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Unilaterally Supported Plates on 
Elastic Foundations by the 
Boundary Element Method 
A boundary element solution is developed for the unilateral contact problem of a 
thin elastic plate resting on elastic homogeneous or nonhomogeneous subgrade. The 
reaction of the subgrade may depend linearly, or nonlinearly, on the deflection of 
the plate. The contact between the plate and the subgrade is unbonded. The subgrade 
surface is not necessarily plane, and miscontact between plate and subgrade due to 
initial gaps is also encountered. The solution procedure is based on the integral 
representation of the deflection for the biharmonic equation in which the unknown 
subgrade reaction is treated as loading term. The effectiveness of the proposed 
method is illustrated by several examples. 

1 Introduction 
In most investigations concerning plates supported on elastic 

foundation it is assumed that the bodies in contact (plate and 
subgrade) are bonded to each other and, consequently, com
pressive as well as tensile reactions are considered to be ad
missible. In this case the contact region is a priori known and 
the main effort is directed towards the evaluation of the de
flection surface and the contact pressure. 

However, for many foundation materials, the admission of 
tensile stresses across the interface separating the plate from 
the foundation is not realistic. When there is no bonding be
tween plate and subgrade, regions of no contact develop be
neath the plate under certain loading conditions and separation 
between the two bodies takes place at contours where the 
compressive pressure vanishes. Consequently, the contact re
gion is unknown and the vanishing of the compressive stress 
provides the condition for the determination of the contact 
region. 

Enormous work has been done for plates resting on elastic 
foundation with bonded contact between plate and subgrade. 
Since no attempt is made here to summarize the various re
searches in this area, we mention only the books of Selvadurai 
(1979) and Vlasov and Leontiev (1966) where extended liter
ature on this subject is presented. On the other hand, relatively 
little work has been done for plates unilaterally supported on 
elastic foundation (Selvadurai, 1979). To the authors' knowl
edge, with regard to the unbonded plate contact, the majority 
of the presented methods are limited to axisymmetric problems 
(Weitsman, 1969; Pu and Hussain, 1970; Gladwell and Iyer, 
1974). Problems involving a receding contact between an elastic 
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layer and a half-space are analyzed by Keer et al. (1972) and 
Tsai et al. (1974) leading to the Fredholm integral equations 
related to the contact tractions. Solution for an infinite plate 
with unbonded contact on a Winkler foundation is given by 
Weitsman (1969), and for a circular plate by Weitsman (1970) 
and Hofmann (1938). An incremental numerical technique for 
the simulation of structural elements in receding/advancing 
contact (Mahmoud et al., 1986), the boundary integral equa
tion method for the unilateral buckling of thin elastic plates 
(Bezine et al., 1985), variational methods (Kartvelishvili, 1976), 
and an attempt towards mixed finite elements (Panagiotopou-
los and Talaslidis, 1980) have also been used. 

In this paper, a boundary element solution is presented for 
the unilateral contact problem of a thin elastic plate resting 
on elastic homogeneous or nonhomogeneous foundation. The 
plate may have arbitrary shape and be subjected to any loading 
and boundary conditions. The subgrade model consists of 
closely spaced independent springs. The subgrade reaction may 
depend linearly (Winkler) or nonlinearly on the deflection. The 
subgrade surface is not necessarily plane, thus, miss contact 
between plate and subgrade due to initial gaps is also encoun
tered. The solution procedure is based on the integral repre
sentation of the deflection which is established using the 
fundamental solution of the linear part of the governing op
erator, whereas the unknown subgrade reaction is included in 
the loading term. Application of the boundary element tech
nique and Gauss integration for the domain integrals involving 
the unknown domain quantities yields a system of nonlinear 
algebraic equations from which the deflection surface is com
puted by an iterative process. 

Actually the proposed method is not a pure boundary ele
ment method, since it requires discretization within the domain 
to determine the unknown field quantities. However, the num
ber of the linear equations is still defined by the boundary 
discretization, thereby retaining most of the advantages over 
a possible pure domain discretization method. The domain 
discretization, in this work, is performed using Gauss inte-
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Fig. 1 Cross-section of deflected plate and foundation model 
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Fig. 2 Two-dimensional region occupied by the plate 

Fig. 3(a) 

Fig. 3(b) 

Fig. 3 Unilateral contact law p= f{w- d)U(w- d) for a linear (a) and a 
nonlinear (b) Winkler-type spring 

gration over regions of arbitrary shape (Katsikadelis and Sa-
pountzakis, 1987; Katsikadelis, 1990) which renders the method 
very effective. 

Several numerical examples are worked out to illustrate the 
effectiveness of the proposed method. 

2 Governing Equations 
Consider a thin elastic plate of thickness h occupying the 

two-dimensional multiply connected region R of the xy-plane, 
bounded by the K+ 1 curves C0, Cu C2 CK and resting, 
in general, on a nonlinear Winkler-type elastic foundation 
(Figs. 1 and 2). The curves C, (i = 0, 1, 2, ..., K) may be 
piecewise smooth, i.e., the boundary may have a finite number 
of corners. For unbonded contact between plate and subgrade, 
the interaction pressure at the interface is compressive and can 
be represented by the following relation: 

p=f(w-d)U(w-d) (1) 

in which f(w-d) is in general a nonlinear function of its 
argument w-d; w=w(*, y) is the deflection of the plate; 
d = d(x, y) is a function representing the initial gap between 
plate and subgrade (Fig. 1); and U(w-d) is the unit step 
function defined as 

U(w-d)-
if w-d<0 

if w-d>0 
d > 0 . (2) 

The particular case f(w-d) =k(w-d), k being a constant 
denoting the subgrade reaction modulus, describes the con
ventional Winkler model (Fig. 3). 

Assuming that there are no friction forces at the interface 
the deflection w(P) at any point P: (x, y)iR satisfies the 
following differential equation 

DvAw+f(w-d)U(w-d)=g (3) 

where V4 = (V2) = (d2/dx2+ d2/dy2)2 is the biharmonic oper
ator; g = g(x, y) is the transverse loading; £> = Eh3/12(l -v2) 
is the flexural rigidity, E and v being the elastic constants of 
the material of the plate. 

Moreover, the deflection w must satisfy the following 
boundary conditions on the boundary C= U\z^Ci of the plate 

a.\\v + a2Vw = ct!3 

dw 
ft —+ ftMw = ft, 

dn 

(4a) 

(4b) 

where a-, = cti(p), ft = ft(p),pi.C(i = 1,2, 3) are given functions 
specified on the boundary Cand M, Fare differential operators 
defined in intrinsic coordinates as (Katsikadelis, 1982) 

M=-D V2 + (*>-!) 
dj + "'dn 

-D ,K-
dn {V l)ds\dsdn "ds 

(5a) 

(5b) 

in which K = K(S) is the curvature of the boundary; d/ds and 
d/dn denote differentiation with respect to the arc length s and 
the outward normal n to the boundary, respectively. The quan
tities Mw and Vw represent the bending moment and the ef
fective shearing force along the boundary. The boundary 
conditions (4a,b) are the most general linear boundary condi
tions for the plate problem. It is apparent that all kinds of 
conventional boundary conditions (clamped, simply supported, 
free or guided edge) can be derived from these equations by 
specifying appropriately the functions oij(s) and ft(s) (e.g., for 
the clamped egde it is ai = ft=l, a2 = a3 = ft = iS3 = 0, for the 
simply supported edge it is ai = ft, = 1, a2 = a3 = ft = ft = 0). 

In case of free or transversely elastically restrained edges, the 
boundary conditions (4a,b) must be supplemented by the corner 
condition 

cuw + c2klTw]\k = c3k, c2k* 0 (6) 

where cik (i=l, 2, 3) are specified functions at the corner point 
pk and Tis the operator (Katsikadelis, 1982) 

T=D(\ -V)\^fn-Kj)- (7) 

Therefore, Tw is the twisting moment along the boundary and 
jrvv]]^ is its jump of discontinuity at the corner point pk. 

3 Solution Procedure 
For any pair of functions w and v which are four times 
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continuously differentiable inside R and three times continu
ously differentiable on the boundary C, the following recip
rocal identity, known also as Rayleigh-Green identity, is valid 
(Duff and Naylor, 1966): 

« 0 = - ^ j j AJ(w-d)U(w-d)da + ̂ \j\j A&da 

II. ( u V 4 w - w'V4v)da 

3 2 9 2 dv 2 d w ' . , 
v— V w - w — V v-— V w + —- V y Ids, (8) 

d« d« 3« an 

application of relation (8) for the function w satisfying Eq. 
(3) and the function 

v = r2lnr, r= \P-Q\ (9) 

which is a particular singular solution of the equation 

Dv*v = 6(P-Q) P:(x,y), Q:ti,v)tR. (10) 

The following integral representation for the deflection w is 
obtained 

w(P)= - ^ j j A,(r)f(w~d)U(w-d)da 

lAi(r)Q + A2(r)X+A3(r)$ + A4(r)'<lr]ds (11) 

- (A10 + A 2A r+A3* + A4*)ds (17) 

« * = - - Azf(w-d)U(w-d)da 

' + Di J Algda~ J ( A i * + A 2 ^ ) * (18) 

where a is the angle between the tangents at point p (see Fig. 
2). Relations (11), (15), (16), (17), and (18) constitute a set of 
five simultaneous equations which can be solved to yield the 
deflection w of the plate. 

The stress resultants at a point P inside R are obtained by 
direct differentiation of Eq. (11) using the relations 

M*=-D 
d2w dlw 

dx1 •+v-
dy 

M , •D 
d2w 

7+V-
d2w 

i 

dyL ax 

Qx=-D 

M, 

dx 

xy-D(\~v) 

w 
- Qy=~D 

d2W 

dxdy 

dV 2 w 
~dy~ 

(19) 

where the kernels A, ( r ) , ( i = 1, 2, 3, 4) are given as 

COSip 

while the stress resultants M„, Mt, M„„ V„ along the boundary 
are obtained from relations 

A,(/-) = A2(r)=lnr+\ (12a,b) 
M„=-D 

M,= -D 

$+(V-1)[-^ + KX 
a2o 

A3(r)=--(2/- /«/- + /-)cos<o A4(r)=-r2lnr (I2c,d) 
4 4 

pi-(p-l)[-^ + KX 
d2a 

and the following notation has been used 

Q=w, X=-—, * = v 2 w , * = — v 2 w . 
an dn 

. . ™, ^ x ao 

(13) 
V„=-D 

^'d2X 8K dQ d2Q 
(20) 

Notice that for the line integral it is r = IP — q I, whereas for 
the domain integrals, it is r = \P-Q\, P, QtR, q€C; ^ = r ^ n 
is the angle between the direction of r and the normal n to the 
boundary at point q. 

Application of the operator V 2 = d2/dx2 + a2/by2 to Eq. (11) 
results in the integral representation of the Laplacian as 

V2w(P) = - ^ j J A2(r)f(w-d)U(w-d)da 

1 1 + T~R\\ ^r)sda-—\ [A1(/-)# + A 2 ( /")*]*. 
2TTJJJ JR Z 7 r J c 

( [A,( (14) 

Equation (11) involves five unknown quantities, i.e., the 
deflection w inside the domain R and the boundary quantities 
Q = 0 ( s ) , X=X(s), $ = * ( s ) , * = * ( 5 ) . Four additional 
equations are established using the boundary equation method 
(Katsikadelis and Armenakas, 1989). According to this method 
the boundary conditions (4a,b) by virtue of Eqs. (5a,b) and 
notation (13) can be written as 

ds \ds ds i 

The indicated derivatives in Eqs. (19) are given by Eqs. (Al) 
of the Appendix. 

4 Numerical Solut ion 

An analytic solution of the system of simultaneous equa
tions, which form relations (11), (15), (16), (17), and (18), is 
out of the question. However, a numerical solution is feasible. 
The differential equations are treated using the finite difference 
method, the boundary integrals using the boundary element 
method, and the domain integrals using the finite sector method 
(Katsikadelis, 1990). Thus, using constant boundary elements 
to approximate the unknown boundary quantitites, unevenly 
spaced finite difference to approximate the derivatives, and a 
collocation technique, the following system of simultaneous 
algebraic equations is established: 

U]Q — Da.2 = a3 
(15) 

A n A n 0 A! 

A2i A22 A23 0 

A31 A32 A3 3 A34 

0 0 A43 A44 

1 n 
X 

* 

* 

= 

B, 
B2 

B3 

B4 

+ 

0 
0 

c3 

c4 

tp] 

(21«) 

PiX-Dfo * + ( " ~ 1 ) , i ? + K j s r 
w = B5-t-C5p + [A51 A5 2 A53 A54][fi X # *]T (21ft) 

(16) 
where 

Moreover, letting point P~p€C in Eqs. (11) and (14), the 
following two boundary integral equations are derived 

0 = [0, O2 • • • QNf X = [Xi X2--- XNf 

(22) 
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are the values of the unknown boundary quantities at the nodal 
points of the N boundary elements 

W = [ W i VV2 wM] 

and 

P=[Pi Pi ••• PMY (23) 
are the values of the deflection w and the subgrade reaction 
p=f(w-d)U(w-d) at theMGauss integration points inside 
the domain R. 

The elements of the constant matrices Aw (k= 1, 2, 3, 4, 5, 
1=1,2, 3,4), B m ( m = l , 2 , 3,4, 5), Cm (m = 3, 4, 5) are given 
by Eqs. (A3) in the Appendix. 

The integrals in the expressions for the coefficients (Au)jj 
and (An)ij have been obtained using the relation cosipds=rdu 
(Katsikadelis and Armenakas, 1984). 

Equations (2la,b) are linear with respect to the boundary 
quantities fi, X, # , ¥ which can be readily eliminated from 
Eqs. (216). Thus, solving Eq. (21a) for $2, X, #, ^ and sub
stituting them into Eqs. (2\b), we obtain the following equa
tions: 

(24) 

where 

H = C5 + [A51 A52 A53 

G = B5 + [A51 A52 AS3 

w = H p + G 

A54] 

A54] 

A„ A,2 0 

A21 A 22 A23 

A31 A32 A 3 3 

0 0 A43 

"A„ A12 0 
A21 A22 A23 

A31 A32 A33 

0 0 A43 

AM 

0 

A34 

A44_ 

AM 

0 

A34 

A44 

- 1 

- 1 

0 

0 

C3 

_c4 

fB," 
B2 

B3 

B4 

{25a) 

(25b) 

Equations (24) constitute a system of nonlinear algebraic 
equations which can be solved numerically to yield the values 
of the deflection at the internal Gauss points. Back substitution 
into Eqs. (21a) gives the values of the boundary quantities fi, 
X, $, ̂  at the nodal points. Subsequently, using the discretized 
form of Eq. (11), the deflection at any point P within the plate 
is computed. That is, 

w(P) = -2irj^(Cs)Pkf(wk-dk)U(wk-dk) + (Bs)P 

+ J]l(A5i)pjQj(A52)PjXj+ (Aa)PJ*j+ (AM)Pj*j\. (26) 
y = i 

The solution of Eq. (24) for the numerical examples pre
sented in the next section has been accomplished iteratively by 
employing the two-term acceleration method (Isaacson and 
Keller, 1966). 

An initial vector, say w<0) = 0, is assumed. Using this vector 
and Eq. (1), the values of the subgrade reaction p ( 0 ) at the M 
Gauss points inside the domain R are obtained. Introducing 
the vector p<0) into Eq. (24), a vector w(1) is computed. Sub
sequently, the vector w1*', k>2 is obtained from Eq. (24) as 

w(*) = Hp«*-1, + G (27) 

where 

p\k-X)=p(aw\k-l) + 0w}k-2)), a + /3=l, / = 1 , 2, ..., M. (28) 
1 
The procedure converges to the solution vector w by choosing 
appropriately the weight factors a and /3. For an example 
problem, the region of the permissible values of the parameters 

0.4 0.6 
a(=1-p) 

Fig. 4 Permissible values of the weight factors a and p for the con
vergence of the two-term acceleration method for a clamped or a simply 
supported rectangular plate with ratio b/a= 1.2 

- U n i l a t e r a l 

_ B i l a t e r a l 

-0.5 0.0 0.5 
Point Locat ion (m ) 

Fig. 5 Deflections along the diameter of a clamped circular plate 
(D = 192.3077) 

a and |S was investigated (Fig. 4). The convergence depends 
on the mechanical and geometrical properties of the plate and 
the subgrade. Moreover, the optimum values were observed 
on the line separating the permissible and not permissible re
gions. 

It should be mentioned that the kernels 

32A4(Q d2A4(r) 82A4(r) dA2(r) 3A2(r) 
dx2 ' dy2 ' dxdy ' dx ' dy 

r-\P-Q\, P, Q€i? involved in the domain integrals (Eqs. 
(Al) of the Appendix) exhibit a singularity at P = Q and special 
care must be taken for their evaluation. This singularity is 
extracted before employing the Gauss integration using the 
following technique. 

In general, these kernels can be written in the form 

F(P,Q)=R(P,Q)+S(P,Q) (29) 

where R(P,Q) and S(P,Q) are the regular and singular parts 
of the function F(P,Q), respectively. Thus, the domain in
tegrals can be written as 

J j F{P,Q)h(Q)daQ= J j R(P,Q)h(Q)daQ 

+ JJ [h(Q)-h(P)]S(P,Q)daQ 

+ h{P)\i\l S{P,Q)daQ. (30) 

With the assumption that dh/dr is bounded, it is 

lim[h{Q)-h(P)]S(P,Q)=0. 
P-Q 

Consequently, the first two-domain integrals in the right-hand 
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Point Loca t ion (m) 

Fig. 6 Deflections along the diameter of a clamped circular plate 
(0=192.3077) 

i- i ^ir1 

Fig. 7 Simply supported circular plate resting on an absolutely rigid 
foundation with initial gap (a = 2.5, D = 175, & = 0.00037) 

side of Eq. (30) are regular. Finally, the third domain integral 
involving the singular part S(P,Q) can be converted into a 
line integral on the boundary C of the plate (Nerantzaki and 
Katsikadelis, 1988). 

5 Numerical Examples 
On the basis of the analytical and numerical procedures 

presented in the previous sections, a computer program has 
been written and representative examples have been studied to 
demonstrate the range of applications of the developed method. 

In all the examples treated, the numerical results have been 
obtained using 60 constant boundary elements with parabolic 
approximation of their geometry and 100 Gauss nodal points 
by dividing the interior of the plate into 4 sectors on each of 
which a 25 point Gauss-Radau integration is performed. 

The worked-out examples are: 
1 a clamped circular plate with unit radius loaded by a unit 

concentrated moment M= 1 at its center and resting on a ten-
sionless foundation with X = a/^^jD/k = 3. In Fig. 5 the de
flections of the plate along its diameter are compared with the 
corresponding values of the deflection surface of the plate 
resting on a bilateral Winkler foundation with the same 
subgrade reaction modulus. Moreover, in Fig. 6 the deflections 
along the diameter of the plate loaded by a unit concentrated 
load and a concentrated moment at its center and resting on 
a tensionless foundation with X = a/4\/D/k =11 are compared 
with the corresponding values of the deflection surface of the 
plate resting on a bilateral Winkler foundation having the same 
subgrade reaction modulus. 

2 a uniformly loaded circular plate, as shown in Fig. 7, 
simply supported along the edge and resting on an absolutely 
rigid foundation with initial gap 5. The radius 6 of the contact 
area of the aforementioned plate obtained by this method, 
Z? = 0.78, is in very good agreement with the corresponding 
value obtained from an analytical solution, 6 = 0.76 (Hof-
mann, 1938). 

3 a clamped and a simply supported rectangular plate with 
sides a = 5.0 and 6 = 6.0, loaded by a concentrated load P= 1 

Fig. 8(a) 

Fig. 8(b) 

t) 

X) 

/ 
/ / ° 

\° 

T 

~ ^ = ^ \ 

_ 3 ^ c 
j 

<E 

A 
\° ^ 

OX 

0 ) 

( i 

Fig. 8(c) 
Fig. 8 Deflection contours of a clamped rectangular plate (D = 192.3077) 
resting on a tensionless linear foundation with subgrade reaction mod
ulus (a) X = 3 / V M = 3 (Aw= 0.000033), (b)X = al\[Wk = 5 (Aw = 0.000033), 
(C) X = a / ' V S t = 7 (Aw = 0.0000027). 

at its center and resting on a tensionless linear foundation. In 
Table 1 the deflections of the plate along the center line parallel 
to the jc-axis are presented as compared with the corresponding 
values of the plate resting on a Winkler foundation having the 
same subgrade reaction modulus. Moreover, in Fig. 8 the de
flection contours of the clamped rectangular plate for various 
values of the parameter X are presented. 

4 a simply supported rectangular plate with sides a = 5.0 and 
6 = 6.0 loaded by a concentrated load P= 1 at its center and 
unilaterally supported on a nonhomogeneous or a nonlinear 
foundation. In Table 2 the deflections of the plate along the 
center line parallel to the jc-axis are presented as compared, 
wherever possible, with the corresponding values of the plate 
bilaterally supported. 
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Table 1 Deflections of w = w/(Pa /D) of a rectangular plate 
resting on a Winkler foundation 

Clamped 

= a/4yfD/k--

Simply supported 

\ = a/i4D/k--=ll 
y/b x/a 

Unilateral 
Bilateral 

Katsikadelis 
(1982) 

Unilateral 
Bilateral 

Katsikadelis 
(1982) 

0.0 0.2561E-02 
0.2 0.1201E-02 

0.0 0.4 0.2091E-03 
0.6 - 0 . 5 9 3 4 E - 0 4 
0.8 - 0 . 4 6 3 3 E - 0 4 

0.2551E-02 0.1041E-02 0.1033E-02 
0.1174E-02 0.2181E-03 0.2123E-03 
0.2325E-03 - 0 . 8 2 6 9 E - 0 4 - 0 . 1 1 6 1 E - 0 4 

-0.1732E-04 - 0 . 1 3 3 2 E - 0 3 - 0 . 5 6 1 5 E - 0 5 
-0.2083E-04 - 0 . 8 5 9 3 E - 0 4 0.3589E-06 

Table 2 Deflections vP = w/(Pa/D) of a simply supported 
rectangular plate resting on nonhomogeneous and on nonlinear 
foundations 

y/b x/a Unilateral 

Nonhomogeneous 
f=\6DEwexp 0.1 (x2+y2) 

Bilateral 
Katsikadelis 

and Sapountzakis 
(1987) 

f=wL 
Nonlinear 

/ = 1 0 w ,1/3 

Unilateral 

0.0 0.4912E-02 
0.2 0.3074E-02 

0.0 0.4 0.1204E-02 
0.6 0.2668E-03 
0.8 - 0 . 2 7 1 8 E - 0 5 

0.4900E-02 0.1972E-01 0.3314E-02 
0.3066E-02 0.1670E-01 0.1624E-02 
0.1205E-02 0.1188E-01 0.1761E-03 
0.2745E-03 0.7234E-02 - 0 . 2 6 7 8 E - 0 3 
0.5091E-05 0.3318E-02 - 0 . 2 3 1 2 E - 0 3 

6 Concluding Remarks 
A boundary element solution is developed for the unilateral 

contact problem of a thin elastic plate resting on elastic foun
dation. The main conclusions drawn from this investigation 
are the following: 

1 Plates of arbitrary shape subjected to any type of bound
ary conditions and loading can be analyzed. 

2 The subgrade reaction may depend linearly or nonlinearly 
on the deflection of the plate. 

3 Miscontact between plate and subgrade due to initial gaps 
is also encountered. 

4 The method is well suited for computer-aided analysis. 
5 The iterative method converges. The convergence is slow 

for high values of the parameter X. 
6 The difference between the deflections of unilaterally and 

bilaterally supported plates increases with the eccentricity of 
the load, with the parameter X and decreases with the distance 
from the boundary. 

7 The use of the fundamental solution of the linear part of 
the governing operator alleviates the method from the com
putational difficulties arising from the use of special functions 
(Kelvin, Hankel). 

8 The method retains most of the advantages of a BEM 
solution over a pure domain discretization method. 
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A P P E N D I X 

Derivatives of the Integral Representation for the 
Deflection of the Plate 

d2w(P) 1 f f d2A4(r) ... 
-T-L= - \ \ -i— f(w-d)U(w-d)da 

dx2 2-KD]}R dx2 

+ryf^_±r ~2irD)}R dx2 
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dx2 ' 

dx2 dx2 dx2 ds (Ala) 

d2w(P) 1 f f d2A4(y) , , . . . 
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Q 

dxdy dxdy dxdy 
ds (Ale) 
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in which co = x> is the angle between the x-axis and the vector 
r and <p = r^n is the angle between the vector r and the outward 
normal n (see Fig. 2). 

Elements of the Matrices A, B, C 
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where /= 1, 2, ..., N,j= 1, 2, ..., N, I, m= 1, 2, ..., M; s,-_i, 
Si are-the arc lengths between the nodal points / - 1, /, and /, 
/+ 1, respectively; e,= l/[i,,-^15,-(5,-_1 +5,-)]; riP= lpt-P\; P€R; 
riq = I A- - 91»<7€./-element; co,? = is the angle between the x-axis 
and the line r,j (see Fig. 2); (a,,),- and (/3„),- (n = 1, 2, 3) are the 
values of the functions a„(s) and (3„(s), respectively, at the 

nodal point /; the symbol I indicates integration over the j -
v 

element; Cm are the modified weight factors of the Gauss 
integration on the domain R (Katsikadelis, 1990). 
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