
A biologically-motivated computational model for learning task-driven and object-

based visual attention control in interactive environments is proposed. 

Our model consists of three layers. First, in the early visual processing layer, most 

salient location of a scene is derived using the biased saliency-based bottom-up 

model of visual attention.  Then a cognitive component in the higher visual 

processing layer performs an application specific operation like object recognition 

at the focus of attention. From this information, a state is derived in the decision 

making and learning layer. 

Top-down attention is learned by the U-TREE algorithm which successively grows 

an object-based binary tree. Internal nodes in this tree check the existence of a 

certain object in the scene by biasing the early vision and the object recognition 

parts.  Its leaves point to states 

in the action value table. Motor actions are associated with the leaves. After 

performing a motor action, the agent receives a reinforcement signal from the 

critic. This signal is alternately used for modifying the tree or updating the action 

selection policy. 

The proposed model is evaluated on visual navigation tasks, where obtained 

results lend support to the applicability and usefulness of the developed method 

for robotics.
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Abstract

Fig. 7. Learned attention tree for the map of Fig. 6 

with pruning. Forty four states were clustered into 7 

leaves. 100% correct policy was achieved.

Algorithm generated 7 states with average depth of 3. It means 

that instead of attending to five objects simultaneously, serial 

attention to 3 objects in average could solve the problem. (Fig.7)
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Fig. 2. Biased saliency-based attention model
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Proposed Model

Discussions and Conclusions 

An agent working in an environment receives information momentarily through 

its visual sensor. It should determine what to look for. For this we use RL to 

teach the agent simply look for the most task relevant and rewarding entity in 

the visual scene (Fig.1). 

This layer controls both top-down visual attention and motor actions. 

The learning approach is an extension of the U-TREE algorithm [6] to the 

visual domain. Attention tree is incrementally built in a quasi-static 

manner in two phases (iterations): 

1) RL-fixed phase and       2) Tree-fixed phase

In each Tree-fixed phase, RL algorithm is executed for some episodes by 

Fig. 1. Proposed model for learning task-driven object-based visual attention control 

Example scenario: captured scene through the agents’ visual sensor undergoes 

a biased bottom-up saliency detection operation and focus of attention (FOA) is 

determined. Object at the FOA is recognized (i.e. is either present or not in the 

scene), then the agent moves in its binary tree in the decision making and 

leaves. 100% correct policy was achieved.

The object at the attended location is recognized by the hierarchical 

model of object recognition (HMAX) [3, 4]. A binary SVM classifier [5], is 

trained with positive samples of a class and negative samples from 

other classes. Offline learned classifier in this way is later used for 

online object recognition.

Fig. 8 Top: Cumulative average reward of the agent for different noise levels. 

Bottom: Cumulative percentage of correct policy during learning. Results are 

averaged over 7 runs.

Since both saliency model and the Hmax have uncertainties, this 

problem also applies to our model.  In this experiment, we analyze 

how uncertainty in the perception of the agent affects its behavior. 

Each observation of the agent is incorrect by probability Pu. For 

instance, Pu = 0.03 means that in 3 percent of observations the agent 

is not sure that an object is really present in the scene or not. When 

the agent traverses its attention tree and has to attend to an object, it 

gets an incorrect result with probability Pu. When observations of the 

agent are noisy, then the agent develops a probabilistic action 

selection strategy. The agent could compensate low magnitude of 

uncertainty in its perceptions (Fig. 8).

o A biologically inspired model for top-down object-based visual attention 

control was designed and partially implemented.

o Our results support the idea that the nature of the bottom-up attention is 
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OR rates over test sets:

91.28% (± 2.8),

93% (± 2.75) 

87% (± 3.2) 

83.4% (± 4.2) 

83% (± 4.2%)

Fig. 3. Sample objects in natural scenes. 

Best individual derived after minimization 

was applied to a test set.

Fig. 4. Learned weights after CLPSO 

convergence over first two traffic 

signs averaged over five runs. s0 to s5

are scales in the image pyramid.

Fig. 5. Object recognition results using C2 features
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Uncertainty analysis experiment:

Task: simulated visual navigation. 

Map of the route, consisting of 11 positions, is shown in Fig. 6. The 

agent captures 360 × 270 RGB color images. There are 44 states. 

Natural scenes containing a subset of the objects are presented to the 

agent (5 for each combination). The agent has three possible motor 

actions: forward(F), Turn Left (L) and Turn Right(R) and can attend to 

one of n objects each time (n=5).
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Basic saliency-based model of visual attention [1] is revised for the purpose of 

salient region selection (object detection) at this layer (Fig.2)

Aim is to find a weight vector which maximizes the object detection rate over a 

set T of M training images :

This is done by minimizing following fitness function by CLPSO [2]:

where norm(.) is the Euclidean distance between two points in an image. 

Saliency is the function which takes as input an image and a weight vector and 

returns the most salient location. ti is the location of target object in the i-th

image. 

In each Tree-fixed phase, RL algorithm is executed for some episodes by 

following ε-greedy action selection strategy. In this phase, tree is hold 

fixed and the derived quadruples (st, at, rt+1, st+1) are only used for 

updating the Q-table: 

State discretization occurs in the RL-fixed phase where gathered 

experiences are used to refine aliased states. An object which minimizes 

aliasing the most is selected for braking an aliased leaf.
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scene), then the agent moves in its binary tree in the decision making and 

learning layer. This is done repetitively until it reaches a leaf node which 

determines its state. 

The best motor action is this state is performed. Outcome of this action over 

the world is evaluated by a critic and a reinforcement signal is fed back to the 

agent to update its internal representations (attention tree) and action 

selection strategy in a quasi-static manner. Following subsections 

discuss each layer of the model in detail. 

o Our results support the idea that the nature of the bottom-up attention is 

low-level mechanisms, while top-down attention is more like a control or a 

decision making problem.

o Rather than scanning the image from top-left to bottom-right, to detect an 

object in the scene, or using global representations (which usually need 

many computations), our model just looks at a small number of spatial 

locations.

o Main contributions were proposing a method to find the low-cost weights 

of the saliency model to bias it for object detection and a top-down 

mechanism for controlling the bottom-up saliency model for doing a task.

o It was also shown that training RL with noisy data could compensate low-

magnitude noises, but larger values of noise significantly degrade the RL 

convergence.

Selection of the object o* which reduces aliasing the most:

Estimation of aliasing Δt :
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Results

Fig. 6. Navigation map in the experiment. A 

subset of 5 objects is are present in random 

locations of scenes. Best actions are shown 

besides each state. In some states two 

actions are optimal.


