
Partition-Driven Standard Cell Thermal Placement

Guoqiang Chen
Synopsys Inc.

700 E Middlefield Road.
Mountain View, CA 94043

jerryc@synopsys.com

Sachin Sapatnekar
ECE Dept. University of Minnesota

200 Union ST SE
Minneapolis, MN 55455

sachin@ece.umn.edu

ABSTRACT
The thermal problem has been emerged as one of the key is-
sues for next-generation IC design. In this paper, we propose
a scheme to achieve better thermal distribution for partition-
driven standard cell placement. The proposed heuristic uses
a multigrid-like method that simplifies the thermal equation
at each level of partitioning and makes it possible to incorpo-
rate temperature considerations directly as placement con-
straints, thus leading to better thermal distribution. Our
experimental results verify the effectiveness of our scheme.
We also describe an algorithm to derive a compact thermal
model with a complexity of O(mn + m2), where m is the
number of the mesh nodes on the substrate surface and n is
the number of all internal mesh nodes.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Placement and
routing ; J.6 [Computer-aided Engineering]: Computer-
aided design

General Terms
Algorithms, Design, Experimentation

Keywords
VLSI, standard cell, partition, placement, thermal model,
temperature

1. INTRODUCTION
Since the feature sizes of VLSI chip continue to shrink and

the clock frequency progressively rises from one technology
node to the next, it is projected that the thermal problem
will become a major bottleneck for next-generation circuit
designs. High temperature can have a dramatic impact on
the reliability of the chip and a large temperature gradi-
ent across the device will sometimes cause the malfunction
of the device [1, 2]. Therefore it is important to consider

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’03,April 6–9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004 ...$5.00.

thermal issues during the physical design process, and this
paper considers the steady states of the thermal conduction.
Transient effects are not considered here since the damping
time of the thermal conduction for modern VLSI chip is typ-
ically of the order of milliseconds, which is several orders of
magnitude larger than the operating frequency of modern
circuits.

According to heat transfer theory, if we ignore the temper-
ature dependency of thermal conductivity, the steady state
thermal profile satisfies the following equation [2]:

k(x, y, z)52 T (x, y, z) + g(x, y, z, t) = 0, (1)

where k(x, y, z) is the thermal conductivity, T (x, y, z) is the
temperature and g(x, y, z, t) is the heat source. Figure 1
shows a typical heat conduction environment for a wafer.
Our interest lies in measuring, and eventually controlling,
the thermal profile across the wafer surface. With the dis-
cretization shown in Figure 1 and using the compact thermal
model [2], we have the following equation:

T = Tfixed +


R11 R12 . . . R1n

R21 R22 . . . R2n

...
...

. . .
...

Rm1 Rm2 . . . Rmn



P1

P2

...
Pn

 (2)

Here T is a m× 1 vector and represents m points where we
monitor the temperature, Pi(i = 1..n) are n heat sources,
and R is the transfer thermal resistance matrix.

At the placement stage, as far as the thermal constraints
are concerned, our goals are to minimize the maximal on-
chip temperature gradient and obtain an even temperature
distribution. The degree of freedom that is available to us
for this purpose during placement is our control over the
2-dimension linear ordering of the heat sources, namely, the
standard cells.

In order to minimize the maximal on-chip temperature
gradient, we formulate the following problem:

Find a permutation π of Pi : {1, . . . , n} → {1, . . . , n}
such that max(|Ti − Ti,neighbors|) is minimum.

This problem is an NP-hard problem [3] [4]
In our discussion so far, we have assumed that that Pi

will be constant through the permutation. In today’s deep
sub-micron designs, however, as the cells are placed in dif-
ferent locations, the power consumption of the cell will in-
deed change. The power consumption of a cell is: Pcell =
αfV 2

dd(Coutput + Cinterconnect) and the interconnect capac-

75

x

z y

Heat sour ces

...
Ambient Temperatur e

...

wafer

... ...

Figure 1: Heat conduction for the wafer and the 3-D
mesh model

itance usually dominates the total capacitance for 0.18µm
designs and below.

In the above formula, the total power is actually dissi-
pated by both the switching transistor and the intercon-
necting wires. Except for long global wires, the driver re-
sistance is typically much larger than the metal resistance,
and therefore most of the power is dissipated in the cells,
and we will ignore the part consumed by the metal wires.
Even through self-heating of wires plays a very important
role in the electro-migration lifetime of the metal wires [1],
during the placement stage, we do not have the exact infor-
mation about the location of the wires and we will ignore
the self-heating of the wires at this stage. However, it is
potentially possible to take this into account during a later
stage of placement using the congestion information, though
this is beyond the scope of our work.

Incorporating thermal considerations cannot be our only
goal in placement. Other critical objectives are to minimize
the total wire length and meet the timing constraints. Tra-
ditional non-thermal placement methods that consider these
criteria can be divided into several classes:

Randomized methods Simulated annealing [5] is the most
well-known example of this class of methods. Even
through it is true that this method can reach arbitrary
close to the global minimum if the cooling schedule is
slow enough, it suffers from long run times for large
circuits.

Analytical approaches This class includes methods such
as force-driven placement and quadratic programming,
and GORDIAN [6] is one example of this class. This
method is used in many commercial placement tools.
Combined with an iterative linear solver, this approach
is fast and generates good results [7].

Partition-based methods The Kernighan-Lin method and
its Fiduccia-Mathheyses implementation are well known
min-cut methods that are utilized in partition-driven
placement. Traditionally, partition methods are known

to have a few problems: for example, that the wire-
length is optimized indirectly through the optimiza-
tion of the min-cut, and that the locally greedy ap-
proach may sometimes lose the global view. However,
recent progress in multilevel hyper-graph partition and
partition-based placement has produced very impres-
sive results [8] [9] [10]. An advantage of this method
is that it can handle complicated constraints.

Although partition-based placement is known to handle a
number of complicated constraints, it is far from straight-
forward to see how it can handle the thermal constraints.
Some of the obvious techniques, on closer analysis, do not
turn out to be viable. For example, one way could be to use
the equation (2) directly during placement. However the
computation cost is high, and in the initial partition steps,
we do not know the exact location of the cells. Another ap-
proach could be to first calculate the desired power profile
from the desired temperature distribution using equation (2)
and try to match the power distribution during partition-
ing. However, using this approach, we would lose the infor-
mation about thermal coupling between nearby cells during
the placement.

The standard cell thermal placement problem has been
studied by several authors in the past. In [3], the thermal
placement problem is modeled as a matrix synthesis prob-
lem. This approach assumes a specific thermal conductivity
matrix and does not consider the effect of the interconnect
capacitance on the cell power. In [2], a compact substrate
thermal model was developed, and two algorithms for stan-
dard cell and macro cell style design were presented. For the
standard cell style designs, the targeted power distribution
is first computed from the desired temperature profile and
this is then used to impose constraints during placement.
However, a close approximation to the targeted power dis-
tribution does not necessarily lead to a close approximation
of the targeted temperature profile as it ignores the ther-
mal interactions between different cells. It is also difficult
to come up with the initial power budget without a detailed
understanding of the thermal environment. In both of the
cases, the simulated annealing algorithm is used to perform
the placement. However, due to its long run times for large
designs, it is desirable to consider other alternative place-
ment algorithms, and it is not clear how these approaches
can be extended to other placement techniques.

In this paper, we present a scheme for performing ther-
mally constrained partition-driven placement for standard
cell designs. This scheme can also be used in the parti-
tioning stage of the analytical methods like GORDIAN. We
simplify the compact thermal model for the partition-driven
placement and as a result, we can directly use the temper-
ature in the inner placement loop as a constraint allowing
for a better thermal distribution. We also describe an algo-
rithm to derive the compact thermal model on the order of
O(mn+m2), where m is the number of the mesh nodes on
the substrate surface and n is the number of all other mesh
nodes.

2. COMPACT THERMAL MODEL
Let us now consider the scenario as shown in Figure 2.

The chip is divided into m regions and each region is small
enough that we are not interested in the actual detailed ther-
mal distribution inside these regions. We will refer to these

76

Ther mal cell

Standar d cell

Figure 2: Compact Thermal Model

small regions as “thermal cells.” If Ti is the temperature
in thermal cell i and Pi is the total power dissipation in
thermal cell i, we have the following equation:

G11 G12 . . . G1m

G21 G22 . . . G2m

...
...

. . .
...

Gm1 Gm2 . . . Gmm




T1

T2

...
Tm

 =


P1

P2

...
Pm

 (3)

Considering the electrical/thermal duality, we can consider
Ti as the voltage at the node i and Pi as the current source
at node i.

The above conductance matrix G can be derived from
the finite-difference of equation (1) as follows. This finite-
difference form can be written as [2]:[

GP GTC
GC GI

] [
T
TI

]
=

[
P
0

]
(4)

where T = [T1, T2, · · · , Tm]T and P = [P1, P2, · · · , Pm]T ,
as in equation (3), and TI is a vector that represents the
temperature at the n internal nodes.

Eliminating all the internal nodes from equation (4) and
comparing it with equation (3), we have:

G = GP −GTCG−1
I GC (5)

The computational cost for directly calculating the right
hand side of equation (5) as in [2] is O(n3) if n� m, which
is not trivial. As an example, for a mesh with a 40×40 grid
(i.e., m = 1600), in the x− y direction and 6 grids in the z
direction, we have n = 8000.

We propose a procedure that generates the matrix G by
the column, observing that the ith column of G is given by
Gei, where ei is a m× 1 vector that is zero in all positions
except the ith position, which is 1. From equation (5), we
have

Gei = GP ei −GTCG−1
I GCei (6)

We calculate the right hand side of this in a two-step man-
ner:

1. Let us consider the second term of equation (6). To
find q = G−1

I GCei, we must solve GIq = GCei; note

that GCei is simply the ith column of GC . Since GI is
a sparse positive definite matrix, this set of equations
can be solved using the Conjugate Gradient Method
with incomplete Chebyshev preconditioning [11]. Prac-
tically this type of iterative method converges within a
constant number of iterations, and therefore, the com-
plexity for this step is O(n).

2. Next, we compute the entire right hand side by cal-
culating GP ei +GTCq. The complexity for this step is
O(m), since GTC is a m× n sparse matrix and GP ei is
the ith column of GP .

We repeat the same process for all ei, 1 ≤ i ≤ m to find
all of the columns of G, so that the overall complexity is
O(mn + m2). If n � m, as is typical, the complexity is
O(mn).

3. SIMPLIFIED THERMAL MODEL FOR
PARTITIONING

Now let us look at how the compact thermal model can be
simplified for partitioning-driven placement. During ther-
mal placement, our goal is to place the cells so that T is
evenly distributed across the chip. Equation (3) cannot be
directly used, since at each partition level, the only location
information that is available is identity of the partitioning
blocks that the cell belongs to. If we assume that all the
cells belonging to a block are located at its center, the cor-
responding analysis will correspond to an incorrect thermal
analysis of the partition. For example, it is easy to see that
this will result in an exaggerated thermal gradient within
the partition, since the temperature at the center of the
partition will be much higher than that at its periphery.

For simplicity, let us consider the thermal model for a
top-down bipartitioning process; this process can be easily
extended to a top-down k-way partitioning process. At any
one particular partition stage, a single block is being par-
titioned into two sub-blocks so that the cuts between the
boundary of sub-blocks are minimized. For now, we are not
especially concerned about the actual temperature profile
in the sub-blocks since cells inside the blocks will be fur-
ther partitioned later, and we can consider it at that time.
However, we are concerned about the temperature discrep-
ancy between the blocks. If we accumulate some high-power
cells into one of the blocks, then at a later stage we will not
have a chance to move these cells out of the block, due to
the divide-and-conquer nature of top-down partitioning. It
is reasonable to assume that the temperature inside each of
the sub-blocks are uniform, since if such an objective were to
be enforced at every step of the partitioning, then a uniform
temperature distribution would indeed result. Under this
assumption, we will obtain a simplified thermal model and
we do not have to make any assumptions about the precise
cell locations inside the sub-block.

We can also look at the problem from the point of view
of multigrid methods [13]. It has been known that Poisson
equation (1) can be solved using multigrid methods effec-
tively. The spatial variation of temperature can be thought
of as having “high frequency” and “low frequency” compo-
nents. A very uniform temperature distribution over space
can be thought of as having predominantly “low frequency”
components and very small “high frequency” components,
and a very widely varying distribution can be considered to

77

show the opposite property. The multigrid method solves
equation (1) on an n × n grid by using the following ideas:
it builds a series of gradually refined meshes: m1×m1,m2×
m2, ...,mk ×mk, where mk = n, and each mesh is a coars-
ened mesh for all the meshes after it. It then solves for the
lower “frequency” terms of the spatial distribution of T on
the coarse meshes and interpolates the result onto the re-
fined meshes. This method is based on the observation that
lower frequency components of T can be effectively solved
on a coarse mesh.

In our approach, if we limit our partition lines to the ther-
mal meshes during the top-down hierarchical partitioning,
we can think about the partition process as a series of opera-
tions on a set of gradually refined meshes. At any particular
level, we are only concerned about the spatial distribution
of the temperature in a specific “frequency range,” and as
the mesh is refined further during the top-down partition-
ing method, higher frequency terms, corresponding to local
variations, are incorporated.

Now consider the first step in top down partitioning, where
the chip is partitioned into two blocks, the left block and
the right block. For simplicity, let us assume that num-
ber of thermal cells in each region is the same, although
this assumption can easily be discarded. We will say that
thermal cells i = 1 .. m/2 are in the left block and cells
i = m/2 + 1 .. m belong to the right block. Now let us
assume, as stated above, that the block on the left has an
even temperature of Tl and the temperature of the block to
the right is Tr. We can now simplify equation (3) to:

m/2∑
i=1

m/2∑
j=1

Gij
m/2∑
i=1

m∑
j=m

2 +1

Gij

m∑
i=m

2 +1

m/2∑
j=1

Gij
m∑

i=m
2 +1

m∑
j=m

2 +1

Gij


[
Tl
Tr

]
=


m/2∑
i=1

Pi

m∑
i=m

2 +1

Pi

 (7)

This reasoning can be extended to a general case where
we partition the chip into k regions, each with possibly a
different number of cells. Each region i,(i = 1, · · · , k) has

the same temperature T
′
i and contains a thermal cell set

Si: s
1
i , s

2
i , · · · , snii , ni is the number of thermal cells in the

region, and Si, (i = 1..k) is a k-way partition of the index
set {1, 2, · · · ,m}. Equation (3) can then be simplified into
the following form:

G
′
11 G

′
12 . . . G

′
1k

G
′
21 G

′
22 . . . G

′
2k

...
...

. . .
...

Gk1
′ G

′
k2 . . . G

′
kk



T
′
1

T
′
2

...

T
′
k

 =


P
′
1

P
′
2

...

P
′
k

 (8)

where G
′
ij =

∑
i
′∈Si

∑
j
′∈Sj

Gi′ j′ and P
′
i =

∑
i
′∈Si

Pi′ .

We have the following theorem for the new matrix G
′
:

Theorem 1. If G is a positive definite matrix, the de-

rived matrix G
′
, as defined in equation (8), is also positive

definite.

Proof. Let us construct a k × m matrix C, defined as

follows:

Cij =

{
1 if j ∈ Si
0 if j /∈ Si

Since Si(i = 1..k) is a k-way partition of the index set
{1, 2, · · · ,m}, the row vectors of C are linearly independent

and rank(C) = k. It is also easy to verify that G
′

= CGCT

for any value of k; for example, for k = 2, it is easy to see

that we obtain the matrix G
′

defined in Equation (7).

Now let us assume that G
′

is not positive definite and that

there exists a nontrivial 1×k vector x such that xG
′
xT ≤ 0.

This leads to (xC)G(xC)T ≤ 0. Since rank(C) = k, xC
is not a zero vector, and since G is given to be positive

definite, this contradicts our assumption that G
′

is not a
positive definite matrix.

4. PARTITION-DRIVEN THERMAL PLACE-
MENT

Since the purpose of this study is to show how to han-
dle the thermal constraints in the partitioner, we will limit
our discussion to a top-down two-way partitioner using the
original Fiduccia-Mathheyses algorithm [14]. The scheme
described here can be extended naturally to incorporate a
state-of-the-art multi-level partitioner.

First we define a concept called the “effective thermal in-
fluence region” of a block. Let us assume that we have
already partitioned the chip into k blocks. The effective
thermal influence region for one of the block is then defined
as follows: if we have a unit heat source on the block, it
corresponds to the area outside of which the temperature
induced by the unit heat source is less than a certain per-
centage of the maximum temperature induced by the unit
heat source. This notion is introduced to reduce the com-
putational cost for incremental temperature updates for a
large number of blocks, and it can be easily computed once
we know the thermal resistance matrix.

Next, we introduce the parameter δTS , which is used to
guide our algorithm:

δTS = max (|Ti − Ti,neighbors|) , i ∈ S, (9)

where Ti,neighbors are the temperature for cells adjacent to
cell i and S is a set of blocks.

If S is a set of all the blocks on the chip at any given
partition level, it is a measure of the maximum temperature
gradient over the chip. We will use δTchip for evaluating the
quality of our results, where chip corresponds to the set of
all blocks on the chip.

Figure 4 shows the top level algorithm for the flow. Our
process starts with the computation of the conductivity ma-
trix as described in section 2, after which we start the parti-
tion steps. Since we are performing top-down bipartitioning,
we will start from the top level block and partition the ev-
ery block into two blocks. This is done recursively until the
number of standard cells contained in each block is less than
a certain threshold.

Before we start partitioning at any partition level, we first
decide the partition lines for all the blocks. This is neces-
sary since we do not want to regenerate the thermal matrix
for each individual block partition. The partition lines are
aligned with the thermal meshes. Then we perform the fol-
lowing steps:

78

Algorithm Partition-Driven Thermal Aware Placement

compute_conductivity_matrix();

do {

find_bipartition_locations_for_all_blocks();

compute_simplified_thermal_model();

for_each_blocks {

generate_initial_solutions();

initial_thermal_setup();

while passes improve the result {

create_gain_queue();

while get_highest_gain_move() {

if (!violate_thermal_constraints() and

!violate_all_other_constraints()) {

do_move();

update_gains();

}

}

restore_best_result_in_pass();

}

}

} until cells in each block are less than threshold

Figure 3: Top level flow for partition-driven thermal
placement.

1. We first create the simplified thermal conductivity ma-

trix G
′

as shown in equation (8). We then invert G
′

to

obtain the thermal resistance matrix R
′
, since this is

required for the incremental update that is to be per-
formed later. Here in the worst case, we will invert an
m ×m matrix, where m is the number of mesh node
on the wafer surface.

2. Using the thermal influence region concept we intro-

duced above, we convert R
′

to a sparse matrix R
′
sp as

follows: for each element R
′
ij , we compare it against

the diagonal element R
′
ii. If R

′
ij/R

′
ii < ε, where ε is

a small number, we assign R
′
ij to 0. The purpose of

this is to reduce the computational expense of evalu-
ating moves with a small loss in accuracy that can be
bounded.

When we start to partition one block, first we randomly
generate multiple solutions. For each solution, we compute
δTS , where S is a set of blocks which are adjacent to the
blocks being partitioned. Supposing the maximum and min-
imum values are δTmax and δTmin, we then set the thermal
budget for this partition to be (1−α)δTmax+αδTmin, where
0 ≤ α ≤ 1. The choice of α is a trade-off between partition
quality and thermal constraints. The solution with the low-
est δT is chosen as the initial solution for partitioning.

When the partitioner decides to move a cell, the thermal
constraint will be one of the constraints that will decide
whether the move is legal or not. This constraint determines
whether move should be accepted or not using the following
steps:

1. Compute the delta power vector.

∆P = [0, · · · , 0, δPi1 , 0, · · · , 0, δPi2 , 0, · · · , 0, δPil , 0, · · · , 0]

where l is the number of blocks whose power dissi-
pation is affected, and δPik is the power dissipation

Table 1: Parameters used in the experiment

Parameter Value

Thermal conductivity for the top (W/m2) 10
Thermal conductivity for the bottom (W/m2) 8800
Thermal conductivity for the side (W/m2) 7
Thermal conductivity for the silicon (W/m2) 150
Unit wire capacitance (pF/m) 242
Input pin capacitance (pF) 0.1
Clock frequency (MHz) 800
Wafer thickness (µm) 500
Row height (µm) 7

change of block ik induced by the movement. This set
of blocks includes not only the blocks that the cell is
moving from and moving to, but also blocks that con-
tain cells that drive the input of the cell to be moved,
since the wire load for these cells will also change.

2. Compute the delta temperature vector ∆T = R
′
sp∆P

and correspondingly update δTS using Equation (9).
Since this involves a sparse matrix-vector multiplica-
tion, the computation cost is practically constant.

3. If the δTS is within the current budget, the move is
accepted. Otherwise, it is rejected.

One of the challenging tasks for the partitioner lies in
finding a fast and accurate online wire length estimator. In
this work, we use the “fast expected minimum heuristic”
proposed by [15]. The wire capacitances are added as part
of the load capacitances of the driver when we compute the
cell power consumption.

5. EXPERIMENTAL RESULTS
Our experiments are implemented on top of the framework

provided by [16], [17], with the Meschach Library [18] being
used as our sparse matrix solver. The code is implemented
in C++ on a Sun SparcV9 450 MHz machine running SunOS
5.8.

We have applied our algorithm to 8 standard cell test
cases in the MCNC benchmark suite [19]. These test cases
are row-based and have a fixed area. Our experiments on
the test cases were based on zero row spacing, which is the
style for modern designs. The experimental parameters are
adopted from [2], with the exception of the thermal conduc-
tivity near the top of the wafer. We choose a low thermal
conductivity number considering the passivation layer on
top of the chip [20]. These parameters are listed in Table
1. The thermal mesh that we use in the (x, y) direction is
aligned to the row boundaries; in case different rows have
different heights, a nonuniform mesh may be used. The
pitch of the mesh is one row for small testcases and two
rows for the large testcases, so that the mesh size in the (x,
y) direction varies from 23 × 23 to 59 × 59 and the mesh
size is the z direction is 6. The ambient temperature is
assumed to be 0 ◦C. The switching activity factor for the
driver is randomly generated in a range from 0 to 1. In our
experiment, we generate 10 initial solutions to compute the
thermal budget for a partition and choose α to be 0.5.

Table 2 shows the experimental results for 8 test cases.
The results from the runs with and without thermal con-
straints are shown. Here Tmax is the maximum temperature

79

Table 2: Experiment result for MCNC benchmarks
Benchmark Without thermal constraints With thermal constraints

Name cells Wire length Tmax Tave δTchip Wire length Tmax Tave δTchip
struct 1952 0.0476 15.3 13.2 0.67 0.0501(105%) 15.6 13.1 0.50 (75%)
primary1 833 0.0480 11.7 9.74 0.56 0.496(103%) 11.9 9.75 0.54 (96%)
primary2 3014 0.184 40.3 34.6 1.95 0.192(104%) 39.9 34.4 1.52 (78%)
biomed 6514 0.258 85.8 44.4 13.4 0.260(101%) 64.0 45.2 5.64 (42%)
industry2 12637 1.04 55.6 44.1 4.60 1.04(100%) 57.5 44.1 3.92 (85%)
industry3 15433 0.986 57.3 44.0 2.50 1.03(104%) 56.6 43.7 1.80 (72%)
avqsmall 21918 0.637 138.5 37.6 40.9 0.667(105%) 111.5 37.8 34 (83%)
avqlarge 25178 0.701 158.2 36.4 45.4 0.746(106%) 102.0 35.7 27.6 (61%)

across the chip, Tave is the average temperature and δTchip
is the maximum on-chip temperature gradient as defined in
(9), where S is the whole chip. The unit for temperatures
is ◦C. The wire length, in meters, is measured using the
half parameter of the net bounding box. From the results,
we can see that the wire-length is typically 0% to 6% longer
with the thermal constraints. The run time overhead varies
from 250% to 350% and most of the run time overhead is
related to the matrix computations after the partition lines
are determined, and to the generation of multiple initial so-
lutions. From the experiment results, we can see that our
scheme effectively reduces the maximum temperature gra-
dient across the chip.

6. CONCLUSION
In this paper, we have described an algorithm to derive a

compact thermal model with a computational complexity of
O(mn+m2) and have presented a simplified thermal model
to be used in partition-driven placement. We have also pro-
posed a scheme to perform top-down partition-driven place-
ment using this simplified thermal model. Since we are able
to use the temperature directly as a constraint, this enables
us to better control of the thermal profile. Our experiments
show that our scheme is successful in effectively smoothing
out the temperature profile.

7. REFERENCES
[1] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli,

and C. Hu, “On thermal effects in deep sub-micron
VLSI interconnects,” Proceedings of the ACM/IEEE
Design Automation Conference, pp. 885-891, 1999.

[2] C. Tsai and S. Kang, “Cell-level placement for
improving subtrate thermal distribution,” IEEE
Transactions on Computer-Aided Design, Vol. 19, No.
2, pp. 253-266, Feb 2000.

[3] C. Chu and D. F. Wong, “A matrix synthesis
approach to thermal placement,” IEEE Transactions
on Computer-Aided Design, Vol. 17, No. 11, pp.
1166-1174, Nov 1998.

[4] G. Ausiello et al., Complexity and Approximation:
Combinatorial Optimization Problems and their
Approximability, Berlin, Germany: Springer, 1999.

[5] W. Sun and C. Sechen, “Efficient and effective
placement for very large circuits,” IEEE Transactions
on Computer-Aided Design, Vol. 14, No. 3, pp.
349-359, March 1995.

[6] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich,
“GORDIAN: VLSI Placement by quadratic

programming and slicing optimization,” IEEE
Transactions on Computer-Aided Design, Vol. 10, No.
3, pp. 356-365, March 1991.

[7] C. J. Alpert, T. Chan, A. B. Kahng, I. Markov, and P.
Mulet, “Faster minimization of linear wirelength for
global placement,” IEEE Transactions on
Computer-Aided Design, Vol. 17, No. 1, pp.3-13, Jan
1998.

[8] C. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel
circuit partitioning,” Proceedings of the ACM/IEEE
Design Automation Conference, pp. 530-533, 1997.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: application in
VLSI design,” Proceedings of the ACM/IEEE Design
Automation Conference, pp. 526-529, 1997.

[10] K. Zhong and S. Dutt, “Effective partition-driven
placement with simultaneous level processing and
global net views,” Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
pp. 254-259, 2000.

[11] G. Golub and C. F. Van Loan, Matrix Computation,
Baltimore, MD: John Hopkins University Press, 1996.

[12] R. Horn and C. Johnson, Matrix Analysis, Cambridge,
UK: Cambridge University Press, 1985

[13] U. Trottenberg, C. Oosterlee and A Schuller,
Multigrid, New York: Academic Press, 2001.

[14] C. M. Fiduccia and R. M. Mattheyses, “A Linear
Time Heuristic for Improving Network Partitions,”
Proceedings of the ACM/IEEE Design Automation
Conference, pp. 175-181, 1982.

[15] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov,
and A. Zelikovsky, “On Wirelength Estimations for
Row-Based Placement,” IEEE Transactions on
Computer-Aided Design, Vol. 18, No. 9, pp. 1265-1278,
Sep 1999.

[16] http://vlsicad.cs.ucla.edu/software/PDtools/

[17] A. E. Caldwell, A. B. Kahng, and I. L. Markov,
“Design and Implementation of Move-Based Heuristics
for VLSI Hypergraph Partitioning,” ACM Journal of
Experimental Algorithms, Vol. 5, 2000.

[18] http://www.netlib.org/c/meschach/

[19] P. Madden, “Reporting of Standard Cell Placement
Results,” Proceedings of the International Symposium
on Physical Design, pp. 30-35, 2001.

[20] Y. Cheng and S. Kang, “A Temperature-Aware
Simulation Environment for Reliable ULSI Chip
Design,” IEEE Transactions on Computer-Aided
Design, Vol. 19, No. 10, pp. 1211-1220, Oct 2000.

80

	Main Page
	ISPD'03
	Front Matter
	Table of Contents
	Author Index

