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Hydraulic Actuator Tuning in the 
Control of a Rotating Flexible 
Beam Mechanism 
The end point position and vibration control of a rotating flexible beam mechanism 
driven by a hydraulic cylinder actuator are considered. An integrated nonlinear 
system model comprised of beam dynamics, hydraulic actuator, control valves, and 
control scheme is presented. Control based on simple position feedback, along with 
a hydraulic actuation system tuned to suppress beam vibration over a wide range of 
angular motion, is investigated. For positioning to small to moderate mechanism 
angles, a linear system model with the actuator tuned for good open-loop performance 
is developed. Actuator tuning is accomplished by varying the system hydraulic resis
tance according to a dimensionless parameter defining the interaction between actua
tor dynamics and the fundamental mode of the flexible beam. Simulation results for 
a closed-loop system indicate that this simple tuned control provides comparable 
performance and requires less control effort than an untuned system with a more 
complex state feedback optimal controller. To compensate for geometric nonlinear-
ities that cause instability when positioning to large mechanism angles, an active 
actuator tuning scheme based on continuous variation of hydraulic resistance is 
proposed. The active variable resistance controller is combined with simple position 
feedback and designed to provide a constant dimensionless actuator-flexible beam 
interaction parameter throughout the motion. Simulation results are presented to 
show the stabilizing effect of this control strategy. 

1 Introduction 

The problem of controlling the position of a rotating flexible 
beam or a single link flexible manipulator arm while minimizing 
link flexural vibrations has received considerable attention in 
recent years. For example, Fukuda (1985) and Sakawa et al. 
(1985) used a beam base encoder, tachometer, and strain gauge 
mea.surements in state feedback control schemes. Dancose et 
al. (1989) applied optimal state feedback control methods. 
Combinations of beam base and tip measurements with control 
schemes consisting of PID plus modal control (Singh and Schy, 
1986) and pole placement plus integral control (Chalhoub and 
Ulsoy, 1987) have also been investigated. Siciliano and Book 
(1988) separated the beam dynamics into slow and fast subsys
tems and applied state feedback pole placement control to the 
fast part representative of flexural vibrations. Castelazo and 
Lee (1990) applied a nonlinear damping scheme. The efforts 
discussed above have shown favorable results regarding reduced 
beam vibrations during position control. The control schemes 
have used state feedback which generally requires measure
ments of both beam dynamic motion and flexure vibration vari
ables with the appropriate observers. All of these studies use 
linearized models and consider the control force or torque to 
be applied directly to the beam or hub without including the 
actuator dynamics. 

The complex dynamics for the rotating flexible beam control 
problem consist of the interaction of rigid body motion, beam 
flexural vibration, actuator dynamics, and control input. Possi
bilities of damping structural vibrations by understanding and 
adjusting certain parameters which describe the overall system 
were outlined in Panza et al. (1988). It was shown in Sah and 
Mayne (1990) that gear ratio played an important role in damp
ing vibrations in a complete open-loop system model for an 
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electromagnetically actuated rotating flexible beam. The case 
of adjusting hydraulic resistance and capacitance to reduce vi
brations in a complete open loop system for a hydraulically 
actuated rotating flexible beam model was presented in Panza 
and Mayne (1989). An integrated overall system approach de
scribing actuator-flexible beam coupling given in Panza and 
Mayne (1994) showed that actuator tuning based on the selec
tion of key dimensionless parameters resulted in fast open-loop 
dynamic response with well damped beam vibrations. Sah et 
al. (.1993) showed that a well-tuned electromagnetic actuator-
slewing beam system with simple control could give better 
overall performance than optimal control of a poorly tuned 
system. These studies indicate that the inclusion of actuator 
dynamics modeling and parameter selection may be quite valu
able in the design of slewing systems with flexible beams. In 
closed loop control, of course, beam flexibility causes vibrations 
that degrade accurate tip positioning. 

Figure 1 gives a schematic of a hydraulic cylinder actuation 
system driving a rotating flexible beam. The system investigated 
in this paper consists of the interactive dynamics between a 
flexible beam, a hydraulic actuator, and feedback control. The 
focus is on tuning the actuator to the flexible beam by varying 
hydraulic resistance. Control valves in the flow lines from cylin
der to a servovalve are used to vary the resistance. The control 
input Uy to the servovalve may then reflect a simple output 
feedback scheme. This study includes actuator parameter con
sideration as an integral part of system design for closed-loop 
slewing control. Hydraulic resistance (a useful adjustable pa
rameter) is tuned from open-loop system studies and coordi
nated with a feedback control scheme and gain selection to 
realize a simple closed-loop system with good behavior and 
low control effort. The actuator tuning is designed to provide 
significant damping via actuator-flexible beam interaction to 
minimize structural vibrations and provide a smooth dynamic 
response. For positioning to small to moderate mechanism 
angles, a linear system model is applied and the hydraulic resis
tance is fixed throughout the response. This situation was the 
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Rotating Beam 

Resistance Control Valves 

Servovalve 

Fig. 1 Schematic of hydraulic cylinder actuation system 

focus for the open-loop study of Panza and Mayne (1994). For 
positioning to large angles, a nonlinear system model is needed 
and the hydraulic resistance is continuously varied by adjusting 
the resistance control valves with an active control «« applied 
to these valves. 

In Section 2, Lagrange's equations are applied to obtain gen
eral nonlinear differential equations for the mechanism includ
ing beam dynamics. Additionally, hydraulic actuator dynamics 
are coupled to the beam to provide an integrated model for the 
flexible beam-actuator system. In Section 3, actuator tuning to 
the beam dynamics is defined in terms of a dimensionless flexi
ble beam-actuator interaction parameter. Also developed in Sec
tion 3 are the application of three basic feedback control 
schemes appropriate with hydraulic actuator tuning. These in
clude an error driven beam angular position control, a minor 
loop beam angular velocity feedback scheme, and a variable 
hydraulic resistance adjustment scheme. In Section 4, a numeri
cal example is given for comparison of combinations of these 
schemes and for comparison with a Linear Quadratic Regulator. 
The open-loop behavior of the system is used as a guide for 
efficient actuator tuning of both linearized and nonlinear closed-
loop systems. Conclusions are given in Section 5. 

T = - \ — • — dm = - I [mi, + M„6(x - L)] 

xi''m^ 
de , dfy/ ' 

j c — -I-
dt dt 

dx (4) 

where 6(x - L) is the Dirac delta function. The beam and tip 
mass gravitational potential energy and the flexural bending 
strain energy for a Euler-Bemoulli beam of Young's modulus 
E and area inertia h are given by 

U = MgL* sin 9 + f Eh 
Jo dx' 

dx (5) 

where L* is the center of gravity and M = mjL + M„ is the 
total mass. The beam dynamic flexural deflection is given as 
an expansion in terms of modal coordinates qiit) and mass 
normalized flexural mode shapes </>, (.JC) 

yf{x, 0 = S <Pi{x)qi{t) (6) 

where 4>, {x) are considered to satisfy orthogonality conditions 
given in Panza and Mayne (1994). 

The equations of motion for the beam may be given by La
grange's equations (Goldstein, 1967) 

dL dL 

dWi 
Q, i = ItoN + 1 (7) 

where L = T - U is the Lagrangian and w = [q,q2 . . • qnOY 
are the independent generalized coordinates. The generalized 
forces Qi are determined from the virtual work 6W for an ap
plied force F(r) acting along the beam at a distance b from the 
base or an applied torque To{t) acting at the base 

6W = {Fit) - F,)6[y(b, t)] + r„(06[^r(0, t)] (8) 

where F, is a static force, 6y is the total rigid body mode plus 
flexural modes virtual linear displacement nt x = b, and dr = 
dy/dx is the total virtual angular rotation at x = 0. Since y = 
x6 + yj and FJ3 = MgL * cos Q, the virtual work becomes 

5W = I [0,( i ' ) (F(f) - F,) + <A;(0)7'o(f)]69; 

2 Mathematical Model 

2.1 Beam Dynamics. The geometry of the rotating flexi
ble beam of length L, mass mh per unit length, and tip mass M„ 
is shown in Fig. 2. A detailed development of the beam dynam
ics is given in Panza (1989). X and Y are inertial coordinates, 
while X is fixed along the beam and yf{x, t) is the flexural 
deflection perpendicular to the beam. At ;c = 0, the beam is 
considered to have general boundary conditions for flexure. The 
unit vectors ê  and ty are fixed to the rotating beam with deriva
tives relative to XF given by 

dt 

dB_ 

dt 

dty 

dt 
de 
dt 

(1) 

where 0 is the angle of rotation of the base of the beam as if it 
were a rigid body. The position vectors and their derivatives 
for a beam element and tip mass are given by 

r = xe^ + yjt. 

dr de 
dt ^^ dt 

djA de 
^ — + ^ le. 

dt dt / 

(2) 

(3) 

The beam and tip mass kinetic energy is given by 

+ [b F(t) - MgL* cos e + r„(r)]<$(9 
N+l 

I QM, (9) 

Combining Eqs. ( l ) - ( 9 ) , Lagrange's equations of motion re
sults in a system of Â  -1- 1 nonlinear ordinary second-order 
differential equations 

(10) 

Beam Flexure 
Relative to 

Rigid Body Motion 

Beam Rigid 
Body Motion 

N ^ T^(t ) 

Fig. 2 Schematic of rotating flexible beam 
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where inertia matrix M, stiffness matrix K, and input vector/„ 
are given by 

M = 
Jo 

I symmetric 

(N XN) (NX 1) 

N 

[/Mfc + M^6(x - L)]x<l>iix)dx J + "^ qj 

(1 X AO 

K 

ijjli 

(NXN) 
0 

(IXN) 

0 

(NX 1) 

0 
(11) 

/, = 

<t),(b)F(t) + <l}'i(0)To(t) + (^) q, - (j>i(b)F, 

(NX 1) 

bF(t) + TM) - 2 ^ Y . q , ^ - MgL* cos 0 
at ,^, at 

where UJM are the beam natural frequencies and J is the total 
mass moment of inertia about the base. The first N equations 
are associated with beam flexural modal coordinates while the 
last equation is associated with beam rigid body motion. The 
off-diagonal terms in the mass matrix account for inertial cou
pling between the rigid body motion and beam flexural modes. 
These terms provide the orthogonality condition between the 
rigid body mode x and the flexural mode ^, (x). For an actuator 
input T„(t), the local x = 0 boundary condition becomes that 
for a cantilevered beam and these terms are non-zero. For an 
actuator input F ( 0 , the local x = Q boundary condition becomes 
that for a hinged beam and these terms are zero. F(t) supplied 
by a hydraulic actuator is the case investigated in this paper. 
Nonlinear terms appear in the input vector /„ in the form of 
centrifugal and Coriolis type forces due to the interaction of 
flexural and rigid body coordinates. The combination of slow 
beam dynamic response and low flexural vibrations generally 
makes these nonlinear terms small. 

Rayleigh beam damping may be included by adding the term 
D dwidt to the left side of Eq. (10). The D matrix has the 
same form as the K matrix in Eq. (11) but with the N X N 
diagonal matrix consisting of elements l^bi'jJin where (,u are 
beam modal damping factors (Meirovitch, 1990). 

2.2 Actuator Dynamics. From Fig. 1 the actuation force 
for a rigid piston rod and piston of area A,, is F(t) 
cos a where the angle a is a function of 0 given as 

cos a. = 
sin (6* + y) 

1 + 

pA„ X 

(12) 

2 I - I cos (6 + 7) 

For large motions of the mechanism, this geometric nonlinearity 
represents the most significant nonlinearity in the overall sys
tem. The hydraulic cylinder and flow line dynamics from servo-
valve to cylinder have been derived by Panza and Mayne (1989) 
and for the case of negligible fluid inertia are given by 

dt R^ ' dt R' 
(13) 

where Ap is the piston area, C is the fluid capacitance of cylinder 
and flow lines, and R is the fluid resistance for the flow lines 
plus resistance control valves. The piston velocity dy^/dt may 
be expressed in terms of the beam velocity at x = b 

dyp 
dt 

dy(b, t) 

dt cos a 

(udO v ^ / , . x = [b~^^Mb) dqi 
(14) 

The piston velocity couples the hydraulic cylinder dynamics to 
the beam dynamics. 

The dynamics of the servovalve from the control input M„ to 
the output p^ are generally nonlinear. For this study, where the 
focus is on how actuator-beam interaction affects the control, 
a simple first order linear model may be appropriate. Panza 
(1989) has shown that a high gain pressure feedback scheme 
may be used to linearize the servovalve and represent its dynam
ics as a first order system. The resistance control valves are 
proposed to be adjustable in-line flow control valves with resis
tance continuously variable via input M« simultaneously applied 
to both valves. In general, flow control valve dynamics are 
higher order and may cause additional oscillations. To be con
sistent with the scope of this study, these oscillations are consid
ered insignificant and a linear first order model is used. These 
active in-line valves make the resistance R in the actuator Eq. 
(13) time dependent with an initial value equal to the resistance 
used for small motion studies. The first-order linear models for 
servovalve dynamics and for the fluid resistance time depen
dence resulting from the active resistance control valves are 
given by 

dp„ 

dt 
-f p„ = K„u„ 

dR „ 
TR— + R 

dt 

KRUR 

(15a) 

(15^^) 

where r ' s , K'&, and M'S represent valve time constants, gains, 
and control inputs, respectively. Since the flow lines including 
resistance control valves from servovalve to cylinder are sym
metrical, the one Eq. (15fc) may be used to represent the dynam
ics of the total hydraulic resistance in the system. The general 
form of the complete beam-actuator-valve system equations 
may be written as 

~=f(x) + Bu 
dt 

(16) 

where / i s a 2yV + 5 element nonlinear vector function of a IN 
+ 5 element state vector x 

-quO 
dqi 

dt 

dqn dd 

dt dt 
PP.R 

M is a 2 X 1 input vector u = [U„URY^ and B is a (IN -h 5) X 
2 element matrix. Use will be made of a linearized system about 
the starting point Xo defined for q, = 6 = dqjdt = dd/dt = 0, 
P = Po, Pv = P«o, and R = R„. 

dx 

'dt 
= Ax + Bu (17) 

where 

A = - ^ 

3 Actuator Tuning and Control 

A reference dynamic system may be defined as one with a 
rigid beam, negligible fluid capacitance, no gravitational force, 
and a fast servovalve with negligible response time. Applying 
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the linearized Eqs. (17) gives a first-order system in the beam 
angular velocity ui with valve pressure />„ as input 

J h RAl cos^ ab^u! = Ap cos abp„ 
dt 

(18) 

A dimensionless actuator-flexible beam interaction parameter 
KB is defined as the ratio of the fundamental beam flexural 
natural frequency of vibration to the corner frequency of the 
reference dynamic system in Eq. (18) 

Ks = 
OJbl 

RAl cos' ab^lJ 
(19) 

The open-loop behavior of a linear flexible beam-hydraulic ac
tuator system with respect to KB has been reported in Panza and 
Mayne (1994), where particular values of KB have been shown 
to lead to good dynamic response with small beam vibrations. 

A simple position control scheme consisting of feedback of 
the total angle of rotation at the base is used as a basis for 
control design via actuator tuning 

Uv — Kp(dj — Or) (20) 

where ft; is the desired angular position, Kp is the ampUfier 
gain, and the actual beam angle is given by 

N 

6r=e + I ^,'(0)4, 
1=1 

The use of actuator tuning to obtain good closed-loop behavior 
is based on having a certain effective KB value during system 
transients. For small motions modeled with a linearized system, 
a is considered constant and a constant R may be selected to 
provide a desirable constant KB value which provides for good 
behavior. 

If for the linear case, a desirable KB is not possible due to 
constraints in parameter selection, then the addition of a minor 
loop feedback M„ to the servovalve input may provide an addi
tional parameter leading to achieving an effective desirable KB 
value. Feedback of the total velocity at the actuator attachment 
point is one possibility for this minor loop. The motivation for 
velocity feedback can be seen by considering actuator Eqs. 
(13 ) - (15 ) for the case of a fast servovalve (r„ = 0) and a 
servovalve control input u^, = Kp(d^ — 0j-) + u„, 

RC^ + p + RAp 
dy(b, t) 

dt 
KM,. 

= KKp{e,-er) (21) 

Since the reference system comer frequency from Eqs. (18) and 
(19) originates from the term in Eq. (21) with fluid resistance 
coefficient R, a control «„ with the same form as this term can 
provide an effective new fluid resistance for a desirable actuator-
flexible beam interaction parameter KB . Thus u^ can be consid
ered as 

R„,Ap cos a dy(b, t) 

K. 
whereby 

KB 

dt 

1 

= ±K„ 
dyjb, t) 

dt 
(22) 

R + R^ 

The minor loop feedback gain K^ is proportional to an effective 
additional resistance R^ and is adjusted as required to provide 
the desirable effective constant KB for small motions. If the 
actual resistance is too low such that the KB value is larger than 
desired, then negative velocity feedback may be used to de
crease KB • If the actual resistance is too large such that the KB 
value is smaller than desired, then positive velocity feedback 
may be used to effectively reduce the resistance and increase 

KB . Recall, of course, that this assumes that valve dynamics do 
not significantly effect the results. 

For large motions, the geometric nonlinearity tends to change 
the actuator-flexible beam interaction parameter KB with move
ment. Since KB is changing during operation of the general 
nonlinear system, the linear system schemes above may be ef
fective only from ^ = 0 to some 6 where cos a rapidly diverges 
from its value at ^ = 0. The implementation of a variable 
resistance strategy via an active control valve may compensate 
for this geometric nonlinearity and provide for a near constant 
KB throughout the dynamic process. The desired variable resis
tance for constant K„ is obtained from Eq. (19) and is given 
by 

Ri6) = R{Q) 
cos' a (0) 

cos 'a{6) 
(23) 

whereby the resistance control valves input for Eq. (15fo) is 
given by 

MR = 
RiO) 

K, 
(24) 

Except for the short (i.e., with small TK) control valve transient, 
the effective actuator-flexible beam interaction parameter be
comes KB = KB {6 = 0) , which may be determined as in the 
linear system model. The resulting interactive beam-actuator-
control system is nonlinear but contains active actuator tuning 
designed for the purpose of providing an effectively linear and 
well behaved dynamic response according to the proper KB 
value. 

4 Numerical Results 
A 1.22 m long steel beam with 4.76 mm by 38.1 mm cross 

section, inertia J = 0.934 kg-m', and pinned-free boundary 
conditions (i.e., !'„(/) = 0, A/„ = 0) is oriented in a horizontal 
plane and excited by a 18.0 mm diameter hydraulic actuator. 
The geometry of the actuator from Fig. \ i& b = QAIA ra, d = 
0.326 m, and y = 1.21 rad, which gives a = 0 for 6 = 0. 
This is the same beam and actuator geometry used for the 
experimental investigation in Panza and Mayne (1994). The 
fundamental natural frequency of vibration for the pinned-free 
beam is 11.2 Hz and the beam modal damping factors are as
sumed to be 0.01. Valve time constants are considered small at 
0.003 seconds and servovalve gain is 15 psig/volt. Outputs of 
interest include the tip flexural deflection yf{L,t) for four beam 
flexural modes, and the total motion of the tip of the beam 
defined as the sum of arc length produced by the rigid body 
component 9{t) and the tip flexural deflection yf{L, t) 

where 

Yr,P = L9{t)+yf{L,t) 

yf(L,t) = 2<t>i(L)qi(t) (25) 

The total tip motion defined above is presented instead of the 
total beam angle to provide a direct assessment of the effect of 
beam vibration on tip positioning. To demonstrate how actuator 
tuning may improve dynamic response, a transient response 
goal of minimal overshoot with the fastest possible response 
for YTIP is considered. 

Baseline open loop responses of the linearized system for a 
suddenly opened servovalve are shown in Fig. 3 for three KB 
values and hydraulic parameters given in Table 1. The simula
tions are for four beam flexural modes which was considered 
accurate for open-loop responses (Panza, 1989). It is clear that 
the best combination of fast angular velocity (wj- = ddj/dt) 
response and low rapidly decaying tip vibration is for the inter
mediate value of KB = 6. At this value of KB, the beam is 
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Fig. 3(a) Open-loop angular velocity 
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Fig. 3(b) Open-loop tip flexural deflection 
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Fig. 4(a) Total tip motion for simple position control 

Fig. 4(b) Tip flexural deflection for simple position control 

coupled to the actuator in a manner which permits beam vibra
tions to be readily damped in the dissipation mechanism of 
the actuator while still providing for a relatively fast dynamic 
response. This open-loop behavior for a linear system has been 
thoroughly investigated in Panza and Mayne (1994). The effect 
of KB in actuator tuning for closed-loop tip position control is 
now presented for the numerical example. 

4.1 Linearized System Control. Figure 4 gives a com
parison of the simple closed-loop position control of Eq. (20) 
for the three KB values and a desired position of 7r/4 radians 
modeled as a step input command. Several iterations indicated 
that four beam flexural modes were also appropriate for this 
closed loop study. The Kp values were chosen by an iterative 
procedure such that all three tip motion responses have similar 
rise times in an average sense. However, only the intermediate 
KB = 6 response occurs without overshoot. Additionally, KB = 
6 provides the lowest vibration amplitude and fastest decay of 
beam vibrations. The oscillations for the KB = 0.6 case occur 
at approximately 2.8 Hz which is similar to the fixed-free beam 
fundamental natural frequency rather than the pinned-free fre
quency of II.2 Hz. The effect of actuator dynamics effectively 
changing the beam vibration frequency in the overall system 
has also been reported by Sah and Mayne (1990). The transient 
behavior of the total beam angle 9T for the three KB cases is 

Kn 

0.6 
6.0 

16.0 

Table 1 Hydraulic parameter 

R (N-s/m^) 

13 e 10 
1.23 e 10 
0.49 e 10 

values 

C (mVN) 

1.72 e - 13 
8.88 e - 13 
8.59 e - 13 

similar to the total tip motion Ynp. The linearized system is a 
reasonable model for 0 ^ -irIA since from Eq. (12), cos a(Q) 
= 1 and cos a (7r /4 ) = 0.77. This results in a 30 percent increase 
in KB which would not significantly affect the selection of KB 
= 6 as a means of tuning the actuator to provide for an overall 
favorable system response. 

A deeper insight into the concept and performance of actuator 
tuning may be obtained by comparing the tuned actuator case 
with an untuned actuator optimally controlled with a state feed
back Linear Quadratic Regulator (Kirk, 1970). Defining a posi
tion error e = 6a — 6 s& & state variable instead of 0, the cost 
functional 

I Jo-\ (x QoX + u„R„u„)dt (26) 

is minimized by solving the algebraic Matrix Ricatti equation 

PA + A'^P - PBR:'B^P + Q„ = 0 (27) 

for the control M„ = -R^^B^Px. Qo and Ro are selected to 
provide a total tip motion close to the KB = 6 case in Fig. 4{a) 
while also having well damped tip vibrations similar to Pig. 
4(fo). Figure 5 gives a comparison of the passively tuned KB = 
6 case of simple position feedback with the case of an optimally 
controlled state feedback untuned KB = 0.6 system. Also given 
in Fig. 5 is the case of an originally untuned KB = 0.6 system 
with simple position control plus the positive velocity feedback 
of Eq. (22) designed with R„, = 0.9 to provide an effective KB 
= 6 system. The three systems in Fig. 5 are designed to give 
essentially the same total tip motion as the tuned KB = 6 case 
in Fig. 4 (a ) . The tip flexural vibrations shown in Fig. 5(a) are 
also similar. However, Fig. 5{b) shows that the control input for 
both the optimal state control and the positive velocity feedback 
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KB=0.6 Optimal Control 
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Fig. 5(a) Tip flexural deflection for three controllers 
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Fig. 5(b) Control input for three controllers 
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Fig. 6(a) Tip flexural deflection for high KB case 

Ka=16.0 Negative Velocity Feedback 

•if^ 

Fig. 6(b) Control input for high Kg case 

control acting on the Kg = 0.6 system is much higher than that 
for the simple control acting on the tuned Ki, = 6 system. The 
results in Fig. 5 also indicate that if the actuator cannot be tuned 
by hydraulic resistance selection and high control effort can be 
tolerated, then simple velocity feedback may be an effective 
alternative to full state feedback control. Additionally, if the 
original system has a low Kg value, then positive velocity feed
back designed for effective actuator tuning rather than the nor
mally used negative velocity feedback is the means of providing 
the proper amount of system damping for good overall perfor
mance. 

For the case where KB = 16, negative velocity feedback may 
be combined with a simple position control to provide a tip 
response similar to the Kg = 6 case. The negative velocity 
feedback has the effect of effectively decreasing Kg via Eq. 
(22). Figure 6 gives a comparison of the Kg = 16 system 
(position gain Kg = 16 and velocity gain K„ = 6.7) and the Kg 
= 6 system with just position control. The implication is that 
the negative velocity feedback may be sufficient for the high 
Kg system because the magnitude of the control effort shown 
in Fig. 6(b) is similar to the Kg = 6 system. A concern may 
be that this control effort contains a potentially harmful high 
frequency oscillatory component that may result from the poorly 
damped beam vibration due to little actuator interaction in this 
high Kg region, especially for higher-order modes (Panza and 
Mayne, 1994). 

4.2 Nonlinear System Control. The effect of the nonlin
ear beam dynamic terms in Eqs. (10-11) and the nonlinear 
actuator force angle cos a in Eq. (12) are evaluated for the 
passively tuned (constant resistance control valve setting) actu
ator case of Kg - 6.0 in the simple position control scheme. 
Active actuator tuning (continuously varying resistance control 

valve) may be implemented via the variable resistance control 
given in Eq. (24) designed to provide constant Kg = 6 value 
during movement. For the Kg = 6 case, the beam flexural re
sponses q, are well damped and with the moderate response 
speed for the numerical example, the beam dynamics nonlinear 
terms are small compared to the actuator angle term. Figure 7 
gives the behavior of cos a as a function of positioning angle 
$. For the case of positioning to a small desired angle of 7r/4, 
the overall effect of the nonlinear terms on tip transient motion 
is small as shown in Fig. 8. The case of positioning to a large 
desired angle of 0.9 7r/2, where the actuator angle significantly 
differs from its initial value at ^ = 0 is shown in Fig. 9. The 
drastic effect of nonlinear terms on both tip flexural vibration 
and tip positioning is evident after a short period of time. The 

10 20 30 40 50 60 

6 (Deg) 

Fig, 7 Actuator/beam angle a versus beam position angle 0 

454 / Vol. 118, SEPTEMBER 1996 Transactions of the ASME 

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dynamics is unstable relative to convergence to the desired 
equilibrium position. As d increases from 0 to 6,i, cos a de
creases and thus KB increases from K,, = 6 to Kg = 15.S. The 
larger KB values result in much less actuator damping for flex-
ural vibrations as can be seen in Fig. 9ib). These vibrations 
prevent the tip motion from settling at the desired equilibrium 
as seen in Fig. 9(a). The resulting tip arc motion is so large 
that the instability would in practice cause the cylinder piston 
to use up its entire stroke and bottom out in the cylinder. How
ever, the variable resistance controller maintains KB = 6 and is 
shown to be very effective in actively tuning the actuator to the 
flexible beam such that the well behaved desirable linear system 
model performance is obtained. Additionally, the overall control 
scheme is based on the low control effort KB system. The vari
able resistance portion is essentially a form of partial feedback 
linearization specifically designed to counteract the nonlinear 
terms from cos a and to maintain a new constant KB = 6 
throughout the motion. 

Linear 
Nonlinear 
Nonlinear, Variable Resistance 

0 0.2 0.4 0.6 08 1 1.2 1.4 IS 1.3 2 

Time (sec) 

Fig. 9(a) Effect of variable resistance controller on total tip motion for 
simple position control to 0.917/2 rad 

5 Conclusions 
A method of tuning a hydraulic cylinder actuator to the dy

namics of a rotating flexible beam mechanism is proposed to 
provide a simple low effort, relatively fast, and accurate posi
tioning control scheme. An integrated complete system model 
consisting of general nonlinear multi-modal flexible beam dy
namics and actuator geometry coupled to hydraulic actuator and 
control dynamics provides the basis for system analysis and 
design. Actuator tuning is accomplished via both passive (con
stant resistance control valve setting) and active (continuously 
varying resistance control valve) implementation of hydraulic 
resistance in the context of a simple angular position feedback 
scheme. Active tuning is applied via a variable hydraulic resis
tance and used to cancel the negative effect of major nonlinear 
dynamics. Numerical results show that actuator tuning based 
on obtaining a particular dimensionless actuator-flexible beam 
interaction parameter leads to a well behaved dynamic response 
with well damped and suppressed beam vibration. Additionally, 
the results indicate that a tuned actuator-load system with a 
simple control scheme provides a much lower control effort 
than a linear optimal control based on a more complex state 
feedback scheme. The results for passive actuator tuning in 
linearized systems are in general agreement with electromag
netic cases in Sah et al. (1993). 

Finally, the results for the continuously variable resistance 
controller imply that active actuator tuning to match the 
flexible member dynamics may be an effective means of 
improving the quality of motion and stabilizing nonlinear 
dynamic effects in mechanisms with flexible members. With 
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Fig. 8 Linear versus nonlinear total tip motion for simple position control 
to 17/4 rad 
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Fig. 9(b) Effect of variable resistance controller on tip flexural deflec
tion for simple position control 

the use of a fully integrated system model, such improve
ments may be obtained through considerations of actuator-
load interaction rather than from direct complex control 
methods. The authors cover only a hydraulic actuation sys
tem but suggest that the tuning concepts may also be applied 
to an electromagnetic actuator system. 
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