
1

Online Search in Behavioral Programming Models
Orel Moshe Weinstock

Department of Computer Science, Ben-Gurion University of the Negev

Abstract—We present a model based approach to Search Based
Software Engineering (SBSE). The approach is based on the Be-
havioral Programming (BP) paradigm where independent aspects
of behavior are woven at run time using a simple interaction
protocol. We propose to extend the behavioral programming
execution mechanism with on-line heuristic search in program
state space that allows programmers to develop non-deterministic
programs while relying on a “smart” event selection mechanism
to resolve non-determinism in a way that maximizes a specified
heuristic function. The paper presents a new library that we have
developed in Java and in JavaScript, using Rhino, to facilitate
the proposed modeling approach and programming style. We give
examples, in the context of a StarCraft game bot built with the
library, that demonstrate how the proposed programming idioms
can simplify the code and help build robust reactive systems.

I. MOTIVATION AND BACKGROUND

Search Based Software Engineering (SBSE) is an emerging
field of research which aims to cope with the increased de-
mand for functionality, scalability, and robustness of computer
programs (and of reactive robotic systems in particular) using
heuristic search mechanisms [1]. SBSE consists of automatic
resolution (using search algorithms) of complex decisions that
programmers model as optimization problems. There are many
published papers in this area that describe various approaches
within the software engineering research community [2], [3].
There are also reports that describe how SBSE has been
successfully applied to solve problems in nearly all software
development life cycle phases [4], [5]. The main challenge in
SBSE is, of course, finding a good modeling technique that
facilitates the search [6].

Despite the research activity in the area, search methods are
practically used only in specific domains. Harman [2] reports,
for example, that 54% of SBSE tools are used for testing
purposes, an additional 11% for maintenance, and another
10% for project management. It seems that the main barrier
that delays further adaptation of the technique is shortage in
models for online search [6].

The goal of this this paper is to explore how SBSE can
be made accessible to modelers and programmers of reactive
systems, such as robotic applications and interactive game
bots, as idioms that integrate with standard constructs in com-
mon modeling and programming languages. This allows for
natural, powerful derivation from modeling languages (such
as LSC [7], [8]) to code. Specifically, we aim at tools that
facilitate the following software development methodology:

1) Code and/or derive from models the high-level specifi-
cation of the system’s behavior, using non-determinism
to specify free choices in execution.

2) Run the system using an engine that resolves non deter-
minism heuristically or synthesize deterministic code.

3) If unsatisfied with the execution’s choices, extend the
model by formalizing more refined requirements.

4) Repeat steps 2 and 3 until the behavior is satisfactory.
The behavioral programming (BP) paradigm that we focus

on in this paper is described in detail in Section II. BP
extends and generalizes scenario-based programming which
was introduced with the language of live sequence charts
(LSC) [7], [8]. In addition to the refinement idioms that already
exist in BP, which allow programmers to incrementally shape
their software by adding modules that can both widen and
narrow the set of possible behaviors of the system [9], we
propose in this paper to allow BP based models to also contain
specification of fitness criteria for the heuristic search function
that can also be refined along the above development process.

The idea of “smart” execution of scenario based specifi-
cations started in [10] and in [11] with proposals to apply,
respectively, model-checking and planning algorithms for run-
ning a single super-step (the part of the run that spans between
two consecutive external events) in LSC. We apply a similar
mechanism in the context of a behavioral programming library
embedded in an imperative programming language. Beyond
running in a different setting, the main addition of our library,
when compared to these earlier contributions, is that it runs
the “smart” event selection mechanism at run-time, on real
program code rather than on a model or specification, and
that it can consider a horizon beyond a single super-step.

II. BEHAVIORAL PROGRAMMING PRINCIPLES

As presented in [12], a behavioral model consists of a set
of independent behavior threads (b-threads for short). Each
b-thread is a specification of a reactive machine that can be
modeled, e.g., as a procedure in an imperative programming
language. Together, the b-threads control the behavior of flow
of the application via a synchronization protocol, as follows.
When a b-thread reaches a point that requires synchronization,
it waits until all other b-threads reach such synchronization
points in their own flow. At synchronization points, each b-
thread specifies three sets of events: (1) requested events - the
thread proposes that these events be considered for triggering,
and asks to be notified when any of them occurs; (2) waited-
for events - the thread does not request these events, but only
asks to be notified when any of them is triggered. The platform
will not consider these events for triggering, unless given as
external input to the system; and (3) blocked events - the thread
currently forbids triggering of these events.

As shown in Figure 1, when all b-threads are at a synchro-
nization point, a legal event (an event that is requested by
at least one b-thread and is not blocked by any b-thread) is
chosen. This chosen event is then triggered by resuming all the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357583301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

b-threads that either requested or waited for it. Each of these
resumed b-threads then proceeds with its execution, all the
way to its next synchronization point, where it again presents
sets of requested, waited-for and blocked events. The other b-
threads remain at their last synchronization points, oblivious
to the triggered event, until an event is selected that they have
requested or are waiting for. When all b-threads are again at
a synchronization point, the event selection process repeats.

More formally, recall that a deterministic labeled transition
system is a quadruple 〈S,E,→, init〉, where S is a set of
states, E is a set of events, → is a (possibly partial) function
from S × E to S, and init ∈ S is the initial state. The
runs of such a transition system are sequences of the form
s0

e1−→ s1
e2−→ · · · ei−→ si · · · , where s0 = init, and for all

i = 1, 2, · · · , si ∈ S, ei ∈ E, and the function → maps
the pair 〈si−1, ei〉 to si, written as si−1

ei−→ si. We say that
〈S,E,→, init〉 is total if the transition function → is a total
function.

We will now give the semantics of a set of b-threads in
terms of runs of a transition system. For this, we model each
behavior thread as a transition system with an association of
requested and blocked events to each state:

Definition 1. behavior thread [12]: A behavior thread (abbr.
b-thread) is a tuple 〈S,E,→, init, R,B〉, where 〈S,E,→
, init〉 forms a deterministic total labeled transition system,
R : S → 2E is a function that associates each state with the
set of events requested by the b-thread when in that state, and
B : S → 2E is a function that associates each state with the
set of events blocked by the b-thread when in that state.

We define a composition operator on the set of b-threads and
the resulting set of runs of the composite transition system as
follows:

Definition 2. Runs of a set of b-threads [12]: We define the
runs of a set of b-threads {〈Si, Ei,→i, initi, Ri, Bi〉}ni=1 as
the runs of the labeled transition system 〈S,E,→, init〉, where
S = S1 × · · · × Sn, E =

⋃n
i=1 Ei, init = 〈init1, . . . , initn〉,

and → includes a transition 〈s1, . . . , sn〉
e−→ 〈s′1, . . . , s′n〉 if

and only if

e ∈
n⋃

i=1

Ri(si)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(si)︸ ︷︷ ︸
e is not blocked

. (1)

and
n∧

i=1

(
(e ∈ Ei =⇒ si

e−→i s
′
i)︸ ︷︷ ︸

affected b-threads move

∧ (e /∈ Ei =⇒ si = s′i)︸ ︷︷ ︸
unaffected b-threads do not move

)
(2)

When multiple events are requested and not blocked, the
semantics of event selection may vary. The process of choosing
the next event, the focus of this research, is called Arbitration.
Various arbiters have been suggested in other works:
• A naı̈ve arbiter would select a legal event at random, as

in the LSC Play Engine [8].
• Choosing a minimal event according to b-thread, event,

and request order [12], [13].

• Look-ahead subject to desired properties of the resulting
event sequence, as in smart play-out [10].

• Planning algorithms [11], called planned play-out in LSC.
• Reinforcement learning where events that have shown to

produce better expected value are selected [14].
• Allow concurrent events or split execution into parallel

concurrent executions, as in [15].
• Synthesizing specifications into a deterministic automa-

ton (e.g. [16]).
In this research we adopt and extend the mechanism pro-

posed in [11] as elaborated in Section IV below.

b-thread

b-thread

b-thread

b-thread

Requested Events

Blocking

Selected Event

Figure 1. Collective execution of behavior threads using an enhanced publish/-
subscribe protocol: (a) all b-threads place their “bids”, specifying requested
events and blocked events; (b) a synchronization mechanism chooses an event
that is requested but is not blocked; (c) b-threads waiting for the event are
notified; (d) the notified b-threads progress to their next states, where they
can place new bids.

III. BEHAVIORAL PROGRAMMING IN JAVASCRIPT

The intent is for programmers to use the principles intro-
duced in the previous section in an imperative programming
language. To illustrate this coding technique, consider a b-
thread that increases water flow in a hot water tap by request-
ing five times the event AddHot which stands for turning
the tap anticlockwise for some small fixed amount. Another
b-thread performs a similar action, with the event AddCold,
on the cold water tap. To increase the water flow in both taps
in parallel, as may be desired for keeping the temperature
stable, one may activate the above b-threads alongside a
third one, which forces the interleaving of events in the two
scenarios. The third b-thread, for example, can be coded
as “repeatedly: block AddCold until AddHot;
block AddHot until AddCold”. This programming

style was proposed in [12] in Java and is extended to Javascript
in our work. A Javascript program for the water tap application
is shown in Figure 2.

As seen in Figure 2, defining b-threads is easy and concise
- you simply register a function with the application object,
which is embedded in the Javascript interpreter from the un-
derlying Java. Synchronization is induced by calling a method
called bsync, passing to it three sets of events: requested,
waited-for, and blocked events (in this order). The return value
of bsync is the triggered event that resumed the b-thread. All
multi-threading and concurrency issues are handled by the BP-
Javascript engine.



3

bpjs.registerBThread("HotBt", function () {
while(true){

bsync(addHot, none, none);
}

});
bpjs.registerBThread("ColdBt", function () {

while(true){
bsync(addCold, none, none);

}
});
bpjs.registerBThread("AlternatorBt", function () {

while(true){
bsync(none, addHot, addCold);
bsync(none, addCold, addHot);

}
});
bpjs.registerBThread("Display", function () {

while(true){
bsync(none, all, none);
bplog("Event: " + lastEvent());

}
});
bpjs.start();

Figure 2. An example of using BP-Javascript.

The application object is not the only object available to the
Javascript programmer. Other objects from the Java layer, like
the predefined event set objects none and all, and addCold
and addHot can also be embedded in the interpreter and, thus,
can be accessed by the Javascript code. The ability to embed
Java operations and objects within the interpreter allows us
to create DSLs for sharing common functionality between b-
threads and a much easier way to extend the application or
even embed it in another BP-Javascript application.

The b-threads can combine the full power of the Javascript
language with synchronized behavioral execution and can
also dynamically integrate with applications containing non-
behavioral components. BP-Javascript also enjoys the flexibil-
ity and conciseness of Javascript without sacrificing any of the
semantics of the Java BP back-end.

A comparison to [12], which has no backtracking, and
[17], which uses external tooling for backtracking, is in
order. Our implementation adapts [17] for online search by
using Javascript backtracking over Rhino with a modified BPJ
library without exteral tooling, see V.

IV. BP-JAVASCRIPT WITH SEARCH

While BP, as presented in the preceding sections, is use-
ful in allowing for relatively independent code components,
the model is, by definition, a non-deterministic system that
leaves a choice when there is more than one event that is
requested and not blocked. To get a standard, deterministic,
implementation, programmers can add b-threads that refine
the specification or, as we propose in this paper, use a “smart”
execution mechanism. Specifically, we now demonstrate how
an extension of BP-Javascript with an application agnostic
search-based event selection mechanism allows for a cleaner
and more robust program. The examples from now on are
based on a library we have developed to support this ap-
proach. We demonstrate how it can be used in the context
of a StartCraft [18] bot. The bot itself is only in an early
development phase, the code here is only an outline, not part
of a full, working implementation.

1 function findAndHarvestMinerals(move) {
2 while(true){
3 var minerals = bsync(new FindMineral(this), none, none

);
4 var othersHarvesting = new OthersHarvesting(this,
5 minerals.getLocation());
6 while(notFullyLoaded){
7 var harvest =
8 bsync(new Harvest(minerals.getLocation()),
9 none, othersHarvesting);

10 updateLoaded(harvest.getAmount());
11 }
12 bsync(new ReturnToBase(this), none, none);
13 }}

Figure 3. A b-thread for a worker assignment to mineral fields.
FindMineral is an event list of all orders to harvest a visible mineral field,
one for each such field. Harvest is a predefined event class for harvesting
a given mineral field. OthersHarvesting is an event set which includes
all Harvest event by other workers.

var totalMinerals = 0;
function h(bpstate) {

var le = bpstate.getLastEvent();
if(isMineralsCollectedEvent(le))

totalMinerals = totalMinerals + le.getValue();
return totalMinerals;

}

Figure 4. The heuristic function summing total collected minerals.

Figure 3 shows an example of using BP-Javascript with
search for optimal worker assignment to mineral fields in
the game of StarCraft. The example is accompanied by the
screenshot shown in Figure 5. The function described is
registered as a b-thread for each worker. To see how the
search mechanism works in this example, let us examine the
arbitration process for a behavioral program with these b-
threads bsync by bsync, assuming the heuristic function’s
value is the total amount of minerals harvested as in Figure 4.
Each time a bsync is executed (lines 3,8,12), BP will apply
the heuristic function to the game state.

Line 3: The worker asks for orders to mine any visible
mineral field - it requested such an order for each visible field.
The worker will then start harvesting the location it was sent
to at line 8. At this point, the BP system has to choose which
mineral field harvest order to trigger. The system will search

Figure 5. Zerg hatchery (red square) with Drones (worker units, green
squares) harvesting minerals (blue crystals). Drones collect and bring minerals
to the hatchery, adding to the player’s credit. Optimal resource collection
allows the player to pay for combat units, more workers and new buildings.



4

through the different branches of the program space, each
starting with a different harvest order. A sub-optimal choice
will get a lower heuristic value than the optimal choice. Line
8: The worker harvests the field he received in the preceding
bsync. While this worker is harvesting the mineral field
(receiving Harvest events), because of the blocked event
set given to bsync, no other b-thread (worker) can receive a
Harvest event on the same field (i.e. can harvest it). While
searching through program space at this point, any branch in
which a worker will wait on an already taken mineral field
will get a lower heuristic value than one in which there are
no workers who are waiting for others to finish with the
field. Therefore, the heuristic drives the search away from
unnecessary waits by workers. Line 12: The worker asks for
orders to head back to base with the collected minerals.

This example shows how the non-determinism created by
the existence of multiple requested yet unblocked events is
resolved by the search engine, using an appropriate heuristic
function. This can be utilized to write concise programs that
would have been longer on a regular imperative platform,
even when employing search techniques [19], [20]. As a
rough quantitative comparison, assume only 10% of the code
managing the build order (resource collection, unit training
and building construction sequence) in the bot coded in [20]
deals with harvesting minerals. That is approximately 40KB
of source code, significantly longer than the code in Figure 3.

V. UNDER THE HOOD

Defining the program-state correctly has great influence on
search results. At every synchronization point where the arbiter
has to choose the next event, we run the program with our
choices while controlling its inputs and outputs to determine
the heuristic value of states reached in the run and choose
the event leading to the highest scored state. The model in
this case is the actual program state - all its variables, stack
frames, memory space etc.

The technique of running the program in a controlled
environment is called sandboxing, and is often used for
testing [21]. Although using this method requires writing an
environment simulator (to generate inputs), in addition to the
desired application itself, this is not a significant penalty to
development as a simulator is a required in order to test the
application. While running the program in a sandbox with
a simulator in its entirety may be difficult for big general
purpose applications (due to the large codebase), it is viable
for control/reactive systems - the focus of this research. This
type of systems contains higher level code that concentrates
on logical flow, which runs faster than general code. Note
that the simulation of the environment does not have to be
complete, a good search mechanism can make much use even
of an abstract description of the environment.

We will now discuss the implementation of the program-
state object. Programs in BP are comprised of b-threads, so
their states is an aggregate of the independent state of each b-
thread. Anything happening inside a b-thread between bsync
calls - that is, between synchronization points - is by definition
internal to the b-thread, and so can be considered atomic to the

program as a whole. Therefore, we can ignore these internal
workings and focus on bsyncs, as only the states at these
synchronization points define the integrated system behavior.

The only programmatic construct that captures program exe-
cution in an immutable, re-entrant object, as required by search
algorithms, is a continuation [22], [23]. Continuations are
representations of the program at a given point in execution,
which are available to the programmer, rather than hidden by
the runtime environment. They are used here to traverse the
state space by ordinary program execution, as they facilitate
backtracking and resuming of execution from desired points
where they were captured. We can now formally define the
state space for the search:

Definition 3. A BT-state represents the state of a specific b-
thread in a bsync call during a run of the program. It is
composed of the b-thread and its captured continuation.

public BEvent bsync(RequestInterface requested,
EventSet waited, EventSet blocked) {
_request = requested;
_wait = waited;
_block = blocked;
...
Context cx = ContextFactory.getGlobal().enterContext();
_cont = cx.captureContinuation();
...

}

Figure 6. Code snapshot of the implementation of the bsync function in
the underlying Java b-thread object.

As shown in Figure 6, a BT-state (_cont) is captured
at every call to bsync by the underlying Java b-thread
object. This ensures that once all b-threads have reached a
synchronization point, their continuation object representing
that state is updated, so that a complete state of the BP system
can be captured:

Definition 4. A BP-state represents the state of the whole
program. It is composed of the BT-states of all b-threads in
the program, captured at a bsync.

When the BP infrastructure is required to make a choice
between multiple events to trigger, it creates a BP-state as
a root for the search. Expanding search nodes is done by
triggering legal events and capturing the new BP-states created
by the triggering. This is done by executing the code as in [17],
and not offline or by running on an abstract model of the code
as in [24]. This ensures that there are no discrepancies between
the code itself and the search results. The BT-state and BP-
state are the abstractions used by the search algorithm directly
such that all BP specific code is encapsulated within those
objects and is completely transparent to the search algorithm.

With the state space defined, we can delve into the search
mechanism itself - how we run behavioral programs in a sand-
box. The sandbox is composed of the environment simulator
(input generator), a search algorithm and a heuristic function.

An implementation of a look-ahead mechanism, beyond one
super-step, requires that the system be able to predict the
actions of the environment to some precision. For this, we
need to ask programmers to provide the search mechanism
with an abstract model of the environment (which can be
probabilistic), a simulator, to provide inputs to the behavioral
program while in the sandbox.



5

Environment

Behavioral Model

Environment Model

real input

simulated
input

input output

Figure 7. The architecture of the BP search sandboxing mechanism. We
developed a switched system that operates in two modes. (1) In normal mode
the application b-threads receive input from the environment. (2) In search
mode, the application b-threads get input from a simulator and output is fed
only to the simulation b-threads, so that the environment is not actuated. The
figure shows the state of the switches in search mode. When in normal mode,
both switches are in their other mode, i.e., the right switch is closed and the
left switch is connecting ‘real input’ to ‘input’.

As shown in Figure 7, we have implemented an environment
simulator as b-threads in the program itself. In normal oper-
ation, a simulator b-thread’s bsync is modified such that its
requested event sets are added to the waited-for events set, and
its requested event set is empty. This ensures the simulation
b-thread is made aware of all events relevant to it, so that it
maintains a correct state for the next use in simulation mode.

When the BP infrastructure needs to search for an event
to trigger, the simulation b-threads are switched to simulation
mode, in which they request events normally triggered by the
environment as modeled in their code. No manipulation of
their event lists is done in simulation mode. This “Eating our
own dog food” approach greatly contributes to the robustness
of the simulator and program, while also providing a clear and
unified interface for programming behavioral programs.

Let us now consider another example, illustrated in Figure 8.
In this example, we demonstrate usage of the environment
simulator to encode our knowledge that the environment-
driven Marines attack the closest enemy. We therefore code
the Marine simulator function as in Figure 9 and register it
as a simulation b-thread. When in normal operation, BP will
receive the Marine’s actions from the environment. When in
simulation mode, the yellow Marine will request to attack the
top Hydralisk, and the red Marine will request to attack the
bottom Hydralisk. If we learn more about Marine behavior, we
can change the function in Figure 9, or register more b-threads
specifying their behavior as simulation b-threads.

An interface for sending inputs to the behavioral program
and for examining its outputs is then required. A convenient
solution for this is defining the interface to and from the
behavioral program to be an event queue (an input queue
has been introduced in [25]). This way the environment and
the sandbox both enqueue events for triggering within the
behavioral program in the input queue and read the behav-
ioral program’s output from its output queue. The behavioral
program does not directly perform actions on the environment
- events from the output queue are fed as player actions back
into the environment by an adapter, thus enabling running in
sandbox without extra code analysis.

Figure 8. Hydralisks (green) and Marines (yellow, red) accompanied by a
Medic (light blue) in combat.

1 function killClosest(move) {
2 var closestEnemy = getClosestEnemy();
3 bsync(new AttackCommand(closestEnemy),none,none);
4 while(closestEnemy.isAlive()){
5 bsync(new Shoot(this,Enemy),none,none);
6 }}

Figure 9. The Javascript function registered as the Marine’s b-thread. The
bsync in line 3 will request and trigger the AttackCommand event, which is
an output event. The bsync in line 5 will request the Shoot event, which is
an input event, in order to keep track of the enemy’s health. When the enemy
is killed, we can move to a new target.

Selecting the right search algorithm for a behavioral pro-
gram can have great impact on the results. The algorithms we
have used are depth-limited A* and minimax [26] textbook
implementations [27]. The architecture of our solution is such
that it is easy to introduce other search algorithms, as there is
no coupling between the algorithm itself and the BP-Javascript
engine. The specific choice of best search algorithms for
specific application domains is beyond the scope of this work.

Writing a heuristic function is straightforward: the BP-
state object passed to the function grants access to the entire
program without compromising speed or space. This includes
the b-thread’s bsync event sets and public access methods.
The programmer, then, is given full power in the evaluation of
program state, independent of the search algorithm used. The
programmer can write different heuristic functions that reward
desired events and b-thread properties.

VI. CONCLUSION

In this paper we have shown how a BP engine with
an embedded program-state space search mechanism can
facilitate development in a new, more natural way using a
standard, modern programming language. The BP architecture
was enhanced to be more flexible and real-world ready. The
game bots we programmed in this manner accomplished their
initial goals by fulfilling their function in the game while
being relatively short and easy to code. This will allow us
to further explore and advance the use of BP, in general and
in AI domains particularly, using run-time search to provide
the programmer with more freedom.



6

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software
engineering”, Information and Software Technology,
vol. 43, no. 14, pp. 833–839, 2001.

[2] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-
based software engineering: trends, techniques and ap-
plications”, ACM Computing Surveys (CSUR), vol. 45,
no. 1, p. 11, 2012.

[3] H. Jiang, Z. Ren, X. Li, and X. Lai, “Transformed
search based software engineering: a new paradigm of
sbse”, in SSBSE, 2015.

[4] J. Manuel, C. Trilla, S. Poulding, and C. Runciman,
“Weaving parallel threads: searching for useful paral-
lelism in functional programs”, in SSBSE, 2015.

[5] S. Yoo, “Amortised optimisation of non-functional
property in production environment”, in SSBSE, 2015.

[6] J. Ahluwalia, I. H. Krüger, W. Phillips, and M.
Meisinger, “Model-based run-time monitoring of end-
to-end deadlines”, in Proceedings of the 5th ACM
international conference on Embedded software, ACM,
2005, pp. 100–109.

[7] W. Damm and D. Harel, “Lscs: breathing life into
message sequence charts”, Formal methods in system
design, vol. 19, no. 1, pp. 45–80, 2001.

[8] D. Harel and R. Marelly, Come, let’s play: scenario-
based programming using LSCs and the play-engine.
Springer Science & Business Media, 2003, vol. 1.

[9] D. Harel, A. Marron, and G. Weiss, “Behavioral pro-
gramming”, Communications of the ACM, vol. 55, no.
7, pp. 90–100, 2012.

[10] D. Harel, H. Kugler, R. Marelly, and A. Pnueli,
“Smart play-out of behavioral requirements”, in FM-
CAD, Springer, vol. 2, 2002, pp. 378–398.

[11] D. Harel and I. Segall, “Planned and traversable play-
out: a flexible method for executing scenario-based pro-
grams”, in Tools and Algorithms for the Construction
and Analysis of Systems, Springer, 2007, pp. 485–499.

[12] D. Harel, A. Marron, and G. Weiss, “Programming
coordinated behavior in java”, in ECOOP 2010–Object-
Oriented Programming, Springer, 2010, pp. 250–274.

[13] G. Wiener, G. Weiss, and A. Marron, “Coordinating
and visualizing independent behaviors in erlang”, in
Proceedings of the 9th ACM SIGPLAN workshop on
Erlang, ACM, 2010, pp. 13–22.

[14] N. Eitan and D. Harel, “Adaptive behavioral program-
ming”, in Tools with Artificial Intelligence (ICTAI),
2011 23rd IEEE International Conference on, IEEE,
2011, pp. 685–692.

[15] H. Kugler, C. Plock, and A. Roberts, “Synthesizing bio-
logical theories”, in Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, G. Gopalakrishnan
and S. Qadeer, Eds., ser. Lecture Notes in Computer
Science, vol. 6806, Springer, 2011, pp. 579–584, ISBN:
978-3-642-22109-5. DOI: 10.1007/978-3-642-22110-
1 46. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-22110-1 46.

[16] D. Harel and I. Segall, “Synthesis from live sequence
chart specifications”, Journal of Computer System Sci-
ences, 2011.

[17] D. Harel, R. Lampert, A. Marron, and G. Weiss,
“Model-checking behavioral programs”, in Proceedings
of the ninth ACM international conference on Embed-
ded software, ACM, 2011, pp. 279–288.

[18] (1998). Starcraft: brood war — wikipedia, the free en-
cyclopedia, [Online]. Available: http://en.wikipedia.org/
wiki/StarCraft: Brood War (visited on 07/11/2015).

[19] D. Churchill and M. Buro, “Build order optimization in
starcraft.”, in AIIDE, 2011.

[20] ——, (2015). UAlbertaBot, Starcraft bot code, [Online].
Available: http://github.com/davechurchill/ualbertabot
(visited on 07/11/2015).

[21] A. Fox, E. Brewer, et al., “Harvest, yield, and scalable
tolerant systems”, in Hot Topics in Operating Systems,
1999. Proceedings of the Seventh Workshop on, IEEE,
1999, pp. 174–178.

[22] G. D. Plotkin, “Call-by-name, call-by-value and the λ-
calculus”, Theoretical computer science, vol. 1, no. 2,
pp. 125–159, 1975.

[23] J. C. Reynolds, “The discoveries of continuations”, Lisp
and symbolic computation, vol. 6, no. 3-4, pp. 233–247,
1993.

[24] G. Katz, “On module-based abstraction and repair
of behavioral programs”, in Logic for Programming,
Artificial Intelligence, and Reasoning, Springer, 2013,
pp. 518–535.

[25] D. Harel, A. Kantor, G. Katz, A. Marron, G. Weiss,
and G. Wiener, “Towards behavioral programming in
distributed architectures”, Science of Computer Pro-
gramming, vol. 98, pp. 233–267, 2015.

[26] S. Russell and P. Norvig, “AI a Modern Approach”,
Learning, vol. 2, no. 3, p. 4, 2005.

[27] (2015). Java implementation of algorithms from Norvig
and Russell’s ”Artificial Intelligence - A Modern Ap-
proach”, [Online]. Available: http://github.com/aima-
java/aima-java (visited on 07/11/2015).

ACKNOWLEDGEMENTS

This work was partially supported by the Lynne and William
Frankel Center for Computer Science.


