
the needles are just randomly deployed without considering the
fact that the spatial distribution of prostate cancer is inhomo-
geneous within the prostate capsule [15], [16]. Recently, some
researchers have begun to investigate the possibility of using
a large number of patients’ histological images to determine
prostate regions that are most likely to develop cancer and there-
fore should be sampled during biopsy [17]-[19]. Although these
methods indicate a promising direction for increasing the biopsy
efficiency, they have used relatively simple spatial normaliza-
tion methods, which limit the accuracy of the derived statistical
distribution of caner and hence the diagnosis accuracy of biopsy.

In this paper, we propose a method that precisely determines
where the needles should be placed, in order to maximize
the probability of cancer detection, by applying a statistical
image analysis methodology to a set of histological images
obtained from radical prostatectomy patients. Our premise
is that better registration methods allow us to perform more
accurate voxel-based analysis of the spatial distribution of
prostate cancer, which leads to a more spatially specific biopsy
optimization. Our method consists of three steps. First, la-
beled histological images from many patients are registered
to a canonical coordinate system using an elastic registration
method. This canonical coordinate system is defined as stereo-
tactic space, in which the same spatial coordinates correspond
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Fig. 1. Schematic demonstration of the proposed method for the optimization of the biopsy strategy. (a) The atlas is constructed from a number of histological
images that are spatially normalized to the stereotactic space (the spatial normalization transformations are represented by dotted arrows). (b) Optimal biopsy sites
are determined in the stereotactic space, as indicated by the black circle, based on the statistics of cancer distribution. (c) The optimal biopsy site is then mapped

back to the patient’s image space via the transformation T '.

to approximately the same anatomic location in different pa-
tients. Thereby, a statistical atlas of the spatial distribution of
prostate cancer is readily constructed in the stereotactic space.
Second, based on the statistical atlas of the spatial distribution
of prostate cancer, an optimization framework is used to deploy
the biopsy needle cores, which are modeled as semi-cylinders.
This optimization framework maximizes the probability that
at least one needle intersects cancerous tissue under the pres-
ence of needle placement uncertainties. Finally, a method for
mapping the optimized biopsy strategy to a new patient’s scan
for biopsy purposes is proposed. Since ultrasound imaging
is commonly used for biopsy guidance in clinical settings,
a texture-based segmentation method is used to determine
the prostate surface from the ultrasound image and guide the
deformable registration with the atlas. Fig. 1 gives a schematic
example to explain the principle of our atlas-based biopsy
optimization method. Notably, although theoretically it is better
to optimize the biopsy cores in the patient space after warping
the statistical atlas to a specific patient, the huge time cost of
the atlas warping and the biopsy optimization is not afford-
able for real biopsy operations. Using our proposed method,
the optimization of biopsy cores in the stereotactic space is
accomplished before biopsy operations and the warping of the
optimized biopsy strategy could be finished very fast, which
satisfies the requirement of real clinical applications.

This study follows the direction of our previous work [20],
which proposed to optimize biopsy strategy based on a statis-
tical atlas of spatial distribution of prostate cancer. It is worth
noting there are three major extensions in this study. First, we
considered many clinically relevant factors in the optimization
framework. For instance, instead of using a spherical core
model, the shape of biopsy core is modeled as a semi-cylin-
drical model which is the same as the real biopsy needle. Also,
the needle placement uncertainty, which is important from a
clinical perspective, has been factored into our optimization
via random displacement of the needles. Our optimization is
therefore robust to such errors. Different physical constraints
are also considered. These are important since a theoretically
optimal plan might not be feasible in practice. Second, in order

to map the optimized biopsy strategy to a specific patient using
the surface-based registration method, an automatic segmen-
tation method is designed to define the prostate capsule from
ultrasound images. Finally, we stratified our database according
to race, age and PSA level. Similar patterns of prostate cancer
distribution are found in these subgroups and the optimized
biopsy strategy exhibits consistent diagnosis accuracy across
them. Compared to [20], we used a similar method to construct
the statistical atlas. However, the atlas-based biopsy optimiza-
tion framework in this study is substantially different from that
of [20] and the application of the optimized biopsy strategy to
a specific patient is a completely new part. These two parts will
be described in detail in this paper.

The remainder of this paper is organized as follows. The three
steps of our method will be detailed in Section II. In Section III,
a set of experiments are presented to show the performance of
our method in optimizing the biopsy strategy. The paper is con-
cluded in Section IV.

II. METHODS
A. Construction of the Statistical Atlas

Data Acquisition: In our study, 158 prostatectomy specimens
from the tissue bank of the Center for Prostate Disease Research
(CPDR) (http://www.cpdr.org) were used to construct the sta-
tistical atlas of the prostate cancer distribution. These speci-
mens were whole mounted and step-sliced at 2.25-mm intervals.
Several sections, each 5 pm thick, were prepared from every
specimen, and stained with haematoxylin and eosin. The spec-
imens were pathologically reviewed for tumors, scanned into
the equipment with 3-D reconstruction software, and labeled for
cancer and normal anatomy.

Spatial Normalization: Only after all the prostate subjects are
normalized to a canonical coordinate system where the same co-
ordinates approximately correspond to the same anatomic struc-
tures in different patients, could the statistical atlas of prostate
cancer distribution be reliably constructed by superposing all
of the normalized subjects. In our study, such a canonical coor-
dinate system is defined as stereotactic space. Although volu-
metric registration methods [21]-[23] usually provide more so-
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phisticated spatial normalization, the lack of common anatom-
ical landmarks in the interior of the prostate precludes us to use
these methods. In our study, the histology images are spatially
normalized by a surface-based elastic registration method de-
tailed next.

The 3-D surfaces of a prostate’s outer capsule are first recon-
structed using deformable modeling techniques [24]. One of the
prostates is randomly selected as the model. In the second step,
an approximate anatomical correspondence between the surface
of the model prostate and all other prostates is established using
[25] by matching the geometric features of the surfaces. The
geometric features are designed in a multiscale fashion. In this
way, different parts of prostate surfaces can be well differenti-
ated and matched, though prostates usually have a globally sym-
metric shape. Finally, surface correspondence is interpolated
to the interior of the prostate using a high-dimensional elastic
transformation [26], which models prostates as elastic objects
following mechanical equilibrium equations. In this way, the
prelabeled cancerous regions are carried by the dense deforma-
tion field to the stereotactic space in which the model prostate
resides. The statistical atlas of the prostate cancer distribution is
then obtained by simply superposing all these normalized sub-
jects. It is worth noting that the statistical atlas includes not only
the cancer incidence at individual locations but also more gen-
eral multivariant relations between different zones. These will
be exploited in the following atlas-based biopsy optimization,
so that sampling a prostate region whose cancer statistics are
highly correlated with those of an already sampled location is
to be avoided, in general.

B. Atlas-Based Biopsy Optimization

Optimization Framework: Based on the statistical atlas con-
structed by a set of spatially normalized histological datasets, a
K -needle biopsy strategy is optimized to maximize the proba-
bility that at least one needle intersects cancerous tissue. Con-
versely, the probability that none of the K needles intersects
cancerous tissue is minimized.

Fig. 2(a) shows an example of the biopsy needle, which con-
sists of the outer core and the inner stylet that has a “cut-out”
[27]. When the inner stylet is inserted into the position where
the tissue is supposed to be extracted, a piece of tissue settles
into the cut-out. Almost instantaneously, the outer core moves
forward and cuts off the piece of tissue that has settled into the
cut-out of the inner stylet. As the bottom of the cut-out is a plane,
the biopsy core can be modeled as a semi-cylindrical volume,
whose position can be exclusively determined by three param-
eters [c.f. Fig. 2(b)], i.e., (Z the center of the bottom plane of
the semi-cylindrical cut-out, ljthe orientation of the semi-cylin-
drical cut-out, andr, the orientation perpendicular to the bottom
of the cut-out. For a K-needle biopsy strategy, the optimization
problem can be summarized as determining the position param-
eters of each biopsy cut-out so that the probability that no can-
cerous tissue is included in the K semi-cylinders is minimized.
Mathematically, it can be represented as

“min_ P (B(t:)

ty, b

=NC, -+, B(tx) = NC) (1)
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Fig.2. Schematic diagram of the biopsy needle model used in our experiments.
(a) The profile of a biopsy needle. (b) The semi-cylindrical model of the biopsy
core. The three position parameters arec, , the center of the bottom plane of the
semi-cylindrical cut-out, I , the orientation of the semi-cylinder cut-out, and r,
the orientation perpendicular to the bottom of the cut-out.

where f is a vector consists of the three position parameters Cis
I; andr; of the ith needle. B(t;) is the biopsy outcome of the ith
needle, and NC denotes a negative cancer detection result.

As (1) is a high dimensional optimization problem with many
local minima, we use simulated annealing to solve it. This op-
timization method starts with an initial guess for the position
parameters of the K needles, and then iteratively changes all
position parameters towards a direction that decreases the prob-
ability function in (1), while randomly allowing steps in the op-
posite direction, as customary in random optimization methods
aiming at avoiding local minima. Since simulated annealing is
successful and practical only if a good initial guess of the de-
sired optimal solution is somehow determined, we designed a
fast heuristic method for determining a good initial guess of the
position parameters of the K needles, which is detailed next.

A Fast Heuristic Method for Initial Optimization: The goal
here is to place the needles in the regions where cancer incidence
is high, and which are statistically independent of each other.
Following this idea, (1) is expressed as a product of conditional
probabilities

P (B(t;)=NC,i=1,---,K)
=P (B(h)= ) P (B(t2 NC|B(£):NC) X
x P (B( )=NC|B(t;) = NC i=1,--- . K-1). (2
Suppose that there are M prostate subjects in the training set.
To minimize (2), the first biopsy needle is placed in the posi-
tion with the parameters E, where the cancer incidence of the
M subjects is the highest, i.e., P(B(f;) = NC) is the lowest.
Knowing the parameters of the first biopsy, the conditional prob-
ability P(B(t;) = NC|B(t;) = NC) is calculated by excluding
those prostate subjects whose cancer has been detected by the
first needle, since they do not satisfy the condition B(t;) = NC.
Importantly, if the incidence of cancer at a location is strongly
related with the incidence of cancer in the region included by the
first biopsy needle, the cancer occurrence probability of this lo-
cation will become very low when conditioned by B(t;) = NC.
This implies that the second biopsy will most likely be placed
in regions that display cancer incidence independent of that in
the region of the first biopsy needle. With this new conditional
probability, t2, the position parameters of the second needle can
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be determined by minimizing the conditional probability. Using
the same procedure, the position parameters of other biopsy nee-
dles Fg, e FK are sequentially determined.

The remaining problem is how to determine the position pa-
rameters of a single biopsy needle given the conditional proba-
bility map. For instance, to determine the position parameters of
the jth needle, we need to minimize the multivariant conditional
probability P(B(t; ;) = NC|B(t;) = NC,i = L---,j—1),in
whlcht consists of three position parameters c;, l andr;. We
use a heuristic optimization method to sequentially optimizes
these three parameters that denote the center and the orienta-
tions of the needle. The result of this sequential optimization
method is used as an initial guess for the position parameters
of the K needles, and then the simulated annealing technique is
used to find globally optimal solutions for 1, K.

Robustness to Needle Placement Error: In a real biopsy pro-
cedure, needle placement is subject to error and uncertainties.
Therefore, we incorporated a random perturbation procedure
into our optimization framework, in order to make the optimized
biopsy strategy robust to needle placement errors. Our basic
idea is that the optimized biopsy strategy should maximize the
cancer detection rate while allowing the needles to be randomly
perturbed within a range that relates to needle placement accu-
racy. Assume thatt; ; . tl p is a set of random perturbations
of t;, i.e., the position parameters of the ith needle. As long as
the cancer can’t be detected by all these perturbed needle posi-
tions, it is regarded as being missed by the sth needle in the op-
timization framework. Accordingly, the probability function in

(1) is reformulated by replacing B(t;) = NC with B(¢;) = NC,
which is defined as
{ B =Nc}

= {B(ti1) = NC||B(ti2) = NC|| -+ ||B(ti,p) = NC}  (3)

where P is the number of random perturbation cases considered.
Note that this is a very strict definition, which requires that, for
a tentative needle configuration, if cancer is detected, cancer is
also present in the vicinity of the needles.

The following strategy is added in our optimization frame-
work to optimize the reformulated objective function. After the
position parameters of a single biopsy needle are determined
by minimizing its corresponding conditional probability, this
needle is randomly shifted to several positions in a small neigh-
borhood, i.e., the position parameters of the needle are perturbed
within a small range. In this paper, the center of the needle is
shifted in a sphere with 4-mm diameter, which is determined
according to the needle placement error (around 2.0 mm) of a
robotic biopsy system designed by our collaborators [28]. Only
the prostate subjects whose cancerous tissues are detected by
all of the randomly shifted needles are considered as a positive
sample and are therefore excluded from the dataset for recalcu-
lating the conditional probability.

Physical Constraints: Up to now, we have assumed that an
optimized needle placement can be implemented in any real
clinical setting. However, different clinical settings actually
have different physical constraints. In our study, we considered
two mostly used biopsy approaches, i.e., trans-perineal biopsy
and trans-rectal biopsy. The former type of biopsy tends to
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Fig. 3. Schematic description of G-SVM used in automatic prostate segmenta-
tion. (a) The structure of a single G-SVM, which consists of a Gabor filter bank
and a kernel SVM. Given ar X r X r subimage, Img(v, ), with the center at
voxelw the Gabor filter bdnk extracts the Gabor texture features around voxel
v, e, T(@) = [t:1(0), -+, 1, (©)]%. These texture features T(v) are input to a
pretrained kernel SVM for generating a texture label, L (77) indicating the likeli-
hood of v belonging to the prostate tissue. (b) Schematic description of the spa-
tially distributed G-SVMs. The model surface (thick solid contour) is divided
into four subsurfaces, and their corresponding G-SVMs are trained by the sam-
ples selected from their neighboring regions (regions surrounded by the dashed
curves), respectively.

constrain the orientation of the needles along the base-apex
direction, whereas the latter constrains it to be along the ante-
rior-posterior direction.

C. Application of the Optimized Biopsy Strategy

Surface-Based Registration With Automatic Ultrasound
Image Segmentation: The optimized biopsy strategy generated
in the stereotactic space must be mapped to the patient space
for a real application. For consistency, the registration method
used for constructing the statistical atlas is also employed to
register the atlas with the patient’s scan. Since this registration
method is surface-based, it is necessary to extract the patient’s
prostate capsule surface from the scan. Considering that ultra-
sound imaging is a generally used imaging device in the biopsy
operations, we designed a method to automatically delineate
the prostate capsule surface from 3-D ultrasound images [29].

We use a 3-D deformable model [30] which does not em-
ploy edge information but relies on texture characteristics to de-
lineate prostate boundaries, because ultrasound images usually
have a low signal-noise-ratio but have abundant texture informa-
tion. In particular, Gabor-support vector machines (G-SVMs)
are designed to capture texture priors of ultrasound images and
differentiate prostate and nonprostate tissues by statistically an-
alyzing their textures. Shown in Fig. 3(a), each G-SVM consists
of a Gabor filter bank for extraction of rotation-invariant texture
features and a kernel support vector machine for robust differ-
entiation of textures. Due to its multiscale and multiorientation
structure, the Gabor filter bank is able to extract rich texture fea-
tures from noisy ultrasound images. Also, as the Gabor filter
incorporates Gaussian smoothing, it is robust to image noise.
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Fig. 4. The performance of our texture analysis method (G-SVM) in differentiating the prostate boundary. (a) A typical TRUS image obtained from the top section
of the prostate; an example of a region in which the prostate boundary is unclear is indicated by white arrow; (b1-b3) three Gabor feature maps computed from
(a); (c) tissue differentiation results using a pretrained G-SVM, where the labeling results are shown in an ellipsoidal region for comparison. For display purposes,
labeling results, which originally range from O to 1, have been mapped to 0~255.

The kernel SVM (KSVM) is selected to label tissues based on
texture features because it is able to nonlinearly separate dif-
ferent classes in a high dimensional space with maximum gen-
eralization ability. By employing both Gabor filter banks and
KSVM, a pretrained G-SVM is robust in differentiating tissues
in a local region. Fig. 4(a) shows an example of the not easily
defined prostate boundary in an ultrasound image. In Fig. 4(c),
the tissues around the prostate boundaries are efficiently labeled
by a pretrained G-SVM, even though they are not differentiable
either in the original image [c.f. Fig. 4(a)] or in any individual
Gabor feature map [c.f. Fig. 4(b1)—(b3)].

Considering that the same prostate tissue may have very dif-
ferent texture features along the prostate boundary in ultrasound
images, it is difficult to use a single G-SVM to correctly label
all prostate tissues in the images. Therefore, we use a number
of G-SVMs, each of which is attached to a subsurface of the
deformable model, in order to adaptively label tissues around
the prostate boundary. Particularly, subsurfaces are uniformly
divided from the entire deformable surface model, and they are
designed to be overlapped with each other [c.f. Fig. 3(b)]. In
the training stage, each G-SVM is only trained by the samples
extracted from the neighborhood of its corresponding subsur-
face. In the segmentation stage, each G-SVM is only in charge
of tissue differentiation in the neighborhood of its corresponding
subsurface as well. As the texture features of tissues around
a specific subsurface usually exhibit relatively simple distribu-
tion in the feature space, multiple G-SVMs provide more robust
tissue differentiation results.

Given the prostate ultrasound image of a specific patient,
the initial position of the deformable model is determined
by transforming it to a pose which optimally matches with
prostate boundary in the ultrasound image. In particular, a set
of robust features captured by Gabor filter banks are selected to

evaluate the matching degree. Then the pretrained G-SVMs are
employed to tentatively label the voxels in the neighborhood
of the initial model surface. Subsequently, the surface of the
deformable model is deformed to the boundary between the
tentatively labeled prostate and nonprostate tissues. The step of
tissue labeling and the step of label-based surface deformation
are iterated until the model surface converges to the prostate
boundaries. The converged model is regarded as the prostate
surface of the specific patient extracted from the ultrasound
image. Then the correspondences between the atlas prostate
capsule surface and the patient’s prostate capsule surface are
established using the method in [25] and interpolated to the
interior of the prostate using elastic warping [26]. In this way,
the optimized biopsy strategy is adapted to the specific patient
for a real biopsy operation.

Linearization of Warped Biopsy Cores: Since the optimized
biopsy strategy are mapped to the patient space using an elastic
model [26], the shapes of biopsy cores are unavoidably warped
and are no longer semi-cylinders. Therefore, the mapped biopsy
cores are further linearized to be applied to a real biopsy op-
eration. In this paper, principal component analysis (PCA) is
first employed to find the three principal axes of the warped
biopsy cores. The axis with the largest eigenvalue is regarded
as, i.e., the orientation of the biopsy core, and the axis with
the smallest eigenvalue is regarded asr, i.e., the orientation per-
pendicular to the bottom of the cut-out. Using the center of the
warped biopsy core as ¢ along with the [ and r obtained via
PCA, a semi-cylindrical model can be constructed. The three
position parameters are further adjusted within a small range
so that the linearized semi-cylindrical model has the maximum
overlap with the warped biopsy cores. In this way, the lineariza-
tion has very limited influence to the predictive accuracy of the
optimized biopsy strategy.
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Fig. 5. An example of the spatial normalization of a prostate subject. (al) Three-dimensional rendering of the model prostate. (a2)—(a3) Three-dimensional ren-
derings of a prostate subject before and after the elastic registration. The white surface denotes the outer capsule of the prostate. (bl) A cross section of the model
prostate. (b2-b3) A cross section of the prostate with labeled cancer region before and after the spatial normalization. The labeled cancer regions are denoted as

grey regions.

(a) (b)

(©)

Fig. 6. Anexample to verify that the spatial normalization method preserves prostates’ zonal geometry. The grey and the white regions denote the central zone and
the peripheral zone, respectively. (a) subject 1, (b) subject 2, (c) warped subject 2 using our surface-based registration method. The dashed line, used as reference,

is the boundary between the central zone and the peripheral zone of subject 1.

III. EXPERIMENTS

In this section, we present a set of experiments to validate the
performances of our method in optimizing the biopsy strategy.
The experiments are divided into three groups, corresponding
to the three steps of our method, i.e., the construction of statis-
tical atlas, the atlas-based biopsy strategy optimization, and the
application of the optimized biopsy strategy.

A. Construction of the Statistical Atlas

The first set of experiments relate to the construction of
the statistical atlas using the proposed spatial normalization
method. Fig. 5 shows a representative example of the spatial
normalization of a prostate subject. Fig. 5(al) shows the 3-D
rendering of the model surface. Fig. 5(a2)—(a3) shows the 3-D
renderings of the subject surface before and after the elastic
registration. Comparing Fig. 5(al) and (a3), the registered
subject surface is very similar to the model though they have
large shape difference before registration [c.f. Fig. 5(a2)].
Fig. 5(b1) shows a cross section of the model. Fig. 5(b2)—(b3)
show the same cross section of the subject with cancerous
regions labeled before and after the spatial normalization. In
this way, the prelabeled cancerous regions are carried by the

dense deformation field to the stereotactic space in which the
model prostate resides.

Since prostate cancer distribution is strongly affected by the
geometry of the prostate zones, it is important to verify if the
spatial normalization distorts the zonal geometry. Therefore, we
use the proposed surface-based registration method to register
two prostate subjects whose peripheral zones were manually la-
beled. As shown in Fig. 6, the peripheral zones of the regis-
tered subjects are largely overlapped with the overlap volume
error 16.5%. Compared to the affine registration method that
produces the overlap volume error 34.4%, the proposed normal-
ization method exhibits much better performance in preserving
the zonal geometry of prostates.

After the spatial normalization of all the prostate subjects,
the statistical atlas of the prostate cancer distribution is obtained
by superposing all these warped prostate subjects with their la-
beled cancerous regions. The top-left image in Fig. 7 shows the
statistical atlas constructed by 158 prostate subjects from the
CPDR database. We manually labeled the peripheral zone in
the model space and found that 72.2% warped prostate subjects
have cancerous tissues in the peripheral zone. This result is in
agreement with the general clinical assumption that 70%—-80%
prostate cancers form in the peripheral zone, which again proves
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Fig. 7. Statistical atlases of the spatial distribution of prostate cancer. The red
contour is the 3-D rendering of the surface of the model prostate capsule. The
green region represents the frequency of prostate cancer occurrence. Brighter
green indicates higher probability of the cancer occurrence in that location. The
top-left image shows the statistical atlas constructed by all of the 158 prostate
subjects. The bottom three rows show the statistical atlases constructed by cate-
gorized subjects based on race (African American versus Caucasian), age (<60
versus >60) and PSA level (>7 ng/ml versus <7 ng/ml), respectively.

that our spatial normalization method is good at preserving the
zonal geometry of prostates.

Considering the spatial statistics of cancer distribution might
be different across patient groups with significant demographic
or clinical differences, we further partition the 158 subjects into
different subgroups according to race, i.e., African American
(38) versus Caucasian (102), age, i.e., age > 60 (78) versus
age < 60 (64), or PSA level, i.e., PSA > 7 ng/ml (70) versus
PSA < 7 ng/ml (67) (The number in the parenthesis denotes
the number of samples in the subgroup). The statistical atlases
of cancer distribution corresponding to different subgroups are
shown in Fig. 7. It is worth noting that, although the distributions
of prostate cancer are different in those statistical atlases, they
share many common characteristics, e.g., the prostate cancer has
higher incidence in peripheral zones and the mid and the apical
zones exhibit higher cancer incidence than the base zones, all of
which are in agreement with what is known from clinical studies
[31].
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B. Atlas-Based Biopsy Optimization

In the second set of experiments, we validated the predictive
power of our atlas-based optimized biopsy strategy. Fig. 8
summarizes the optimization results for the semi-cylindrical
biopsy core model. In Figs. 8(a)—(c), 3-D renderings of the
model prostate capsule (red) and the spatial distribution of
cancer occurrence (green), along with the six optimal biopsy
cores (white) are shown.

We used the leave-one-out method to validate the predic-
tive power of the optimized biopsy strategy. For each time,
we selected one subject from our 158 prostate subjects, and
the statistical atlas was regenerated from the remaining 157
subjects. The optimized biopsy strategy based on this atlas was
applied to the left-out subject. We repeated this procedure 158
times to measure the probability of missing the cancer using
our optimized biopsy strategy. Each semi-cylindrical biopsy
core in this experiment has the length 12.7 mm and the radius
0.8 mm, which is the same as a widely used biopsy needle [32].
Fig. 8(d) plots the detection rate as a function of the number
of biopsy cores. For six needles, our optimized biopsy strategy
could achieve the cancer detection rate of 96.2%. Compared
to the simulated standard sextant biopsy on the same dataset,
which yielded detection rate of 70.5%, our biopsy strategy has
much higher diagnosis accuracy. For more comparisons, we
also tested Zeng’s method [24] on the same dataset. Since that
method used a rough registration method for atlas construction,
the biopsy locations could be only optimized on a resolution of
prostate zones. That method had a detection rate 79.3% using
six needles and 82.9% using 8 needles. The better performance
of our proposed method shows the importance of using a
precise registration for spatial normalization and a voxel-wise
biopsy optimization. Fig. 8(d) also shows the results obtained
after incorporating the random perturbations accounting for
needle placement errors. The experimental results show the
cancer detection rates are only slightly lowered under the
approximate placement simulation. In addition, to illustrate the
consistency of the optimized biopsy strategy on patient groups
with different demographic or clinical values, we applied
the optimized seven-needle biopsy strategy on the subgroups
described in Section III-A. Table I shows that the optimized
seven-needle biopsy strategy has consistent diagnostic accuracy
across different patient groups, evaluated via cross-validation.

We also tested the optimized biopsy strategy for different
physical constraints, as we discussed in Section II-B. Fig. 9
shows analogous cross validation results for the optimal trans-
perineal and trans-rectal biopsy cores. Since trans-perineal and
trans-rectal biopsy strategies are two most popular biopsy pro-
tocols in various clinical centers, the high cancer detection rate
shows the potential of using our method in real clinical imple-
mentations.

C. Warping of the Atlas to Patient Images

In the third set of experiments, we evaluated the performance
of our method in applying the optimized biopsy strategy to a
specific patient. Recall that the registration method for mapping
the optimized biopsy strategy is the same as what is used for the
spatial normalization and the atlas construction for consistency
purposes. Therefore, the performance of warping of the atlas
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Fig. 8. Results from the semi-cylinder biopsy needle model. (a)-(c) Optimal positioning of six needles. (d) Cross-validated performance assuming exact and

approximate (within a neighborhood of diameter 4 mm) needle placement.

TABLE I
CANCER DETECTION RATE OF THE OPTIMIZED SEVEN-NEEDLE BIOPSY
STRATEGY ON SUBGROUPS CATEGORIZED BY RACE, AGE, AND PSA LEVEL

Exact Needle Approximate Needle
Placement (%) Placement (%)
African American 97.2 97.1
Caucasian 94.9 92.7
Young (<60 ) 95.2 91.7
Old (> 60) 95.6 94.6
Low PSA (< 7.0ng/ml) 98.4 94.2
High PSA (> 7.0ng/ml) 95.6 94.2

to the patient scans depends on the accuracy of the automatic
segmentation method, which drives the elastic warping. In [29],
the robustness and accuracy of our segmentation method had
been extensively validated by both synthesized and real ultra-
sound images. Here, the method is further evaluated by applying
it on atlas warping as follows. First, the prostate boundaries
were delineated from patients’ ultrasound images by an expert.
They were also segmented by our automatic segmentation algo-
rithm. (Since the G-SVMs in our automatic segmentation algo-
rithm are learning-based, we used a leave-one-out mechanism to
guarantee the independence between training and testing sam-
ples, i.e., each time we trained our model by all but one patient,
and then used the trained model to segment prostate bound-
aries of the left-out patient.) Then the optimized biopsy strategy
was mapped to the patient space twice based on manual and
automatic segmentation results, respectively. The two mapped
biopsy strategies were compared by measuring the distances of
the corresponding biopsy core centers and the overlap volume
error of the corresponding biopsy cores. Fig. 10 shows an ex-
ample for visual comparison of the manual segmentation and
automatic segmentation results. Table II presents the quantita-
tive comparison results of six different patients. The average dis-
tance between biopsy cores is 0.43 mm and the average overlap

error is 7.61%. These results show that the automatic segmenta-
tion method provides needle placement that is very comparable
to the placement obtained via manual definition of the prostate
capsule.

All experiments were operated on a 2.8 G Intel Xeon pro-
cessor with UNIX operation system. In constructing the statis-
tical atlas, it took about 25 min to normalize one subject onto
the stereotactic space, and totally it took about 66 h for 158 sub-
jects. Obviously, it can be implemented in a parallel way, thus
reducing the processing time to around 8 h for all 158 subjects
by using 8 processors. In optimizing the biopsy strategy, it took
1.5 h using one processor. It is worth noting that the large com-
putational cost is not a serious problem for clinical applications,
since both the statistical atlas construction and the atlas-based
biopsy optimization are accomplished offline.

The speed for warping the optimized biopsy strategy to a
specific patient is important for real clinical applications. Cur-
rently it took 15 min without code optimization. In the future, we
plan to speed up the warping algorithm by optimizing software
codes and using high performance hardware, e.g., Graphics Pro-
cessing Unit [33].

IV. DISCUSSION AND CONCLUSION

We proposed an approach to determine the targeted biopsy
needle placement in order to maximize the probability of cancer
detection. We used labeled histological images of radical prosta-
tectomy specimens to construct the statistical atlas of prostate
cancer distribution. Based on the statistical atlas, an optimized
biopsy strategy was generated to maximize the cancer detection
rate, and to be warped onto a specific patient automatically. The
cross validation experiment shows that the proposed method can
achieve 94%-96% detection accuracy, which is much higher
than the detection rate (70.5%) obtained on the same datasets
via the commonly used sextant biopsy strategy.
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Fig. 9. (a) Optimal trans-perineal biopsy and associated detection rates via cross-validation. (b) Optimal trans-rectal biopsy and associated detection rates via

cross-validation.

Fig. 10. Visual comparisons between algorithm-based and hand-labeled seg-
mentation results on an ultrasound image. The white contours are the hand-la-
beled results, while the dashed ones are the algorithm-based segmentation re-
sults. Images from the left to the right show the axial view, coronal view and
sagittal view, respectively.

TABLE II
COMPARISON OF THE BIOPSY STRATEGY BASED ON MANUAL SEGMENTATION
AND AUTOMATIC SEGMENTATION

Distance between Core Overlap Volume
Centers (mm) Error (%)

Subjectl 0.24 4.91
Subject2 0.77 10.9
Subject3 0.26 6.06
Subject4 0.46 5.17
Subject5 0.26 8.24
Subject6 0.60 10.4
Mean 0.43 7.61
Stand. Deviation 0.22 2.62

A potential limitation of our study is that the spatial statistics
of cancer distribution might be biased by the method used
for biopsy, namely the sextant biopsy in this case, since most
patients in this study were detected to have cancer via sextant

biopsy. This limitation is inherent to any method attempting
to estimate cancer distribution, since the true underlying
distribution of cancer in a general patient population cannot
be known without removing the prostates based on certain
(study-specific) procedures and criteria. Future work using
multiple biopsy methods can potentially remedy this bias, by
including data from multiple clinical centers using different
biopsy schemes. Such a multicenter study extends beyond the
scope of this study.

The optimized biopsy strategy can be implemented in con-
junction with 3-D ultrasound images, 3-D MRI images, or lim-
ited stacks of 2-D ultrasound images that allow for 3-D regis-
tration. Given the current direction of the clinical practice, we
plan to implement the optimized biopsy strategy using a robotic
system designed by our collaborators [28]. In this system, the
robot is spatially registered and calibrated to the TRUS devices
so that the insertion depth and orientation of the needle with
respect to the stepper base [34] can be obtained from TRUS
images. The robot receives each entry/target coordinate pair of
the needle placement plan and inserts a preloaded needle. Ex-
periments on phantoms showed the average placement error is
around 2 mm, which is accurate enough for the implementation
of our optimized biopsy strategy. In our future work, we plan to
integrate our proposed method with these sophisticated robotic
systems [28], [35] for accurate implementation.

The potential use of this optimization technique reaches
beyond biopsy. In particular, therapeutic procedures, such as ra-
diotherapy or gene therapy, can be adapted to population-based
statistics of cancer distribution, in order to emphasize more
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aggressive treatment of areas likely to develop cancer. More-
over, compared to the entire burn-out radiotherapy, the partial
burn-out scheme increases “quality of life” of the patients
after treatment, which is one of the hotspots of current clinical
research. The further development, application and testing of
this approach to diagnostic and therapeutic procedures are
among our future work plans.
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