
An optimized, automatic TMS in
operations in Roma Tiburtina and
Monfalcone stations

S. Foglietta, G. Leo, C. Mannino, P. Perticaroli, M. Piacentini
Optrail

Abstract

A remarkable number of works on automatic train dispatching have recently
appeared in the scientific literature, many of which also exploiting some
exact or heuristic optimization. Despite of this blooming, very few auto-
matic dispatching systems are actually in operations in main line or mass
transit networks, mostly devoted to simple tasks in small lines. In this work
we describe a recent implementation of a real time dispatching system mon-
itoring and controlling trains in two large stations, namely Roma Tiburtina
and Monfalcone. The system exploits optimization in order to take and
implement crucial dispatching decisions. In particular, the algorithm finds
suitable routes and schedules for the movements of trains in the station, so
as to minimize costs and delays. The resulting trains movement is conflict-
free, and respects safety and specific traffic rules. Also, it computes, exploits
and provides accurate traffic forecast information based on the trains and
railway real time status. A heuristic and an exact optimization algorithm,
the latter based on Mixed Integer Linear Programming, are developed and
run independently to introduce redundancy and increase safety. Computa-
tional experience on real-life instances shows that both methods are able
to provide either good or optimal solutions in very short time (less than a
second). A first release of the system is in operation since February 2014;
the final release is scheduled to be operational by December 2014.
Keywords: automatic railway traffic control, real-time trains dispatching,
interlocking, optimization algorithms.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357583344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Nowadays, the increasing demand on passengers and freight transport repre-
sents a great opportunity of gain and development for the railway. Actually,
railway can be considered one of the best way to move goods and peo-
ple all over European countries, because of the low costs, high (nominal)
regularity and punctuality as well as the minimal environmental impact,
in comparison with other transportation systems. Nevertheless, because of
the financial and economical situation in Europe, huge investments on the
railway infrastructure are not any longer possible. Therefore, in order to
catch the opportunities given by such promising traffic transport trends, it
is essential to improve the utilization of the current railways system, both
on the network infrastructure and the rolling stocks.

An example of problem with wide room for improvements is given by the
management of complex stations (and junctions), which represents highly
interconnected areas of the railways network with of big demand of transit
and services. In this context, the main challenge is to optimally route and
schedule timetabled trains, ensuring quality requirements and operational
constraints. This task corresponds to dynamically allocate the tracks and
platforms available at the station. Restriction and complexity on the prob-
lem are given by the scarcity of the network resources respect to the regular
traffic volumes. So far, routing trains is managed by human dispatchers,
leading to sub-optimal utilization of the track capacity and an increasing
conjection in the rest of the network. As opposed, better result could be
reached by developing a simple support system to human operators for an
optimal management of the strongly congested parts of the railway network
(such as complex stations). A further step would be to completely automa-
tized, as way to make the entire decision process less error-prone and more
effective.

The routing problem can arise at different levels of the planning hierarchy,
strategic, tactical and operational levels. Differences come out in terms of
time-horizon, objectives and degrees of freedom as well as accuracy.
The problem at the strategic level is characterized by a long time horizon
and the final goal is to analyze the infrastructural capacity of a railway
station as well as to highlight needs for additional railway resources, such as
new tracks and platforms. This leads to assess limits of the network respect
to increasing traffic volumes as well as the evaluation of new investment
alternatives, i.e. the construction and/or modification of some parts of the
existing infrastructure.



In the second level, the tactical planning, the time horizon reduces to mid-
term and the infrastructure is considered fixed. In a top-down approach,
the overall timetable of trains is chosen at macroscopic level, so that it
should be assess the feasibility at the microscopic level. For a station, this
problem leads to find routes and schedules of the timetabled trains, allowing
or suggesting minor deviations on the arrival and departure times.
The last level is the operational planning, where the problem is to adjust the
yearly timetable to deal with the daily disturbances. Late trains on arrival,
accidents, infrastructure maintenance and disruption of the networks easily
provide additional delays and make the tactical planning any more feasible.
Adjustments on scheduling and also on routing are required in order to
avoid conflicts and to minimize the overall deviation from the original plan.
Although all these routing problems can be considered similar, because they
roughly represent the same stuff, there are some differences that need to be
taken into account, in order to select the best model and algorithm in the
three different cases. A key feature for the operational problem is that the
environment is dynamic: the situation changes quickly, so that a response
should be given as fast as possible. For this reason, respect to this feature,
the operational is considered a real-time problem. As opposed, the strategic
and tactical planning are considered off-line. Another difference is given by
the corresponding dimensions: off-line models are usually bigger, because
more complicated situations need to be evaluated, as opposed to real-time
models where dimensions are much smaller because huge deviations from
original plan are not allowed.

The routing (with an inner scheduling) problems at the station for the
three different levels are usually in a top-down order, with the output of a
phase being the input for the successive one. This makes all the three levels
quite dependent between each other. From one side, the solution for the off-
line planning has a big impact on the real-time problem, affecting system
response performances in dealing daily troubles. Robust solution in the off-
line step makes the system less dependent by small perturbations in the
real-time, making the latter easier to be solved. On the other side, analysis
at low levels can be important also at high ones: for example, to really
evaluate some investment on the infrastructure, its performances should be
analyzed also in terms tactical and operational responses.

This work focuses on models and algorithms for automatic train dispatching
in large stations. More emphasis will be left for the real-time task as more
demanding in terms of time and more useful in real application.



2 Problem description

This section is devoted to the description of all fundamental objects which
play a central role in train dispatching operations in large stations. Finally,
a definition of real-time train dispatching problem is introduced.

Stations. A station corresponds to a region of the railway network where
trains can stop to perform tasks as embark and alight passengers, meet
or pass other trains, do maintenance operations, etc. To our purpose, a
station is composed by two sets of tracks: the first is given by the tracks,
called stopping points, in which trains can stop to execute some operations;
the second contains tracks, called interlocking-routes, which connect pairs
of distinct stopping points. It is possible that two stopping point can be
connected by parallel interlocking-routes. Stopping points and interlocking
routes are called station resources.
In the physical configuration of a station, an interlocking route actually
corresponds to a sequence of electrically controlled tracks called track cir-
cuits. So it may happen that, even if two interlocking routes do not share
a stopping point, the two corresponding sequences of track circuits actu-
ally cross each other). Special stopping points are the line points where the
station connects to the railway line, and platforms where passengers can be
embarked or alighted. Line points typically act as entry points or exit points,
depending on the direction of a train running through them.

Trains. Trains may cross the station, arriving from a distinct station and
leaving to another station; they may originate in the station or they may
end their run in the station. Trains enter the station from a line point and
either i) exit the station from a different line point or ii) end their run on a
platform. Entry and exit line points are given in the official timetable and
can only be changed by an operator, so they are always input to the model.
In case (ii) the train will magically disappear from the station after a given
time it reaches the platform. Trains originating in a station start their travel
from a platform.
Depending on relevance number of passengers, etc., trains are classified in
categories which affect the cost function. Since our control is in real-time,
a train can be either out of or in the station; in the latter case, it may be
in a stopping point or in an interlocking route. If the train is approaching
the station, we assume given the expected time of arrival to the entry line
point. Otherwise, the train is occupying some station internal resource and
we assume given the time when the train started the occupation of such
resource.



Train routes. The alternating sequence of stopping points and interlocking-
routes encountered by the train while traversing the station is called train
route. As said, the origin of the route may be either a stopping point, for
instance the entry line point or a platform (but also intermediate stopping
points sometimes appearing in some stations), or an interlocking route. The
destination is either an exit point or a platform. The train is assumed to
occupy an interlocking route for a fixed time (the running time) known in
advance; trains can stop in stopping points, and a minimum stopping time
is also assumed and known.
A route P is feasible for a train i if the following conditions are satisfied: i)
P contains a platform, unless the train is already exiting the station; ii) P is
compliant with the station circulation rules and the service type associated
to i; iii) all resources belonging to P are available when they are expected
to be occupied by i.

Train Schedules. The movements of a train i along its assigned route P
are expressed by a set of time instants in which train i enters each station
resource belonging to P . Given a route, a train schedule is the assignment
of an entry time instant to each resource of the route. In particular, train i
can enter an interlocking-route of P in a time instant greater or equal than
the sum of the entry and stopping times associated to the previous stopping
point of the resources sequence. Since trains cannot stop on interlocking-
routes, the entry time instant of a stopping point has to be equal to sum of
entry and traversing times associated to the previous interlocking route of
the sequence. A schedule is feasible if it satisfies last two conditions.

Conflicts. Distinct trains traversing the station may want to access simul-
taneously incompatible station resources, such as the same platform, or two
interlocking routes sharing a stopping point or simply crossing each other
(recall that interlocking routes may contain several track circuits). Assume
r1 and r2 are incompatible resources, and let i, j be two distinct trains, i
traversing r1 and j traversing r2. Let ti and tj be the time i and j enters r1
and r2, respectively. Then, either tj ≥ ti + δ(i, r1) or ti ≥ tj + δ(j, r2). The
quantity δ(q, r) is the separation time for train q and resource r, and can
be infinite (e.g. when r1 and r2 represent the same platform). Solving a sta-
tion conflict consists in deciding whether one resource of the corresponding
conflict pair has to be occupied earlier than the other resource, that is who
goes first.



Timetable. The official timetable is a document containing some wanted
features of the movements of trains across the station. In particular, to
each train, it assigns the following items: i) entry point, ii) arrival time, iii)
stopping platform, iv) departure time, v) exit point. Item iv) and v) are
not assigned for trains terminating in the station; similarly, item i) and ii)
are not assigned when the train is originating in the station. Arrival and
departure times refer to the time in which the train is supposed to arrive and
departure from the the platform. Finally, even for trains which are simply
traversing the station without stopping, a platform iii) is always assigned.
The official timetable actually can be even more specific, and for example
specify the sequence of interlocking routes traversed by each train.
Entry and exit point cannot be modified by the decision process. Typically,
there is only one feasible entry point and one feasible exit point for a given
train. Even when multiple entry and exit points are available, only human
dispatchers may be allowed to change them. Nevertheless, a new platform
can be assigned to approaching trains only if the following conditions are sat-
isfied. For each train i, a platform assignment which differs from timetable
can be planned within a fixed time τ from the time instant in which train
i is expected to enter the station. Moreover, besides satisfying availability
and service type requirements, a new assignment can be decided if it has
been requested that a conflict occurring outside the station authority area
(i.e. on tracks connecting adjacent stations) has to be solved.

Cost function. The cost function measures the deviation from the official
timetable. So, late arrivals and departures are penalized, as changes in the
assigned platform. This cost also depends on the train category.

The real-time train dispatching problem (RTD). We are given the official
timetable, a set of (controlled) trains, their current position in the station
or their expected arrival times, the availability status of station resources, a
cost function associated to timetable deviations. We want to find a feasible
route assignment and a feasible schedule for each train such that no train
leaves before its official timetable departure time, no conflict arises in the
use of station resources and the overall cost is minimized.

3 The model

The RTD problem is naturally decomposed in two subproblems which are
intrinsically related. First subproblem consists of enumerating all feasible
trains routings, according to conditions expressed in previous section. Sec-



ond subproblem aims to find optimal conflict-free trains scheduling for each
given routing, then it can be reformulated as a pure job shop scheduling
problem. Analogous decomposition has been introduced by authors of [1]
for trains traffic control problem in metro stations. In this section, we discuss
this suitable decomposition for RTD problem.

3.1 Routing problem

We model the station by a digraph D(N,A) with node set N and arc set
A, such that N corresponds to the set of stopping points, whereas A corre-
sponds to the set of interlocking routes. Let Pi be the train route assigned to
train i ∈ T . We denote by R(Pi) the set of railway resources required by Pi,
either arcs in A or nodes in N . For each train i, Pi is the union of at most
two dipaths belonging to D(N,A), say P in

i and P out
i : P in

i connects the pair
of nodes associated to the entry line point and the platform assigned to i;
P out
i connects the the pair of nodes corresponding to the assigned platform

and the exit line point of i. If a train i terminates or starts its running in the
station, Pi is given respectively by either P in

i or P out
i . A route is feasible for

train i if it is consistent with the timetable movements required for i and
each resource is available for railway traffic. Moreover, let observe that, in
general, each train can admit more than one feasible route, since each pair
of nodes associated to a line point and a platform could be connected by at
least one path. Given a set of train T , a routing P is a set of feasible routes
Pi assigned to each train i ∈ T . A routing P is feasible if it is compliant
with real-time statuses information of station resources and it can satisfy
railway dispatcher requests.

3.2 Job shop scheduling problem

For each r ∈ R(Pi), let tir be the time in which train i enters resource r and
let lir be the minimum time i occupies r. If r corresponds to an interlocking
route, then lir is the running time of i through r. Otherwise, r corresponds
to a stopping point and lir is the minimum stopping time.
For each pair of consecutive resources r, q ∈ R(Pi), we have:

tiq ≥ tir + lir (1)

with equality holding if r is an arc. The condition that train i cannot leave
the platform before the official departure time is also modelled by one con-
straint of type (1).



Let e, g ∈ A and let i, j ∈ T . Let assume train i traverses e and j traverses g,
and i enters e before j enters g. Then, let denote by h(i, e, g) the minimum
time j can enter g after i has entered e. Thus, the following constraint has
to be satisfied:

tjg ≥ tie + h(i, e, g) (2)

Interlocking-routes e, g are said to be incompatible if h(i, e, g) > 0 for some
i ∈ T ; then, let C be the set of all unordered pairs {e, g} of incompatible
routes. The vector t corresponds to the schedule for the trains in T . A
schedule of train i corresponds to the subvector ti = (ti1, ti2, . . . ). A train
schedule ti is feasible if ti satisfies (1). A schedule t is feasible if ti is feasible
for each i ∈ T and the following disjunctive pair of constraints:

(tjg ≥ tie + h(i, e, g))
∨

(tie ≥ tjg + h(j, g, e)) (3)

is satisfied for each pair i, j ∈ T and {e, g} ∈ C.

Disjunctive graph. The job shop scheduling problem has a useful combi-
natorial description expressed by disjunctive graph (for further details, we
refer the reader to [2, 3]). Let G(V, F, S, p) be a disjunctive graph such that:
i) V contains a node for each operation associated to the occupation of sta-
tion resource by a train; moreover V contains a special node, called sink ;
ii) F contains arcs representing the precedences between operations which
are expressed by constraint (1); moreover F contains a directed arc from the
sink to each node representing the occupation by a train of the first resource
of its route; iii) S is the set of disjunctive arcs pairs representing resources
occupation conflicts, which are modelled by constraint (3); iv) p is a vector
of weights associated to all arcs of disjunctive graph, which correspond to
either running times for arcs in F or separation times for arcs in S.
A selection Q is a set of arcs obtained by choosing at most one arc from
each pair in S. Given a selection Q, let SQ be a subset of S obtained by
removing the disjunctive pairs associated to arcs in Q. Then, the extension
of G under Q is the disjunctive graph G(V, F ∪Q,SQ). A selection is called
complete if exactly one arc is selected from each disjunctive pair. Moreover,
a selection Q is consistent if digraph G(V, F ∪ Q, p) does not contain any
strictly positive dicycle, i.e. a dicycle such that the sum of weights associated
to its arcs is strictly positive. The well-known relation between scheduling
problem and the disjunctive graph representation is based on the fact that
each complete consistent selection of a disjunctive graph G(V, F, S, p) is in
bijection with a feasible schedule (e.g. see [4]). For a given selection Q, a
forcing is an arc (i, j) belonging to a disjunctive pair {(i, j), (h, k)} ∈ SQ



such that G(V, F ∪Q ∪ {h, k}) contains a strictly positive dicycle. Finally,
a closure of G under Q is the minimal forcing-free consistent extension of
G(V, F ∪Q,SQ, p) with respect to F ∪Q.

4 Solution approaches

In this section we discuss two solution approaches to RTD problem which
exploit the problem decomposition described in previous section. The first
approach is an exact method based on Mixed Integer Linear Programming
(MILP). The second approach consists of a fast heuristic algorithm based
on disjunctive graph representation.

4.1 Exact method

An optimal solution to RTD problem is computed by retrieving the set of all
feasible routings for trains in T , say P, then computing an optimal schedule
t?P for each P ∈ P. In the following, we outline main phases of the method
by omitting further implementation details.

Set P is obtained by assigning to each train i ∈ T a set of feasible plat-
forms Ui which is consistent with timetable, real-time statuses informa-
tion of station infrastructure and railway dispatcher authority requests. We
assume that Ui is a non-empty set for each i ∈ T , since a platform assign-
ment is even forced by human dispatcher for trains affected by no platform
availability. Then, for each platform assignment, all feasible trains routes
are computed by enumerating suitable paths of station graph D(N,A), so
P is obtained.

For each P ∈ P, we find an optimal schedule t?P by formulating and
solving a MILP problem, called JSS(P). Given P, JSS(P) has continu-
ous decision variables t which represent the time instants in which each
train i ∈ T starts the occupation of each station resource belonging to its
route Pi. As discussed in Sec. 3.2, variables t have to satisfy constraints (1).
Moreover, JSS(P) is characterized by binary variables y which represent
resources occupation conflicts. The use of binary variables y is crucial to
define disjunctive constrains reported in (3). The objective function of the
MILP formulation is given by the sum of delays introduced by scheduled
arrival or departure of each train with respected to the arrival or departure
times stated in the timetable. Since a complete formulation of JSS(P) has
a huge number of binary variables and disjunctive constraints, it cannot
be solved in practice. However, we present a suitable separation algorithm
which is practically cost-effective. For further details on optimization and



separation techniques for integer programming, we refers the reader to [5, 6].

Data: JSS′(P)
Result: Optimal solution (t, y)? to JSS(P)
i← 0;
JSSi(P)← JSS′(P);
Compute an optimal solution (t, y)?i to JSSi(P);
while (t, y)?i is not conflict-free do

compute disjunctive pairs of constrains {π1, . . . , πk} violating
(t, y)?i ;
JSSi+1(P)← JSSi(P) ∩ {π1, dots, πk};
i← i+ 1;
Compute an optimal solution (t, y)?i to JSSi(P);

end
return (t, y)?i ;

Algorithm 1: Separation algorithm for JSS(P)

The exact method algorthm is reported in Alg. 1. We initialize the sepa-
ration algorithm by a partial description of JSS(P), denoted by JSS′(P),
which contains only continuous variables t and precedence constraints (1).
Since JSS′(P) is a relaxation of JSS(P), if an optimal solution (t, 0)?

to JSS′(P) is feasible for JSS(P), then the solution is also optimal for
JSS(P). Otherwise, we identify a set {π1, . . . , πk} of disjunctive pairs of
constraints such that each πj represents a station resource occupation con-
flict for a pair of trains. Since {π1, . . . , πk} violates solution (t, 0)?, we obtain
a strengthening relaxation of JSS(P) by adding {π1, . . . , πk}, so we solve
the new relaxation and iterate the procedure until an optimal solution to
JSS(P) is found.

4.2 Heuristic method

The heuristic approach differs from the exact method (previously described)
only for the scheduling phase. In particular, we propose a polynomial com-
binatorial algorithm which explain the disjunctive graph representation of
the job shop scheduling problem, as discussed in Sec. 3.2, in order to obtain
feasible trains schedules. Nevertheless the heuristic algorithm does not guar-
antee any approximation factor with respect to the optimal value, we will
see in next section that it allows to retrieve a trains scheduling whose objec-



tive function value is very close to the optimum. In the following, we outline
the heuristic algorithm procedure, which is reported in Alg. 2.

Data: GP(V, F, S, p), T , timetable
Result: feasible trains scheduling t
i← 0;
Gi(V, F ∪Qi, SQi

, p)← closure(GP(V, F, S, p));
ti ← schedule(Gi(V, F ∪Qi, p);
foreach h ∈ T do

compute delay d[h] behind timetable of h on G(V, F ∪Qi);
end
while SQi

6= ∅ do
sort trains in T by expected arrival order on assigned platform;
foreach j ∈ T do

a[j]← 0;
end
L← ∅;
foreach {eh, ek} ∈ SQi

do
a[h]← a[h] + γ · h+ p(eh);
a[k]← a[k] + γ · k + p(ek);
L← L ∪ {h, k}

end
j? ← arg minj∈L{a[j]};
foreach {eh, ek} ∈ SQi

do
if h = j? or k = j? then

Fi+1 ← Fi ∪ {ej?};
SQi+1 ← SQi \ {eh, ek};

end

end
i← i+ 1;
Gi(V, F ∪Qi, SQi

, p)← closure(Gi(V, F ∪Qi, SQi
, p));

ti ← schedule(Gi(V, F ∪Qi, p);
foreach h ∈ T do

compute delay d[h] behind timetable of h on G(V, F ∪Qi);
end

end
return ti;

Algorithm 2: Heuristic algorithm for JSS(P).



The heuristic method invokes two subprocedures, namely closure and
schedule. The closure procedure allows to compute the closure of a disjunc-
tive graph G(V, F ∪Q,SQ, p) such that the associated digraph G(V, F ∪Q, p)
does not contain strictly positive dicycle. This procedure is based on a recur-
sive algorithm which, at each step, adds a forcing (if it exists) to arc set
F ∪ Q, then removes its corresponding disjunctive pair from SQ. The pro-
cedure can identify forcing by a preliminary computation of the maximum
distance between all pairs of nodes in V , which is carried out by Floyd-
Warshall algorithm on digraph G(V, F ∪ Q,SQ,−p) (e.g. see [7, 8]). For
further details on closure procedure, we refer the reader to [1]. Further-
more, schedule procedure allows to compute the scheduling associated to
digraph Gi(V, F∪Qi, p) at each iteration i. Since Gi(V, F∪Qi, p) is retrieved
by a closure of a disjunctive graph (i.e. it does not contain any strictly
positive dicycle), schedule computes ti by Dijkstra algorithm on digraph
Gi(V, F ∪ Qi,−p). Now, it is easy to check that the introduced heuristic
algorithm is correct (a simple proof is given by induction on the number of
iterations of Alg. 2).

The main idea of heuristic method is based on providing a feasible sched-
ule by iteratively fixing conflict resolution decisions. In particular, at each
iteration i, all resource occupation conflicts corresponding to disjunctive
pairs of Gi(V, F ∪Qi, SQi

, p) are identified. Then, a subset of conflict reso-
lution decisions is fixed by according priority to a train j? which introduces
the minimal measure a[j] of the expected perturbation behind the timetable.
Each value a[j] is computed by considering two cost components: i) the first
component is given by the overall delay increase if train j is assumed to
have priority over the set of conflicts in which it is involved; ii) the sec-
ond component expresses the expected arrival order of train j to its first
station resource with respect to T . The relative importance between cost
components can be tuned by suitable parameter γ > 0.

5 Computational experience

The computational experiences focuses on set of real-word instances which
have been provided by Bombardier Transportation, Italy. The RTD prob-
lem instances we have tested are based on real-time data of trains traffic
information related to Tiburtina railway station of Rome (Italy), during
day September 9th, 2013. The computational experience has been carried
out on x86-64 GNU/Linux machine with 4 cores @800MHz and 8GB of
RAM. Both solutions approaches have been implemented in C program-
ming language. The exact method, based on integer programming, exploits



IBM ILOG Cplex 12.5.1 MIP solver [9], then the separation algorithm has
been implemented by Cplex Callable Library callbacks.
In order to test the quality of solutions and the computational performances
of introduced methods, we consider 8 instances which represent different
railway traffic statuses information of Tiburtina station, associated to dif-
ferent time instants of September 9th, 2013. In particular, each instance
refers to a wide timetable composed by 135 trains that are characterized
by different categories and service type functionalities. The planning time
horizon associated to timetable covers 12 hours.

14

13

IV

12

42

41

44

43

10

09

11

20

21

22

24

25

23

28

29

V

IX

X

XII

XIII

XIV

XV

XVI

XVII

XXIX

XXV

Figure 1: Digraph representing Tiburtina railway station of Rome (Italy).

Tiburtina railway station is composed by 30 stopping points and 62 inter-
locking routes (a representation of Tiburtina station graph is reported in
Fig. 1). The set of stopping points is partitioned into three subsets which
respectively contain line points, platforms and intermediate points (a special
kind of stopping points which provide interconnections between other stop-
ping points). In particular, Tiburtina station has 12 line points connecting
itself to adjacent national railway lines. On the south side, it is connected
to lines: Direttissima and Lenta (both toward Roma Termini station), Alta



Table 1: Computational experience.

Heuristic Algo Exact Algo

Instance Val(sec) Time(sec) Opt(sec) Time(sec) Gap(%)

1 44416 0.02 44361 0.93 0.12

2 28260 0.01 28060 0.36 0.71

3 31800 0.02 31450 1.04 1.11

4 29560 0.01 29360 0.11 0.68

5 37060 0.02 36790 1.34 0.73

6 30560 0.02 30210 0.73 1.16

7 32860 0.01 32830 0.21 0.09

8 34226 0.02 34176 1.29 0.15

Velocità (toward Roma Prenestina station), Indipendente and Locale (both
toward Roma Casilina station). Moreover, on the north side, Tiburtina sta-
tion is connected to lines: Direttissima (toward Roma Settebagni station),
Lenta (toward Roma Salario station), Merci (toward Roma Settebagni sta-
tion and Roma Smistamento cargo terminal station). Moreover, Tiburtina
station offers a wide range of railway services, namely passengers transporta-
tion, freight transports and high speed rail services. All station objects of
Tiburtina are managed by a computer-based interlocking system provided
by Bombardier Transportation Italy.

Table 1 summarizes computational results by reporting for each instance:
i) objective function value (second column) and computation time (third
column), both expressed in seconds, for the heuristic method; ii) optimal
solution value (forth column) and computation time (fifth column), both
expressed in seconds, for the exact method; iii) relative gap (sixth column)
of the heuristic method’s solution with respect to the optimal solution.
Let observe that our exact method allows to compute optimal solutions
to real-life instances of the RTD problem given by a train traffic planning
horizon of 12 hours and composed by with 135 trains, within a time lapse
of 0.75 seconds on average. Same instances can be solved by our heuristic
method within a time lapse of 20 milliseconds on average. Moreover, let
observe that the heuristic method allows to compute good quality solutions,
which differ from the optimal value for an average 0.6% ratio.



6 Conclusions

The RTD problem play a crucial role in automatic railway traffic control. In
this work, we have introduced a suitable decomposition of the problem in
two well-studied problems of Operations Research. Then, we have designed
and exact optimization algorithm based on integer programming and heuris-
tic algorithm based on a combinatorial formulation of the problem.
We have implemented and tested our algorithms on real-life instances based
on railway traffic information related to Tiburtina station of Rome. The
computational experience shows that both methods are able to provide
either good or optimal solutions within a time lapse which is less than one
second. This experimental work takes part into a joint project of Optrail
with Bombardier Transportation Italy, which aims to develop software tools
for an efficient and effective real-time railway traffic management.

References

[1] Mannino, C. & Mascis, A., Optimal real-time traffic control in metro
stations. Oper Res, 57(4), pp. 1026–1039, 2009.

[2] Balas, E., Machine sequencing via disjunctive graphs: An implicit enu-
meration algorithm. Defense Technical Information Center, 1969.

[3] Balas, E., Disjunctive programming. Elsevier, volume 5 of Annals of
Discrete Mathematics, pp. 3 – 51, 1979.

[4] Neumann, K., Schwindt, C. & Zimmermann, J., Project Scheduling
With Time Windows and Scarce Resources: Temporal and Resource-
Constrained Project Scheduling With Regular and Nonregular Objec-
tive Functions. Lecture Notes in Economics and Mathematical Systems
Series, Springer Verlag, 2002.

[5] Schrijver, A., Theory of Linear and Integer Programming. John Wiley
& Sons, Inc.: New York, NY, USA, 1986.

[6] Nemhauser, G.L. & Wolsey, L.A., Integer and Combinatorial Optimiza-
tion. Wiley-Interscience: New York, NY, USA, 1988.

[7] Goldberg, A., Tardos, É. & Tarjan, R., Network Flow Algorithms. Num-
ber 1252 in Computer Science Department: Report STAN-CS, Depart-
ment of Computer Science, Stanford University, 1989.

[8] Ahuja, R.K., Magnanti, T.L. & Orlin, J.B., Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc.: Upper Saddle River,
NJ, USA, 1993.

[9] IBM, IBM ILOG CPLEX Optimization Studio 12.5.1 - CPLEX User’s
Manual, 2013.


