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1 Introduction

In 1974 M. S. Klamkin [3] proved the following result: Let = be a non-
negative real number, and m,n integers with m > n > 1. Then
1 — gmtn

1 ™ >2n————:.
(m+n)(14+2™)>2n T

(1)

We note that for = 1, the right side of (1) is understood as :%1_)1%,
when the inequality becomes an equality. Also, for z = 0 (1) becomes
m + n > 2n, which is true. For m = n there is equality in (1). In fact,
it can be shown that for all real numbers m > n > 0, and all = > 0, (1)

holds true with strict inequality (see the solutions of (1) in [1]).
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Assume now that x =a > 1, m = p, n = ¢q, where p > ¢ > 0 are real

numbers. Then, since
(1+a”)(1—a%) =a’ —a?+1—a’*,
after some transformations, (1) becomes equivalent to
(»— @)@ =1) > (p+q)(a® - a’). (2)

In the case of p — ¢ < 1, a weaker result than (2) appears in the
famous monograph by D. S. Mitronovié¢ [4] (3.6.26, page 276).

For certain arithmetical applications of Klamkin’s inequality, see [5].

In what follows we will point out some surprising connections of in-
equality (2) (i.e., in fact (1)) with certain special means of two arguments.

Also, a new application of (1) will be given.

2 Stolarsky means

m-—+n m-—n

2

Let m,n > 0and put p+q¢=m, p—q =n. Thenp =

and (2) gives

am™ —1 m

(m—n)/2
> — ) 3
a®—1 n “ ( )

By letting a = E (x >y > 0), relation (3) may be written also as
Y

rm— yn n 1/(m—n)
(— . _) > VAT (4)

I —yn m

If n = 1, the expression on the left side of (4) is called as the Sto-
larsky mean of x and y. Put
m __ ,m 1 1/(m-1)
S(m) = Stapm) = (S0

xT—y m



It is not difficult to see that S can be defined also for all real numbers
m ¢ {0,1}, while for m = 0, and m = 1, by the limits

r—Y

li =
ml%S(x,y,m) Inz—1Iny

and
1
lim S(z,y,m) = ~(y"/a")"/0" (y # 2),
m— e
the definition of S can be extended to all real numbers m.

Let

L(z,y) = ﬁ I(x,y) = é(yy/f”)”(y‘“’) (« #y),
L(z,z) =1(x,z) = x.
These means are known as the logarithmic and identric means of
x and y (see e.g. [8] for their properties). Stolarsky [10] has proved that .S
is a strictly increasing function of m. Therefore S(—1) < S(0) < S(1) <
S(2), giving
Vry < L(z,y) < I(z,y) < x—;—y

Since S(—1) < S(0) < S(m) for m > 0, we get

rm — ym )1/(m—1)
m(z —y) ’

()

Vry < Lz, y) < (

which is an improvement of (4), when n = 1.

3 Main results

We shall prove that the following refinement of (4) holds true:

Theorem 1.

m __ ,,m 1/(m—n)
VAT < (L < (S (m > n)

=y m
(7)



a* —1

Proof. Put f(z) =

fp+q)
flp—q)
increasing function. Since

oy o+t fo—q)—f'p—q) f(p+q)
o p) = f*(p—q) ’
f'(p+q) - f'(p—q)
flo+q) ~ flp—q

this will follow, if f'/f = ¢ is an increasing function. By

it will be sufficient to show that f is strictly log-convex (i.e. In f is strictly

(x > 0), where a > 1; and let ¢(p) =

(p > q > 0), where ¢ is fixed. We first show that ¢ is strictly

it will be sufficient to prove that . Since p+q > p—q,

convex).
Lemma. The function f is strictly log-convex.
Proof. After certain simple computations (which we omit here), it

follows that
_ ta'lnt — (a' — 1)

f,(t) - t2 )
t?a'In*a — 2ta’ Ina + 2at — 2
f”<t> — ,
13
and ,  a?—2a' —t?a'In’a + 1
IO f) = (F(1)” = m
(at — 10vat Ina?)(a! — 1 + VatInat)
= t4 .
-1
Put a‘ = h. Then h—1—+/hInh > 0, since hl P Vhby L(h,1) >
n

VI (left side of (5)). This proves the log-convexity property of f for
a> 1.
Since ¢ is strictly increasing, one can write
a’*l—1

B 2qlna’

plp) > lim f(p+q)/f(p—q)
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Write p+qg=m,p—q=n, a= E, and the right side of (7) follows.
Y
For the left side of (7) remark that again by the left side of (5) one

has
L(Z’min, ymfn> > /xm—nym—n — (xy)(m*n)/Q7

which implies the desired inequality.

Remark. ¢ being strictly increasing, it follows also that

@ri—1 p—q_

li q
go(p)<pir{o£3ap*q_1 p_|_q a
i.e.
(p—q) (a1 —1) < (p+ q)a*(a? " = 1), (8)

which is complementary to (2).

4 Arithmetical applications

A divisor d of N is called unitary divisor of the positive integer N > 1,
if (d, N/d) =1. For k > 0, let o1(N) resp. o5 (NN) denote the sum of kth
powers of divisors, resp. unitary divisors of N. Remark that oo(N) =
d(N), oi(N) = d*(N) are the number of these divisors of N. It is well-
known that (see e.g. [3], [9]) if the prime factorization of N is

N =]
=1

(p; distinct primes, a; > 1 integers), then

T T

ou(N) = [T ™ = 1)/(pf = 1), d(N) =[] (ai + 1),

i=1 i=1

ai(N) = H(pf“" +1), d(N) = 2"(= 2°W)),



where w(r) = r denotes the number of distinct prime divisors of N.

Write now (1), and a reverse of it (see [1]) in the form

m—+n __ 1 m+n __ 1
where z > 1, m>n>1.Puwn=%k m=ka,z=p; (i=12,...,r).
Writing (10), after term-by-term multiplication, we get
2°May(N) < d(N)op(N) < 2°VB(N)or(N), (11)

where S(N) = Hai (for this, and the other functions, too, see e.g. [6],

i=1
[9]). The left side of (11) appears also in [5]. Now, remarking that

2°MB(N) = [](2a:) < [ 2% =27,
1 =1

where Q(N) denotes the total number of prime factors of N (we have
used the classical inequality 247! > a for all @ > 1), relation (11) implies
also

O'k<N) -

Theorem 2. The normal order of magnitude of
log(d(N)oy(N)/or(N))

is (log2)(loglog V).

Proof. Let P be a property in the set of positive integers and set
a,(n) = 1 if n has the property P; a,(n) = 0, otherwise. Let A,(z) =
Zap(n). If Aj(x) ~x (x — oo) we say that the property P holds for

n<x
almost all natural numbers. We say that the normal order of magnitude

of the arithmetical function f(n) is the function g(n), if for each ¢ > 0,
the inequality |f(n) — g(n)| < €g(n) holds true for almost all positive

integers n.



By a well-known result of Hardy and Ramanujan (see e.g. [2], [4], [6]),
the normal order of magnitude of w(N) and Q(N) is loglog N. By (12)

we can write

(1 —¢)(loglog N) < w(N) < 1

<QN) < (1+4¢)lglgN

for almost all NV, so Theorem 2 follows.
Acknowledgements. The author thanks Professor Klamkin for
sending him a copy of [1] and for his interest in applications of his in-

equality.
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