
Animating TTS Messages in Android using Open-Source
Tools

Ronald Yu
School of Computer Science

and Engineering
University of California, Irvine

ronaly1@uci.edu

Tong Lai Yu
School of Computer Science

and Engineering
California State University,

San Bernardino
tyu@csusb.edu

Ihab Zbib
School of Computer Science

and Engineering
California State University,

San Bernardino
zbibi@csusb.edu

ABSTRACT
We describe in this paper how to use open-source resources
to design and implement an Android application that ren-
ders a three-dimensional model of a human head to animate
the lip movements of human speech from input text. The
application utilizes the Android Text-To-Speech (TTS) en-
gine[1] to convert any input text, which can be entered by
the user in a text box or chosen from a menu of predefined
messages, to human speech in English. Animation of the
speech is carried out by a 3D graphics model of a human
head composed of polygon meshes[20]. Blender[7, 30], a
popular open-source graphics suite, is employed to create
the 3D model and save its mesh data in the COLLAbora-
tive Design Activity (COLLADA) format[22], which is also
an open graphics format.

We use Java language to develop a parser[25, 42] to ex-
tract coordinates of polygons from a COLLADA file and
organize the data into a format that can be rendered effec-
tively by OpenGL ES, the graphics rendering library used
by Android. The producer-consumer paradigm is employed
to synchronize the animated lip movements and the speech
generated by TTS. When the application is lying idle, it
moves the head randomly to simulate other facial expres-
sions such as blinking the eyes and yawning.

Keywords
Open-source, 3D Graphics, Animation, Text-To-Speech, TTS,
Android

1. INTRODUCTION
Open-source software has been playing a critical role in the
advent of technology. A lot of breakthroughs in technol-
ogy development and application such as Watson’s Jeopardy
win[5] and the phenomenal 3D movie Avatar[4] are based
on open-source software. It is a significant task to explore
the usage of available open-source tools to develop software

WORLDCOMP’13:CGVR13 July 22–25, 2013, Las Vegas, Nevada, USA.
Copyright 2013 WORLDCOMP .

applications for research or for commercial use[40, 41]. The
Android application reported in this paper is developed with
free software resources, which are mainly open-source.

Mobile devices have become ubiquitous and in the last cou-
ple of years, Android, an open-source software stack for
running mobile devices, has become the dominant platform
of many mobile devices such as mobile phones and smart
phones[14]. There has been exponential growth in mobile
applications in recent years. Speech simulation is one of the
areas that enjoy rapid growth, and a significant amount of
research has been done on speech animation using 3D graph-
ics models[32]. The video compression standard MPEG-4
also has specifications on facial animation for synthesized
speech[28, 13].

Though speech simulation is still an ongoing research topic,
it already has numerous commercial applications includ-
ing game development and customer service[6], and it con-
tributes to both the developments of acoustic and visual
applications[12, 9].

Our work reported in this paper develops and merges the au-
dio and visual technologies into one application by making
use of open-source technologies. The main tool we use for
rendering graphics is OpenGL for embedded systems (ES).
The graphics library OpenGL[33] is the industry standard
for developing 2D and 3D graphics applications[2, 8], and
OpenGL ES[23, 3, 27] is OpenGL modified for embedded
systems. There is a major difference between OpenGL ES
1.X and OpenGL ES 2.X. While the 1.X version shares the
same functionality and syntax of the traditional OpenGL
APIs and, like early OpenGL, has a fixed pipeline and op-
erates as a state machine, the 2.X version has adopted a
programmable pipeline architecture that allows users to pro-
gram vertex and fragment shaders[24, 31], the equivalent of
OpenGL Shading Language (GLSL)[18]. The vertex shader
is responsible for processing geometry. The fragment shader
works at the pixel level, processing incoming fragments to
produce colors including transparency.

Mobile devices are characterized by small display size[29],
limited memory capacity and limited computing power. All
of these aspects affect the graphic animation experience of
the mobile user. These limitations make the design and
implementation of a TTS animation application in a mobile
device very different from that of an application running on

a desktop PC.

Another problem one must address is the audio-video syn-
chronization. For traditional video compression of natural
scenes, MPEG standard uses timestamps to synchronize au-
dio and video streams[19]. MPEG-4 also addresses cod-
ing of digital hybrids of natural and synthetic, aural and
visual information[28, 32]. Doenges et al. mentioned in
their paper[13] that special attention must be paid to the
synchronization of acoustic speech information with coher-
ent visible articulatory movements of the speakers mouth in
MPEG-4 synthetic/natural hybrid coding (SNHC) for ani-
mated mixed media delivery. However, they did not present
the details of synchronization in the paper. Our synchro-
nization problem of video and audio is different from that of
MPEG-4 as our application does not involve any data encod-
ing and decoding, and data transmission. Therefore, we do
not use timestamps to synchronize audio and video. Instead,
the synchronization is done using the producer-consumer
paradigm[35], which works effectively in this situation.

The application is developed for Android-based mobile de-
vices. Android provides a Text-to-Speech (TTS) engine
(PICO) with limited APIs[1]. The main thread of the ap-
plication presents a text box to the user for entering texts;
prepared sample texts are also available as items on the ap-
plication menu, and a sample can be chosen by clicking on
a button of the menu. The input text is used for the speech
simulator that plays the sound using the Android TTS APIs
and renders the corresponding visemes while performing a
lip-synchronization action, keeping the audio and video syn-
chronized. Visemes, which can be considered as visual coun-
terpart of phonemes in audio, are visually distinct mouth,
teeth, and tongue articulations for a language.

Besides the main thread, the application has three other
threads. One of them is responsible for voice synthesis and
speech simulation by making use of the Android Text-to-
Speech(TTS) engine[1]. Another thread controls the 3D
rendering and animation of a human head. This thread im-
plements the OpenGL ES function calls and has to decide
which object to render based on the input data. The last
thread is the input text thread that handles the insertion
of the data into the text buffer. This thread implements
the producer in the Producer-Consumer problem. Figure
1 is a UML diagram showing these components and their
connections, where the TTS Thread is Consumer 1 and the
Animation Thread is Consumer 2.

2. GRAPHICS 3D MODEL
The 3D model is initially imported from Google SketchUp
3DWarehouse[16] and is shown in Figure 2. We use the free
version of Sketchup[36], a 3D drawing tool, to convert it to
a COLLADA file, which can be then imported by Blender[7,
30]. Blender is a free 3D graphic suite for creating, rendering
and animating graphics models[30]. It supports a variety
of formats such as COLLADA(.dae), Wavefront(.obj), 3D
Studio(.3ds), and others.

To generate a new facial expression, the model is modified
by deforming the mesh, and a different copy is created and
passed to the COLLADA parser to create a metafile. The
viseme, or the shape of the mouth that corresponds to each

Figure 1: Components Diagram

Figure 2: Model From Google 3DWarehouse

phoneme, is based on the lip-sync phonetic-based anima-
tion[38, 15] used in animation movies. Figure 3 shows the
lip shapes for phonemes that we have adopted.

In addition to the mouth shapes, other facial expressions are
created to help simulate a more human-like agent. These
facial expressions include eye blinking, eyebrow movements
and yawning. These expressions are presented to keep the
user entertained when the application is idle. Figure 4 shows
the Android emulator running the 3D Face at rest position.

Java is used to develop a COLLADA parser[25], which parses
a COLLADA file and extracts the necessary information for
rendering and animating the graphic models. The faces of
the model are meshes of polygons of three or more edges. Be-
cause OpenGL ES 1.0 can only render triangles, the parser
has to extract the indices of every polygon, convert them
into triangles, and recalculate the normal vector for every
triangle by performing a cross product of the vectors along
two of the triangle’s edges.

Since the COLLADA file is essentially an XML document,
the parser needs to make use of an XML library to carry
out the parsing. Java APIs provide wide support for XML
parsing and a variety of libraries to choose from such as
JAXP, JDOM and SAX. Most of these libraries support the
XML Path Language (XPath) [17]. While the Document
Object Model (DOM) [39] is a more complete tree struc-
ture representation of the document, XPath is a straight-
forward language that allows the selection of a subset of
nodes based on their location in the document [17]. The
parsing program described here makes use of the Java pack-
age javax.xml.xpath to extract the necessary nodes from the

Figure 3: Preston Blair Phoneme Series

Figure 4: Resting Position

COLLADA document.

The parser parses the data of a COLLADA file into a meta-
file containing a set of vertices coordinates, their normal vec-
tors, the indices of the triangle and normalized color codes.
The following data sample is an example of the data of a
meta-file.

Meta-file Data Sample:

#upper_head.dae
object:base_039-mesh
{

vertices:2517
{
0 2.8f,1.38f,-0.66f,
1 2.83f,1.31f,-0.72f,
2 2.78f,1.31f,-0.72f,
...

}
normals:2517
{
0 0.02f,0.62f,-0.78f,
1 0.03f,1.0f,-0.08f,
2 -0.74f,0.26f,-0.61f,
...

}
indices:4311
{
0 0,1,2,
1 3,4,5,
2 6,2,1,
...

}
materials:6
{
0 3509,0.51f,0.37f,0.31f,1.0f,
1 50,0.41f,0.41f,0.41f,1.0f,
2 690,0.13f,0.0f,0.0f,1.0f,
...

}
}

The data labeled materials represent the color codes in red,
green, and blue (RGB) of the affected faces. The first num-
ber is the table index and the second number indicates the
number of faces that this color is applied to. The next three
numbers are normalized RGB color codes. The color codes
are normalized by dividing every component by 255. And
the last number is the transparency, with values between 0
and 1, a value of 1 meaning opaque, and 0 meaning total
transparency.

Every facial expression requires a separate graphic file that
has to be loaded by the Android application. In order to
reduce the amount of data, if the meta-file is a variation
of the base model, the parser will compare it to the base
model and export only the differences. This helps to reduce
the start-up time of the Android application, as it does not
need to create a different graphic object for every variation.
The application can duplicate the original model and apply
the changes in coordinates.

As mentioned earlier, OpenGL ES is the industry standard
for embedded 3D graphics applications. This project makes
use of OpenGL 1.0, which is supported by most of the com-
mercial devices with an Android operating system. The
minimum version of Android required is the Gingerbread,
Android 2.3.3 API 10. One of the limitations of OpenGL
ES 1.0 is that it only renders triangles. To overcome this
issue, the COLLADA parser transforms a generic polygon
into triangles and recalculates the normal vectors.

There are two ways to render a 3D object (or 2D for that
matter) with OpenGL ES 1.0. One is array-based, and the
other is element-based. To render the model with the array-
based method, the vertices have to be inserted in the right
order, so that OpenGL can render them in that sequence.
The element-based approach is more flexible, as it does not
require changes to the vertices buffer. A pointer to the in-
dices buffer can be manipulated to render certain portions
of the model at the time. This allows the program to apply
certain attributes, such as color codes, to specific faces of
the model without the need to load a complete color buffer
with redundant information. The following is the code that
renders the 3D model.

3D Model Rendering:

public void draw(GL10 gl) {
//Enable drawing
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
gl.glFrontFace(GL10.GL_CW);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0,

vertexBuffer);
gl.glNormalPointer(GL10.GL_FLOAT, 0,

normalsBuffer);
int offset = 0;
for(int i=0; i<materials.length; i++){
gl.glColor4f(materials[i].rgb[0],

materials[i].rgb[1],materials[i].rgb[2],
materials[i].rgb[3]);

int length = materials[i].length;
//!!!!very important
indexBuffer.position(offset);
int mode = GL10.GL_TRIANGLES;
gl.glDrawElements(mode,length*3,

GL10.GL_UNSIGNED_SHORT,indexBuffer);
offset += length * 3;

}
//!!!!very important
indexBuffer.position(0);
//Disable drawing
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);

}

The application starts by loading the meta-files data of the
3D model previously prepared by the COLLADA parsing
program into memory. The 3D model is composed of two
parts. One is the upper head, and the other is composed
of the mouth and jaws. Combined, they constitute a com-
plete 3D model of a human head. While the application is

loading the base model of each part to represent the resting
position, a parallel thread is created to load the rest of the
meta-files for different expressions. That reduces the startup
time to half of what it would be if all the models are loaded
in sequence. Once the meta-files are loaded into appropriate
arrays and buffers, they are cached using a key-map struc-
ture for efficient access.

When there is no input, the application assumes itself to be
in an idle situation and starts a timer. The application will
periodically monitor the timer, and will randomly replace
the resting models with animated ones, creating a frame-
based movement effect. As soon as the user enters a text and
sends the execute command, the application switches to the
speech simulation mode, starts the TTS activity, and syn-
chronizes the mouth animation to create the visual speech
effect.

3. LIPS-AUDIO SYNCHRONIZATION
The producer-consumer paradigm[19, 34, 37], a well-studied
synchronization problem in Computer Science, is employed
to synchronize lip movements with the speech. A classi-
cal producer-consumer problem has two threads (one called
producer, the other consumer) sharing a common bounded
buffer. The producer inserts data into the buffer, and the
consumer takes the data out. In our case, the buffer is a
queue where characters are entered at the tail and are read
at the head. Physically, the queue is a circular queue[19].
Logically, one can imagine it to be a linear infinite queue.
The head and tail pointers are always advancing (increment-
ing) to the right. (To access a buffer location, the pointer
is always taken the mod of the physical quenue length, e.g
tail % queue length.) If the head pointer catches up with
the tail pointer (i.e. head = tail), the queue is empty, and
the consumer must wait. If the difference between head and
tail is equal to the length of the buffer, the queue is full, and
the producer must wait.

In the application, the problem is slightly modified: it has
one producer and two consumers, each has its own head
pointer. The producer is the thread that accepts the input
text and puts it in the queue, and the consumers are the
Android TTS engine and the animation thread with routine
calls to OpenGL ES. The text stream input thread controls
the tail of the buffer and waits. Every time a new character
is entered, tail is incremented. The TTS thread and the ani-
mation thread read and process the data while each of them
is incrementing its own head. When the distance between
the tail and one of the heads is larger than or equal to a
certain empirical constant C, the producer stops and waits
for the heads to catch up. When both heads reach for the
tail, the producer starts inserting new data into the buffer.
To further improve the algorithm, the TTS head and the
animation head wait for each other, which forces the speech
and the animation to be more in sync as shown in Figure 5.
Below is a Java-like pseudo code for the synchronization of
the TTS with the animation using the producer-consumer
algorithm.

Producer-Consumer Code:

long tail = ttsThread = animationThread =0;

Figure 5: Producer-Consumer Data Buffer

//Fixed size buffer
char[] textBuffer = new char[offset];
//Producer thread
while(true){
if(tail-head1>=offset||tail-head2>=offset)

inputThread.sleep(100);
else{

textBuffer[tail % offset]=ch;
tail++;

}
}

//TTS thread
while(true){
if(head1 == head || head1 >= head2+C1)
ttsThread.sleep(100);
else{

char ch = textBuffer[head1 % offset];
tts.speak(ch);
head1++;

}
}
//Animation thread
while(true){
if(head2==tail || head2>=head1+C2)

animationThread.sleep(100);
else{

char ch = textBuffer[head2 % offset];
animation.render(ch);
head2++;

}
}

4. CONCLUSIONS AND DISCUSSIONS
We have presented the design and implementation of a speech
animator for the Android mobile platform using exclusive
open-source technologies. A parser written in Java is used
to parse a COLLADA file containing 3D model data to a
meta-file which can be rendered by OpenGL ES programs.
Normally, only the difference between a 3D model and the
base model are read from the meta-file. The final model is
obtained by overlaying the scene created with the difference
data on the base model. The producer-consumer paradigm
is used to achieve lips-audio synchronization. The code of
the application will be available for students and developers
who want to use it as a starting point for further develop-
ment.

There are unlimited ways of extending and enhancing the
application. In particular, it is a significant task to explore
the application of the Active Shape Models(ASM) or Active

Appearance Model (AAM) developed by Tim Cootes and
Chris Taylor in the 1990s[11, 10] to create more realistic 3D
models. ASM and AAM are statistical models for image
processing, in particular facial recognition. Using ASM or
AAM, a system can be trained to generate new sets of data
from a reduced covariance matrix and the vector represent-
ing the pose model, or the mean shape. In this case, the
principal components can be applied to produce the differ-
ent facial expression by training the model with a sample
of visemes, representing the mouth shapes for the different
phonemes. That will result in a more realistic movement
of the mouth when simulating the visual speech. Some re-
searchers have explored this approach and obtained good
results[21].

Another significant enhancement to the application could be
an interface enhancement with text messaging feature. In-
stead of reading the message, the user could listen to it and
watch the simulation. It could also be interfaced with a live
video streaming application. Instead of transmitting audio
and video data which might be huge even after compres-
sion, one can transmit only the text of the talking person,
along with some control data. The other person can watch
and listen to a real-time simulation of the conversation. To
realize this, speech recognition capabilities are required at
the sender side. The Android platform supports this feature
using Google’s speech-recognition service[26]. Of course the
transmitted text can be compressed by the sender and de-
compressed by the receiver but no synchronization is needed
for the transmitted data as the animation is driven by the
text and the lip-speech synchronization is done using the
producer-consumer paradigm at the receiver end.

5. ACKNOWLEDGMENTS
We would like to thank Mr. Ted Benic, who helped enhance
many of the 3D model images using Blender.

6. REFERENCES
[1] Android Open Source Project: TextToSpeech,

http://developer.android.com/reference/android/speech/

[2] E. Angel, Interactive Computer Graphics: A
Top-Down Approach Using OpenGL, Fourth Edition,
Addison-Wesley, 2005.

[3] D. Astle and D. Durnil, OpenGL ES Game
Development, Thomson Course Technology, 2004.

[4] Jun Auza, The Technology Behind Avatar (Movie),
http://www.junauza.com/2010/01/technology-behind-
avatar-movie.html, Jan
2010.

[5] Charles Babcock, Watson’s Jeopardy Win A Victory
For Mankind, Information Week, Feb 2011.

[6] Koray Balc, Xface: Open source toolkit for creating 3d
faces of an embodied conversational agent, pp.
263-266, Smart Graphics, 2005.

[7] Blender Foundation. Blender.org
http://www.blender.org/, 2013.

[8] S. R. Buss, 3-D Computer Graphics: A Mathematical
Introduction with OpenGL, Cambridge University
Press, 2003.

[9] C. Bregler, M. Covell, and M. Slaney, Video Rewrite:
Driving Visual Speech with Audio, p.353-360,
SIGGRAPH’97 Proceedings, ACM Press, 1997.

[10] T.F. Cootes, G. J. Edwards, and C. J. Taylor, Active
appearance models, p. 484-498, ECCV, 2, 1998.

[11] T.F. Cootes, C.J. Taylor, D.H. Cooper and J. Graham
Active Shape Models - Their Training and Application,
Computer Vision and Image Understanding, p. 38-59,
Vol. 61, No. 1, Jan. 1995.

[12] E. Cosatto, H.P. Graf, and J. Schroeter,
Coarticulation method for audio-visual text-to-speech
synthesis, US Patent 8,078,466, Dec 2011.

[13] P.K. Doenges et al., MPEG-4: Audio/video and
synthetic graphics/audio ifor mixed media, p.433-463,
Signal Processing: Image Communication,
ELSEVIER, 9, 1997.

[14] Forbes Magazine, Android Solidifies Smartphone
Market Share, http://www.forbes.com/, Jan., 2013.

[15] Gary C. Martin, Preston Blair phoneme series,
http://www.garycmartin.com/mouth shapes.html,
2006.

[16] Google Inc. Trimble Navigation Limited. 3D
Warehouse. http://sketchup.
google.com/3dwarehouse/, 2013.

[17] E.R. Harold. Processing XML with Java: a guide to
SAX, DOM, JDOM, JAXP, and TrAX,
Addison-Wesley Professional, 2003.

[18] S. Hill, M. Robart, and E. Tanguy, Implementing
Opengl ES 1.1 over OpenGL ES 2.0, Consumer
Electronics, 2008, ICCE 2008, Digest of Technical
Papers, International Conference, IEEE, 2008.

[19] F. June, An Introduction to Video Compression in
C/C++, Createspace, 2010.

[20] F. June, An Introduction to 3D Computer Graphics,
Stereoscopic Image, and Animation in OpenGL and
C/C++, Createspace, 2011.

[21] G. A. Kalberer, P. Muller, and L.V. Goo, Modeling
and Synthesis of Realistic Visual Speech in 3D, p.
266-294, 3D Modeling & Animation, edited by N.
Sarris and M. G. Strintzis, IRM Press, 2005.

[22] The Khronos Group Inc.,https://collada.org/, 2011.

[23] The Khronos Group Inc., OpenGL ES The Standard
for Embedded Accelerated 3D Graphics,
http://www.khronos.org/opengles/, 2013.

[24] The Khronos Group Inc., OpenGL Shading Language,
http://www.opengl. org/documentation/glsl/, 2013.

[25] M. Milivojevic, I. Antolovic, and D. Rancic,
Evaluation and Visualization of 3D Models Using
Collada Parser and Webgl Technology, p. 153-158,
Proceedings of the 2011 International Conference on
Computers and Computing, World Scientific and
Engineering Academy and Society (WSEAS), 2011.

[26] S. Mlot, Google Adds Speech Recognition to Chrome
Beta,
http://www.pcmag.com/article2/0,2817,2414277,00.asp
, PC Magazine, Jan. 2013.

[27] A. Munshi et al., OpenGL ES 2.0 Programming
Guide, Addison-Wesley Professional, 2008.

[28] I.S. Pandzic and R. Forchheimer, MPEG-4 Facial
Animation:The Standard, Implementation and
Applications, John Wiley & Sons, 2002.

[29] Thomas Rist, and Patrick Brandmeier, Customizing
Graphics for Tiny Displays of Mobile Devices,
p.260-268, Personal and Ubiquitous Computing, 6,
2002.

[30] T. Roosendaal and S. Selleri, The Official Blender 2.3
guide: free 3D creation suite for modeling, animation,
and rendering, No Starch Press, 2004.

[31] R. J. Rost et al., OpenGL Shading Language, Third
Edition, Addison-Wesley, 2009.

[32] N. Sarris and M.G. Strintzis, 3D Modeling &
Animation, IRM Press, 2005.

[33] D. Shriener et al., OpenGL Programming Guide, Eigth
Edition, Addison-Wesley, 2013.

[34] A. Silberschatz et al., Operating System Concepts,
Addison-Wesley, 1998.

[35] M. Singhal and N.G. Shivaratri, Advanced Concepts in
Operating Systems, McGraw-Hill, 1994.

[36] Sketchup,
http://www.sketchup.com/intl/en/product/gsu.html,
2013.

[37] A.S. Tanenbaum, Modern Operating Systems, Third
Edition, Prentice Hall, 2008.

[38] University of Maryland, Blendshape Face Animation,
http://userpages.umbc.edu/bailey/Courses/Tutorials/
ModelNurbsHead/BlendShape.html, 2009.

[39] L. Wood et al., Document object model (dom) level 1
specification, W3C Recommendation, 1, 1998.

[40] T.L. Yu, “Chess Gaming and Graphics using
Open-Source Tools”, Proceedings of ICC2009, p.
253-256, Fullerton, California, IEEE Computer
Society Press, April 2-4, 2009.

[41] T.L. Yu, D. Turner, D. Stover, and A. Concepcion,
“Incorporating Video in Platform-Independent Video
Games Using Open-Source Software”, Proceedings of
ICCSIT, Chengdu, China, July 9-11, IEEE Computer
Society Press, 2010.

[42] I. Zbib, 3D Face Animation with OpenGL ES: An
Android Application, CSE Master Project Report,
School of Computer Science and Engineering, CSUSB,
2013.

