On an inequality of Klamkin

József Sándor
Babeş-Bolyai University of Cluj, Romania
jjsandor@hotmail.com

Abstract

Connections of an inequality of Klamkin with Stolarsky means and convexity are shown. An application to arithmetical functions is given.

Keywords and phrases: Means and their inequalities, log-convex functions, arithmetical functions.
AMS Subject Classification: 11A25, 11N37, 26A51, 26D99.

1 Introduction

In 1974 M. S. Klamkin [3] proved the following result: Let x be a nonnegative real number, and m, n integers with $m \geq n \geq 1$. Then

$$
\begin{equation*}
(m+n)\left(1+x^{m}\right) \geq 2 n \frac{1-x^{m+n}}{1-x^{n}} \tag{1}
\end{equation*}
$$

We note that for $x=1$, the right side of (1) is understood as $\lim _{x \rightarrow 1}$, when the inequality becomes an equality. Also, for $x=0$ (1) becomes $m+n \geq 2 n$, which is true. For $m=n$ there is equality in (1). In fact, it can be shown that for all real numbers $m>n>0$, and all $x>0$, (1) holds true with strict inequality (see the solutions of (1) in [1]).

Assume now that $x=a \geq 1, m=p, n=q$, where $p \geq q \geq 0$ are real numbers. Then, since

$$
\left(1+a^{p}\right)\left(1-a^{q}\right)=a^{p}-a^{q}+1-a^{p+q}
$$

after some transformations, (1) becomes equivalent to

$$
\begin{equation*}
(p-q)\left(a^{p+q}-1\right) \geq(p+q)\left(a^{p}-a^{q}\right) . \tag{2}
\end{equation*}
$$

In the case of $p-q \leq 1$, a weaker result than (2) appears in the famous monograph by D. S. Mitronović [4] (3.6.26, page 276).

For certain arithmetical applications of Klamkin's inequality, see [5].
In what follows we will point out some surprising connections of inequality (2) (i.e., in fact (1)) with certain special means of two arguments. Also, a new application of (1) will be given.

2 Stolarsky means

Let $m, n>0$ and put $p+q=m, p-q=n$. Then $p=\frac{m+n}{2}, q=\frac{m-n}{2}$ and (2) gives

$$
\begin{equation*}
\frac{a^{m}-1}{a^{n}-1}>\frac{m}{n} a^{(m-n) / 2} . \tag{3}
\end{equation*}
$$

By letting $a=\frac{x}{y}(x>y>0)$, relation (3) may be written also as

$$
\begin{equation*}
\left(\frac{x^{m}-y^{n}}{x^{n}-y n} \cdot \frac{n}{m}\right)^{1 /(m-n)}>\sqrt{x y} \tag{4}
\end{equation*}
$$

If $n=1$, the expression on the left side of (4) is called as the Stolarsky mean of x and y. Put

$$
S(m)=S(x, y, m)=\left(\frac{x^{m}-y^{m}}{x-y} \cdot \frac{1}{m}\right)^{1 /(m-1)}
$$

It is not difficult to see that S can be defined also for all real numbers $m \notin\{0,1\}$, while for $m=0$, and $m=1$, by the limits

$$
\lim _{m \rightarrow 0} S(x, y, m)=\frac{x-y}{\ln x-\ln y}
$$

and

$$
\lim _{m \rightarrow 1} S(x, y, m)=\frac{1}{e}\left(y^{y} / x^{x}\right)^{1 /(y-x)} \quad(y \neq x)
$$

the definition of S can be extended to all real numbers m.
Let

$$
\begin{gathered}
L(x, y)=\frac{x-y}{\ln x-\ln y}, \quad I(x, y)=\frac{1}{e}\left(y^{y} / x^{x}\right)^{1 /(y-x)} \quad(x \neq y), \\
L(x, x)=I(x, x)=x .
\end{gathered}
$$

These means are known as the logarithmic and identric means of x and y (see e.g. [8] for their properties). Stolarsky [10] has proved that S is a strictly increasing function of m. Therefore $S(-1)<S(0)<S(1)<$ $S(2)$, giving

$$
\begin{equation*}
\sqrt{x y}<L(x, y)<I(x, y)<\frac{x+y}{2} \tag{5}
\end{equation*}
$$

Since $S(-1)<S(0)<S(m)$ for $m>0$, we get

$$
\begin{equation*}
\sqrt{x y}<L(x, y)<\left(\frac{x^{m}-y^{m}}{m(x-y)}\right)^{1 /(m-1)} \tag{6}
\end{equation*}
$$

which is an improvement of (4), when $n=1$.

3 Main results

We shall prove that the following refinement of (4) holds true:
Theorem 1.

$$
\begin{equation*}
\sqrt{x y}<\left(L\left(x^{m-n}, y^{m-n}\right)\right)^{1 /(m-n)}<\left(\frac{x^{m}-y^{m}}{x^{n}-y^{n}} \cdot \frac{n}{m}\right)^{1 /(m-n)} \quad(m>n) \tag{7}
\end{equation*}
$$

Proof. Put $f(x)=\frac{a^{x}-1}{x}(x>0)$, where $a>1$; and let $\varphi(p)=$ $\frac{f(p+q)}{f(p-q)}(p>q>0)$, where q is fixed. We first show that φ is strictly increasing function. Since

$$
\varphi^{\prime}(p)=\frac{f^{\prime}(p+q) f(p-q)-f^{\prime}(p-q) f(p+q)}{f^{2}(p-q)}
$$

it will be sufficient to prove that $\frac{f^{\prime}(p+q)}{f(p+q)}>\frac{f^{\prime}(p-q)}{f(p-q)}$. Since $p+q>p-q$, this will follow, if $f^{\prime} / f=g$ is an increasing function. By

$$
g^{\prime}(t)=\left(f^{\prime}(t) / f(t)\right)^{\prime}=\frac{f^{\prime \prime}(t) f(t)-\left(f^{\prime}(t)\right)^{2}}{f^{2}(t)}
$$

it will be sufficient to show that f is strictly log-convex (i.e. $\ln f$ is strictly convex).

Lemma. The function f is strictly log-convex.
Proof. After certain simple computations (which we omit here), it follows that

$$
\begin{gathered}
f^{\prime}(t)=\frac{t a^{t} \ln t-\left(a^{t}-1\right)}{t^{2}} \\
f^{\prime \prime}(t)=\frac{t^{2} a^{t} \ln ^{2} a-2 t a^{t} \ln a+2 a^{t}-2}{t^{3}}
\end{gathered}
$$

and

$$
\begin{gathered}
f^{\prime \prime}(t) f(t)-\left(f^{\prime}(t)\right)^{2}=\frac{a^{2 t}-2 a^{t}-t^{2} a^{t} \ln ^{2} a+1}{t^{4}} \\
=\frac{\left(a^{t}-10 \sqrt{a^{t}} \ln a^{t}\right)\left(a^{t}-1+\sqrt{a^{t}} \ln a^{t}\right)}{t^{4}} .
\end{gathered}
$$

Put $a^{t}=h$. Then $h-1-\sqrt{h} \ln h>0$, since $\frac{h-1}{\ln h}>\sqrt{h}$ by $L(h, 1)>$ \sqrt{h} (left side of (5)). This proves the log-convexity property of f for $a>1$.

Since φ is strictly increasing, one can write

$$
\varphi(p)>\lim _{p \rightarrow q, p>q} f(p+q) / f(p-q)=\frac{a^{2 q}-1}{2 q \ln a} .
$$

Write $p+q=m, p-q=n, a=\frac{x}{y}$, and the right side of (7) follows. For the left side of (7) remark that again by the left side of (5) one has

$$
L\left(x^{m-n}, y^{m-n}\right)>\sqrt{x^{m-n} y^{m-n}}=(x y)^{(m-n) / 2},
$$

which implies the desired inequality.
Remark. φ being strictly increasing, it follows also that

$$
\varphi(p)<\lim _{p \rightarrow \infty} \frac{a^{p+q}-1}{a^{p-q}-1} \cdot \frac{p-q}{p+q}=a^{2 q}
$$

i.e.

$$
\begin{equation*}
(p-q)\left(a^{p+q}-1\right) \leq(p+q) a^{2 q}\left(a^{p-q}-1\right) \tag{8}
\end{equation*}
$$

which is complementary to (2).

4 Arithmetical applications

A divisor d of N is called unitary divisor of the positive integer $N>1$, if $(d, N / d)=1$. For $k \geq 0$, let $\sigma_{k}(N)$ resp. $\sigma_{k}^{*}(N)$ denote the sum of k th powers of divisors, resp. unitary divisors of N. Remark that $\sigma_{0}(N)=$ $d(N), \sigma_{0}^{*}(N)=d^{*}(N)$ are the number of these divisors of N. It is wellknown that (see e.g. [3], [9]) if the prime factorization of N is

$$
N=\prod_{i=1}^{r} p_{i}^{a_{i}}
$$

(p_{i} distinct primes, $a_{i} \geq 1$ integers), then

$$
\begin{align*}
\sigma_{k}(N) & =\prod_{i=1}^{r}\left(p_{i}^{k\left(a_{i}+1\right)}-1\right) /\left(p_{i}^{k}-1\right), d(N)=\prod_{i=1}^{r}\left(a_{i}+1\right), \tag{9}\\
\sigma_{k}^{*}(N) & =\prod_{i=1}^{r}\left(p_{i}^{k a_{i}}+1\right), d^{*}(N)=2^{r}\left(=2^{\omega(N)}\right),
\end{align*}
$$

where $\omega(r)=r$ denotes the number of distinct prime divisors of N.
Write now (1), and a reverse of it (see [1]) in the form

$$
\begin{equation*}
2 n \frac{x^{m+n}-1}{x^{n}-1} \leq(m+n)\left(1+x^{m}\right) \leq 2 m \frac{x^{m+n}-1}{x^{n}-1} \tag{10}
\end{equation*}
$$

where $x>1, m \geq n \geq 1$. Put $n=k, m=k a_{i}, x=p_{i}(i=1,2, \ldots, r)$. Writing (10), after term-by-term multiplication, we get

$$
\begin{equation*}
2^{\omega(N)} \sigma_{k}(N) \leq d(N) \sigma_{k}^{*}(N) \leq 2^{\omega(N)} \beta(N) \sigma_{k}(N) \tag{11}
\end{equation*}
$$

where $\beta(N)=\prod_{i=1}^{r} a_{i}$ (for this, and the other functions, too, see e.g. [6], [9]). The left side of (11) appears also in [5]. Now, remarking that

$$
2^{\omega(N)} \beta(N)=\prod_{i=1}^{r}\left(2 a_{i}\right) \leq \prod_{i=1}^{r} 2^{a_{i}}=2^{\Omega(N)},
$$

where $\Omega(N)$ denotes the total number of prime factors of N (we have used the classical inequality $2^{a-1} \geq a$ for all $a \geq 1$), relation (11) implies also

$$
\begin{equation*}
2^{\omega(N)} \leq \frac{d(N) \sigma_{k}^{*}(N)}{\sigma_{k}(N)} \leq 2^{\Omega(N)} \tag{12}
\end{equation*}
$$

Theorem 2. The normal order of magnitude of

$$
\log \left(d(N) \sigma_{k}^{*}(N) / \sigma_{k}(N)\right)
$$

is $(\log 2)(\log \log N)$.
Proof. Let P be a property in the set of positive integers and set $a_{p}(n)=1$ if n has the property $P ; a_{p}(n)=0$, otherwise. Let $A_{p}(x)=$ $\sum_{n \leq x} a_{p}(n)$. If $A_{p}(x) \sim x(x \rightarrow \infty)$ we say that the property P holds for almost all natural numbers. We say that the normal order of magnitude of the arithmetical function $f(n)$ is the function $g(n)$, if for each $\varepsilon>0$, the inequality $|f(n)-g(n)|<\varepsilon g(n)$ holds true for almost all positive integers n.

By a well-known result of Hardy and Ramanujan (see e.g. [2], [4], [6]), the normal order of magnitude of $\omega(N)$ and $\Omega(N)$ is $\log \log N$. By (12) we can write

$$
\begin{gathered}
(1-\varepsilon)(\log \log N)<\omega(N) \leq \frac{1}{\log 2} \log d(N) \sigma_{k}^{*}(N) / \sigma_{k}(N) \\
\leq \Omega(N)<(1+\varepsilon) \lg \lg N
\end{gathered}
$$

for almost all N, so Theorem 2 follows.
Acknowledgements. The author thanks Professor Klamkin for sending him a copy of [1] and for his interest in applications of his inequality.

References

[1] J. M. Brown, M. S. Klamkin, B. Lepson, R. K. Meany, A. Stenger, P. Zwier, Solutions to Problem E2483, Amer. Math. Monthly, 82(1975), 758-760.
[2] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, 1960.
[3] M. S. Klamkin, Problem E2483, Amer. Math. Monthly, 81(1974), 660.
[4] E. Krätzel, Zahlentheorie, Berlin, 1981.
[5] D. S. Mitrinović, Analytic inequalities, Springer Verlag, 1970.
[6] D. S. Mitrinović, J. Sándor (in coop. with B. Crstici), Handbook of number theory, Kluwer Acad. Publ., 1995.
[7] J. Sándor, On an inequality of Klamkin with arithmetical applications, Int. J. Math. E. Sci. Techn., 25(1994), 157-158.
[8] J. Sándor, On the identric and logarithmic means, Aequationes Math., 40(1990), 261-270.
[9] J. Sándor (in coop. with B. Crstici), Handbook of number theory, II, Springer Verlag, 2005.
[10] K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87(1980), 545-548.

