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1 Introduction

In 1974 M. S. Klamkin [3] proved the following result: Let x be a non-

negative real number, and m, n integers with m ≥ n ≥ 1. Then

(m + n)(1 + xm) ≥ 2n
1− xm+n

1− xn
. (1)

We note that for x = 1, the right side of (1) is understood as lim
x→1

,

when the inequality becomes an equality. Also, for x = 0 (1) becomes

m + n ≥ 2n, which is true. For m = n there is equality in (1). In fact,

it can be shown that for all real numbers m > n > 0, and all x > 0, (1)

holds true with strict inequality (see the solutions of (1) in [1]).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357583249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Assume now that x = a ≥ 1, m = p, n = q, where p ≥ q ≥ 0 are real

numbers. Then, since

(1 + ap)(1− aq) = ap − aq + 1− ap+q,

after some transformations, (1) becomes equivalent to

(p− q)(ap+q − 1) ≥ (p + q)(ap − aq). (2)

In the case of p − q ≤ 1, a weaker result than (2) appears in the

famous monograph by D. S. Mitronović [4] (3.6.26, page 276).

For certain arithmetical applications of Klamkin’s inequality, see [5].

In what follows we will point out some surprising connections of in-

equality (2) (i.e., in fact (1)) with certain special means of two arguments.

Also, a new application of (1) will be given.

2 Stolarsky means

Let m, n > 0 and put p+q = m, p− q = n. Then p =
m + n

2
, q =

m− n

2
and (2) gives

am − 1

an − 1
>

m

n
a(m−n)/2. (3)

By letting a =
x

y
(x > y > 0), relation (3) may be written also as

(
xm − yn

xn − yn
· n

m

)1/(m−n)

>
√

xy. (4)

If n = 1, the expression on the left side of (4) is called as the Sto-

larsky mean of x and y. Put

S(m) = S(x, y, m) =

(
xm − ym

x− y
· 1

m

)1/(m−1)

.
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It is not difficult to see that S can be defined also for all real numbers

m 6∈ {0, 1}, while for m = 0, and m = 1, by the limits

lim
m→0

S(x, y, m) =
x− y

ln x− ln y

and

lim
m→1

S(x, y, m) =
1

e
(yy/xx)1/(y−x) (y 6= x),

the definition of S can be extended to all real numbers m.

Let

L(x, y) =
x− y

ln x− ln y
, I(x, y) =

1

e
(yy/xx)1/(y−x) (x 6= y),

L(x, x) = I(x, x) = x.

These means are known as the logarithmic and identric means of

x and y (see e.g. [8] for their properties). Stolarsky [10] has proved that S

is a strictly increasing function of m. Therefore S(−1) < S(0) < S(1) <

S(2), giving
√

xy < L(x, y) < I(x, y) <
x + y

2
. (5)

Since S(−1) < S(0) < S(m) for m > 0, we get

√
xy < L(x, y) <

(
xm − ym

m(x− y)

)1/(m−1)

, (6)

which is an improvement of (4), when n = 1.

3 Main results

We shall prove that the following refinement of (4) holds true:

Theorem 1.

√
xy < (L(xm−n, ym−n))1/(m−n) <

(
xm − ym

xn − yn
· n

m

)1/(m−n)

(m > n).

(7)
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Proof. Put f(x) =
ax − 1

x
(x > 0), where a > 1; and let ϕ(p) =

f(p + q)

f(p− q)
(p > q > 0), where q is fixed. We first show that ϕ is strictly

increasing function. Since

ϕ′(p) =
f ′(p + q)f(p− q)− f ′(p− q)f(p + q)

f 2(p− q)
,

it will be sufficient to prove that
f ′(p + q)

f(p + q)
>

f ′(p− q)

f(p− q)
. Since p+q > p−q,

this will follow, if f ′/f = g is an increasing function. By

g′(t) = (f ′(t)/f(t))′ =
f ′′(t)f(t)− (f ′(t))2

f 2(t)
,

it will be sufficient to show that f is strictly log-convex (i.e. ln f is strictly

convex).

Lemma. The function f is strictly log-convex.

Proof. After certain simple computations (which we omit here), it

follows that

f ′(t) =
tat ln t− (at − 1)

t2
,

f ′′(t) =
t2at ln2 a− 2tat ln a + 2at − 2

t3
,

and

f ′′(t)f(t)− (f ′(t))2 =
a2t − 2at − t2at ln2 a + 1

t4

=
(at − 10

√
at ln at)(at − 1 +

√
at ln at)

t4
.

Put at = h. Then h−1−
√

h ln h > 0, since
h− 1

ln h
>
√

h by L(h, 1) >
√

h (left side of (5)). This proves the log-convexity property of f for

a > 1.

Since ϕ is strictly increasing, one can write

ϕ(p) > lim
p→q,p>q

f(p + q)/f(p− q) =
a2q − 1

2q ln a
.
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Write p + q = m, p− q = n, a =
x

y
, and the right side of (7) follows.

For the left side of (7) remark that again by the left side of (5) one

has

L(xm−n, ym−n) >
√

xm−nym−n = (xy)(m−n)/2,

which implies the desired inequality.

Remark. ϕ being strictly increasing, it follows also that

ϕ(p) < lim
p→∞

ap+q − 1

ap−q − 1
· p− q

p + q
= a2q,

i.e.

(p− q)(ap+q − 1) ≤ (p + q)a2q(ap−q − 1), (8)

which is complementary to (2).

4 Arithmetical applications

A divisor d of N is called unitary divisor of the positive integer N > 1,

if (d,N/d) = 1. For k ≥ 0, let σk(N) resp. σ∗k(N) denote the sum of kth

powers of divisors, resp. unitary divisors of N . Remark that σ0(N) =

d(N), σ∗0(N) = d∗(N) are the number of these divisors of N . It is well-

known that (see e.g. [3], [9]) if the prime factorization of N is

N =
r∏

i=1

pai
i

(pi distinct primes, ai ≥ 1 integers), then

σk(N) =
r∏

i=1

(p
k(ai+1)
i − 1)/(pk

i − 1), d(N) =
r∏

i=1

(ai + 1),

σ∗k(N) =
r∏

i=1

(pkai
i + 1), d∗(N) = 2r(= 2ω(N)),

(9)
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where ω(r) = r denotes the number of distinct prime divisors of N .

Write now (1), and a reverse of it (see [1]) in the form

2n
xm+n − 1

xn − 1
≤ (m + n)(1 + xm) ≤ 2m

xm+n − 1

xn − 1
, (10)

where x > 1, m ≥ n ≥ 1. Put n = k, m = kai, x = pi (i = 1, 2, . . . , r).

Writing (10), after term-by-term multiplication, we get

2ω(N)σk(N) ≤ d(N)σ∗k(N) ≤ 2ω(N)β(N)σk(N), (11)

where β(N) =
r∏

i=1

ai (for this, and the other functions, too, see e.g. [6],

[9]). The left side of (11) appears also in [5]. Now, remarking that

2ω(N)β(N) =
r∏

i=1

(2ai) ≤
r∏

i=1

2ai = 2Ω(N),

where Ω(N) denotes the total number of prime factors of N (we have

used the classical inequality 2a−1 ≥ a for all a ≥ 1), relation (11) implies

also

2ω(N) ≤ d(N)σ∗k(N)

σk(N)
≤ 2Ω(N). (12)

Theorem 2. The normal order of magnitude of

log(d(N)σ∗k(N)/σk(N))

is (log 2)(log log N).

Proof. Let P be a property in the set of positive integers and set

ap(n) = 1 if n has the property P ; ap(n) = 0, otherwise. Let Ap(x) =∑
n≤x

ap(n). If Ap(x) ∼ x (x → ∞) we say that the property P holds for

almost all natural numbers. We say that the normal order of magnitude

of the arithmetical function f(n) is the function g(n), if for each ε > 0,

the inequality |f(n) − g(n)| < εg(n) holds true for almost all positive

integers n.

6



By a well-known result of Hardy and Ramanujan (see e.g. [2], [4], [6]),

the normal order of magnitude of ω(N) and Ω(N) is log log N . By (12)

we can write

(1− ε)(log log N) < ω(N) ≤ 1

log 2
log d(N)σ∗k(N)/σk(N)

≤ Ω(N) < (1 + ε) lg lg N

for almost all N , so Theorem 2 follows.
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