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We describe polar homology groups for complex manifolds. The polar k-chains are
subvarieties of complex dimension k with meromorphic forms on them, while the
boundary operator is de ned by taking the polar divisor and the Poincaŕe residue
on it. The polar homology groups may be regarded as holomorphic analogues of the
homology groups in topology. We also describe the polar homology groups for quasi-
projective one-dimensional varieties (a¯ ne curves). These groups obey the Mayer{
Vietoris property. A complex counterpart of the Gauss linking number of two curves
in a three-fold and various gauge-theoretic aspects of the above correspondence are
also discussed.

Keywords: complex manifold; divisor of poles; Poincar¶e residue;
gauge transformations; Poisson structure

1. Introduction

In this paper we describe certain homology groups for complex projective and
one-dimensional quasi-projective manifolds. These polar homology groups can be
regarded as a complex geometric counterpart of singular homology groups in topo-
logy.

The essence of the `polar homology’ theory described below is presented in the
following `complexi cation dictionary’:

a real manifold $ a complex manifold;

an orientation of the manifold $ a meromorphic volume form
on the manifold;

manifold’s boundary $ form’s divisor of poles;

induced orientation of the boundary $ residue of the meromorphic form;

open manifold’s in nity $ form’s divisor of zeros;

Stokes formula $ Cauchy formula;

singular homology $ polar homology:

In short, polar k-chains in a complex projective manifold are linear combinations
of k-dimensional complex submanifolds with meromorphic closed k-forms on them.
The boundary operator sends such a pair (complex submanifold, meromorphic form)
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1414 B. Khesin and A. Rosly

to the pair (form’s divisor of poles, form’s residue at the divisor ), that is, to a (k ¡ 1)-
chain in the same ambient manifold. The square of the boundary operator is zero,
and the polar homology groups are de ned as the quotients of polar cycles over polar
boundaries (see x 3).

While the form’s divisor of poles on a complex manifold is an analogue of the
boundary of a real manifold, the form’s divisor of zeros can be related to the `in nity’
of a real manifold, if the latter is non-compact (see x 4).

This parallelism between topology and algebraic geometry extends to various
gauge-theoretic notions and facts. In particular, we discuss below several problems
related to the correspondence of ®at and holomorphic bundles. Some features of this
correspondence are also present in the papers by Arnold (1971), Frenkel & Khesin
(1996), Losev et al . (1996), Donaldson & Thomas (1998), Thomas (1997), Khesin
(1997) and Khesin & Rosly (1999). Note that the gauge theory related to a version
of the Chern{Simons functional on Calabi{Yau manifolds (see Witten 1995) was a
motivation for the construction of these homology groups and of the relevant notion
of the polar linking number (see x 5; cf. Frenkel & Todorov 2001; Khesin & Rosly
2000).

2. Polar homology of projective manifolds

We start with a heuristic motivation for polar homology and recall (following Khesin
& Rosly 2000) the formal de nition of the corresponding groups in the next section.

(a) A holomorphic analogue of orientation

In order to see why a meromorphic or holomorphic form on a complex manifold can
be regarded as an analogue of orientation of a real manifold, we extend the analogy
between de Rham and Dolbeault cochains (d $ ·@) to an analogy at the level of the
corresponding chain complexes.

Let X be a compact complex manifold and u be a smooth (0; k)-form on it,
0 6 k 6 n = dim X. We would like to treat such (0; k)-forms in the same man-
ner as ordinary k-forms on a smooth manifold, but in the framework of complex
geometry. In particular, we have to be able to integrate them over k-dimensional
complex submanifolds in X. Recall that in the theory of di¬erential forms, a form
can be integrated over a real submanifold provided that the submanifold is endowed
with an orientation. Thus we need to  nd a holomorphic analogue of the orientation.

For a k-dimensional submanifold W » X equipped with a holomorphic k-form !
one can consider the following integral

W

! ^ u

of the product of the (k; 0)- and (0; k)-forms. Therefore, here we are going to regard a
top degree holomorphic form ! on a complex manifold as an analogue of orientation.

(b) The Cauchy{Stokes formula

More generally, if the form ! is allowed to have  rst-order poles on a smooth
hypersurface in W , the above integral is still well de ned. The new feature brought
by the presence of poles of ! manifests itself in the following relation.
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Consider the integral
W

! ^ u, with a meromorphic k-form ! having  rst-order
poles on a smooth hypersurface V » W . Let the smooth (0; k)-form u on X be
·@-exact, that is, u = ·@v for some (0; k ¡ 1)-form v on X. Then

W

! ^ ·@v = 2 º i
V

res ! ^ v: (2.1)

We shall exploit this straightforward generalization of the Cauchy formula as a com-
plexi ed analogue of the Stokes theorem.

In the above formula, res ! denotes a (k ¡ 1)-form on V , which is the Poincar¶e
residue of !. Namely, the form ! can be locally expressed as ! = » ^ dz=z + ", where
z = 0 is a local equation of V in W and » (respectively, ") is a holomorphic (n ¡ 1)-
form (respectively, n-form). Then the restriction » jV is an unambiguously de ned
holomorphic (n ¡ 1)-form on V , and it is called the Poincaŕe residue res ! of the
form !.

(c) Boundary operator

The Cauchy{Stokes formula prompts us to consider the pair (W; !) consisting of
a k-dimensional submanifold W equipped with a meromorphic form ! (with  rst-
order poles on V ) as an analogue of a compact oriented submanifold with boundary.
In the polar homology theory, the pairs (W; !) will play the role of chains, while
the boundary operator will take the form @(W; !) = 2 º i(V; res !). Note that in the
situation under consideration, when the polar set V of the form ! is a smooth (k ¡ 1)-
dimensional submanifold in a smooth k-dimensional W , the induced `orientation’ on
V is given by a holomorphic (k ¡ 1)-form res !. This means that @(V; res !) = 0, or
the boundary of a boundary is zero. The latter is the source of the identity @2 = 0,
which allows one to de ne polar homology groups HPk.

(d ) Pairing to smooth forms

It is clear that the polar homology groups of a complex manifold X should have a
pairing to Dolbeault cohomology groups H0;k

·@
(X). Indeed, for a polar k-chain (W; !)

and any (0; k)-form u, such a pairing is given by the integral

h(W; !); ui =
W

! ^ u: (2.2)

In other words, the polar chain (W; !) de nes a current on X of degree (n; n ¡ k),
where n = dim X. One can see that this pairing descends to (co)homology classes
by virtue of the Cauchy{Stokes formula,

h(W; !); ·@vi = h@(W; !); vi:

Example 2.1. Now we are able to  nd out the polar homology groups HPk of
a complex projective curve Z . In this (and in any) case, all the 0-chains are cycles.
Let (P; a) and (Q; b) be two 0-cycles, where P , Q are points on Z and a; b 2 C.
They are polar homologically equivalent if and only if a = b. Indeed, a = b is
necessary and su¯ cient for the existence of a meromorphic 1-form ¬ on Z, such that
div 1 ¬ = P + Q and resP ¬ = 2 º ia, resQ ¬ = ¡ 2 º ib. (The sum of all residues of a
meromorphic di¬erential on a projective curve is zero by the Cauchy theorem.) Then
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we can write, in terms of polar chain complex (to be formally de ned in the next
section), that (P; a) ¡ (Q; a) = @(Z; ¬ ). Thus HP0(Z) = C.

Polar 1-cycles correspond to all possible holomorphic 1-forms on Z . On the other
hand, there are no 1-boundaries, since there are no polar 2-chains in Z . Hence
HP1(Z) ¹= Cg, where g is the genus of the curve Z .

(e) Polar intersections

One can de ne a polar analogue of the intersection number in topology. For
instance, let (X; · ) be a complex manifold equipped with a meromorphic volume
form · without zeros (its `polar orientation’). Consider two polar cycles (A; ¬ ) and
(B;  ) of complimentary dimensions that intersect transversely in X (here, ¬ and 
are volume forms, or `polar orientations’, on the corresponding submanifolds). Then
the polar intersection number is de ned by the formula

h(A; ¬ ) (B;  )i =
P 2 A \ B

¬ (P ) ^  (P )

· (P )
:

At every intersection point P , the ratio in the right-hand side is the `comparison’
of the orientations of the polar cycles at that point (the form ¬ ^  at P ) with the
orientation of the ambient manifold (the form · at P ). This is a straightforward
analogue of the use of mutual orientation of cycles in the de nition of the topological
intersection number. Note that in the polar case the intersection number does not
have to be an integer. (Rather, it is a holomorphic function of the `parameters’ (A; ¬ ),
(B;  ) and (X; · ).)

Similarly, there is a polar analogue of the intersection product of cycles when
they intersect over a manifold of positive dimension, given essentially by the same
formula (see Khesin & Rosly 2000). Furthermore, one can de ne a polar analogue
of the linking number using the same philosophy of polar chains. We discuss polar
linkings, which are very close in spirit to the polar intersections, in relation to the
Chern{Simons theory at the end of the paper.

Remark 2.2. Most of the above discussion extends to polar chains (A; ¬ ), where
the meromorphic p-form ¬ is not necessarily of top degree, that is, 0 6 p 6 k,
where k = dimC A. To de ne the boundary operator, we have to restrict ourselves
to the meromorphic forms with logarithmic singularities. The corresponding polar
homology groups are enumerated by two indices k and p (0 6 p 6 k). One can see
that the Cauchy{Stokes formula extends to this case as well, if we pair meromorphic
p-forms ! on W with smooth (k ¡ p; p)-forms on X .

3. De¯nition of polar homology groups

(a) Polar chains

In this section we deal with complex projective varieties, i.e. subvarieties of a complex
projective space. By a smooth projective variety we always understand a smooth and
connected one. For a smooth variety M , we denote by « p

M the sheaf of holomorphic
p-forms on M . The sheaf « d im M

M of forms of the top degree on M will sometimes be
denoted by KM .

The space of polar k-chains for a complex projective variety X, dim X = n, will
be de ned as a C-vector space with certain generators and relations.
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De¯nition 3.1. The space of polar k-chains C k(X) is a vector space over C
de ned as the quotient C k(X) = ^C k(X)=Rk, where the vector space ^C k(X) is freely
generated by the triples (A; f; ¬ ) described in (i), (ii) and (iii) below and Rk is
de ned as relations (R1), (R2) and (R3) imposed on the triples.

(i) A is a smooth complex projective variety, dim A = k.

(ii) f : A ! X is a holomorphic map of projective varieties.

(iii) ¬ is a rational k-form on A, with  rst-order poles on V » A, where V is a
normal crossing divisor in A, i.e. ¬ 2 ¡ (A; « k

A(V )).

The relations are as follows.

(R1) ¶ (A; f; ¬ ) = (A; f; ¶ ¬ ).

(R2) i(Ai; fi; ¬ i) = 0, provided that i fi¤ ¬ i ² 0, where dim fi(Ai) = k for all i
and the push-forwards fi¤ ¬ i are considered on the smooth part of i fi(Ai).y

(R3) (A; f; ¬ ) = 0 if dim f(A) < k.

Note that, by de nition, C k(X) = 0 for k < 0 and k > dim X.

Remark 3.2. The relation (R2) allows us, in particular, to deal with pairs instead
of triples, replacing a triple (A; f; ¬ ) by a pair (Â; ^¬ ), where Â = f(A) » X , ^¬ is
de ned only on the smooth part of Â and ^¬ = f¤ ¬ there. Due to relation (R2), such
a pair (Â; ^¬ ) carries precisely the same information as (A; f; ¬ ). (The only point to
worry about is that such pairs cannot be arbitrary. In fact, by the Hironaka theorem
on resolution of singularities, any subvariety Â » X can be the image of some regular
A, but the form ^¬ on the smooth part of Â cannot be arbitrary.)

The same relation (R2) also represents additivity with respect to ¬ , that is,

(A; f; ¬ 1) + (A; f; ¬ 2) = (A; f; ¬ 1 + ¬ 2):

Formally speaking, the right-hand side makes sense only if ¬ 1 + ¬ 2 is an admissible
form on A, that is, if its polar divisor div 1 ( ¬ 1 + ¬ 2) has normal crossings. However,
one can always replace A with a variety ~A, obtained from A by a blow-up, º : ~A ! A,
in such a way that º ¤ ( ¬ 1 + ¬ 2) is admissible on ~A, i.e. div 1 ( ¬ 1 + ¬ 2) is already a
normal crossing divisor. (This is again the Hironaka theorem.) Relation (R2) says
that (A; f; ¬ 1) + (A; f; ¬ 2) = ( ~A; f ¯ º ; º ¤ ( ¬ 1 + ¬ 2)).

De¯nition 3.3. The boundary operator @ : C k(X) ! C k¡1(X) is de ned by

@(A; f; ¬ ) = 2 º i
i

(Vi; fi; resVi
¬ )

(and by linearity), where Vi are the components of the polar divisor of ¬ , div 1 ¬ =

i Vi, and the maps fi = f jVi
are restrictions of the map f to each component of

the divisor.

Theorem 3.4 (Khesin & Rosly 2000). The boundary operator @ is well
de¯ned, i.e. it is compatible with the relations (R1), (R2) and (R3). Moreover, @2 = 0.

y See, for example, Gri¯ ths (1976) for the de nition of the push-forward (or trace ) map on forms.
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For the proof, we refer to Khesin & Rosly (2000). Note that, having proved com-
patibility, the relation @2 = 0 becomes nearly evident. Indeed, it su¯ ces to prove
it for normal crossing divisors of poles. In the latter case, the repeated residue at
pairwise intersections di¬ers by a sign according to the order in which the residues
are taken. Thus the contributions to the repeated residue from di¬erent components
cancel out.

De¯nition 3.5. For a smooth complex projective variety X , dim X = n, the chain
complex

0 ! C n(X)
@¡! C n¡1(X)

@¡! @¡! C 0(X) ! 0

is called the polar chain complex of X. Its homology groups, HPk(X), k = 0; : : : ; n,
are called the polar homology groups of X .

Remark 3.6. As we mentioned before, one can similarly de ne the polar homology
groups HPk;p(M ) for the case of p-forms on k-manifolds, i.e. for the forms of not
necessarily top degree, p 6 k. Instead of meromorphic k-forms with poles of the  rst
order, we have to restrict ourselves to p-forms with logarithmic singularities, keeping
the de nition of the boundary operator @ intact.

4. Polar homology for a± ne curves

In the preceding section we introduced polar homology of projective varieties. From
the point of view of topological analogy (cf. x 1), the projective varieties play the role
of compact spaces. It would be useful, of course, to also have a consistent analogue of
homology of arbitrary, i.e. not necessarily compact, manifolds. It is natural to expect
that this latter role is played by Zariski open subsets in projective varieties, that
is, by quasi-projective varieties. This is indeed the case and the de nition of polar
homology can be extended to the quasi-projective case, so that the polar homology
groups obey certain natural properties expected from the topological analogy. In
particular, they obey the Mayer{Vietoris principle.

To simplify the exposition, we shall describe here the case of dimension one only,
i.e. that of a¯ ne curves.

Let X be an a¯ ne curve and ·X ¼ X be its projective closure. We shall de ne the
polar chains for the quasi-projective variety X as a certain subset of polar chains for
·X , but the result will depend only on X and not on the choice of ·X . Let us denote
by D the compacti cation divisor, D = ·X n X . By di¬erentials of the third kind on
a complex curve, we shall understand, as usual, meromorphic 1-forms, which may
have only  rst-order poles.

De¯nition 4.1. The space C 0(X) is the vector space formed by complex linear
combinations of points in X . It is a subspace in C 0( ·X).

The vector space C 1(X) is de ned as the subspace in C 1( ·X) generated by the
triples (A; f; ¬ ), where A is a smooth projective curve, f is a map f : A ! ·X and ¬
is a di¬erential of the third kind on A that vanishes at f ¡1(D) » A.

Proposition 4.2. The spaces C k(X), k = 0; 1, form a subcomplex in the polar
chain complex ( C ¤ ( ·X); @), which depends only on the a±ne curve X and not on the
choice of its compacti¯cation, the projective curve ·X.
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g = 0 g = 1 g > 1

Z is polar orientable
(with polar boundary):
there exists a 1-form
with two simple poles
and without zeros,

hp0 (Z) = 1;

hp1 (Z) = 0;

Z is polar orientable
(without a polar
boundary): there
exists a 1-form
without zeros or poles,

hp0 (Z) = 1;

hp1 (Z) = 1;

Z is not polar orientable:
a generic holomorphic
1-form has 2g 2 zeros,

hp0 (Z) = 1;

hp1 (Z) = g:

Figure 1. A smooth projective curve Z of genus g. (A rational curve is an analogue of a closed
interval with two boundary points. An elliptic curve is an analogue of a circle. Higher genus
curves correspond to graphs.)

g = 0 g = 1 g > 1

hp0 (Z n fP g) = 2;

hp1 (Z n fP g) = 0;

hp0 (Z n fP g) = 1;

hp1 (Z n fP g) = 0;

hp0 (Z n fP g) = 1;

hp1 (Z n fP g) = g 1:

Figure 2. A smooth projective curve without a point, Z n fP g.

The resulting homology groups of the chain complex ( C ¤ (X); @) are denoted as
before by P Hk(X) and are called polar homology groups of X also in this case of an
a¯ ne X .

Example 4.3. Let us consider a smooth projective curve of genus g without
a point, Z n fP g. Then, for the dimensions of polar homology groups, hpk(X) =
dim HPk(X), we get

hp0(Z n fP g) = 2; hp1(Z n fP g) = 0; g = 0;

hp0(Z n fP g) = 1; hp1(Z n fP g) = g ¡ 1; g > 1:

Indeed, the space HP1(Z n fP g) is the space of holomorphic 1-di¬erentials on Z that
vanish at P . To calculate HP0(ZnfP g) in the case g > 1, it is su¯ cient to notice that
for any two points Q1; Q2 2 Z n fP g, the 0-cycle (Q1; q1) + (Q2; q2) is homologically
equivalent to zero if and only if q1 + q2 = 0 (the same condition as in the case of a
non-punctured curve, cf. example 2.1). In the case of g = 0, an analogous statement
requires three points to be involved (unlike the case of a non-punctured projective
line): the corresponding 1-form on CP1 has to have at least one zero, and hence at
least three poles. We collect the results about the curves in  gures 1 and 2 (where we
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g = 0
hp0 (Z n fP; Qg) = 3;

hp1 (Z n fP; Qg) = 0;

g = 1
hp0 (Z n fP; Qg) = 2;

hp1 (Z n fP; Qg) = 0;

g > 1, P; Q are generic
hp0 (Z n fP; Qg) = 1;

hp1 (Z n fP; Qg) = g 2;

g > 1, P + Q is special
hp0 (Z n fP; Qg) = 2;

hp1 (Z n fP; Qg) = g 1:

Figure 3. A smooth projective curve without two points, Z n fP; Qg.

depict the complex curves by graphs, such that polar homology groups of the curves
coincide with singular homology groups of the corresponding graphs).

In a similar way, for a smooth projective curve without two points, Z n fP; Qg,
we get the results summarized in  gure 3. Here, one has to distinguish the case of
generic points P and Q, and the case when P + Q is a special divisor and there are
more 1-di¬erentials with zeros at P , Q than generically.

Theorem 4.4 (The Mayer{Vietoris sequence). Let a complex curve X (either
a±ne or projective) be the union of two Zariski open subsets U1 and U2, X = U1[U2.
Then the following Mayer{Vietoris sequence of chains is exact:

0 ! C k(U1 \ U2)
i¡! C k(U1) © C k(U2)

¼¡! C k(X) ! 0:

Here, the map ¼ represents the sum of chains,

¼ : a © b 7! a + b;

and the map i is the embedding of the chain lying in the intersection U1 \ U2 as a
chain in each subset U1 and U2,

i : c 7! (c) © ( ¡ c):

This implies the following exact Mayer{Vietoris sequence in polar homology:

! HPk(U1 \ U2)
i¡! HPk(U1) ©HPk(U2)

¼¡! HPk(X) ! HPk¡1(U1 \ U2) ! :

The proof of this theorem in the case of curves readily follows from de nitions of
polar homology groups (by using a resolution if the curve is singular). One can see
that such a proof essentially repeats the considerations with topological homology
of appropriate one-dimensional cell complexes (i.e. graphs), as it is illustrated in
examples 2.1 and 4.3, as well as in  gures 1{3 above.

Phil. Trans. R. Soc. Lond. A (2001)



Polar homology and holomorphic bundles 1421

5. Connections and gauge transformations on
complex curves and surfaces

The same philosophy of holomorphic orientation can be applied to  eld-theoretic
notions in the following way. Suppose we have a functional

S(’) =
M

L(’; @j’)

on smooth  elds ’ (e.g. functions, connections, etc.) on a real (oriented) manifold
M , and this functional is de ned by an n-form L, which depends on the  elds and
their derivatives.

Then, on a complex n-dimensional manifold X equipped with a `polar orientation’,
i.e. with a holomorphic or meromorphic n-form · , a complex counterpart SC of the
functional S can be de ned as follows:

SC(’) =
X

· ^ L(’; ·@j’):

Here, ’ stands for smooth  elds on a complex manifold X . Now the (0; n)-form L is
integrated against the holomorphic orientation · over X.

Furthermore, the interrelation between the extremals of the real functional S(’)
(on smooth  elds) on the real manifold M and the boundary values of those  elds
on @M (cf., for example, Schwarz 1998) is replaced by the analogous interrelation
for the complex functional SC(’) (still on smooth  elds) on (X; · ), i.e. a com-
plex manifold X equipped with polar orientation · , and on its polar boundary,
@(X; · ) = 2 º i(div 1 · ; res · ).

Below we demonstrate some features of the above-mentioned parallelism for gauge
transformations and connections on curves and surfaces (cf. Donaldson & Thomas
1998; Khesin & Rosly 1999 for other examples).

(a) A± ne and double-loop Lie algebras

Our  rst example is the correspondence between the a¯ ne Kac{Moody algebras
on a circle (R case) and the Etingof{Frenkel Lie algebras of currents over an elliptic
curve (C case) (see Etingof & Frenkel 1994).

We will use the following notations throughout this section. Let G be a simple
simply connected Lie group that is supposed to be compact in the R case and complex
in the C case; g = Lie(G) its Lie algebra. Fix some smooth vector G-bundle E over a
manifold M (either real or complex). The notation GM (respectively, gM ) stands for
the Lie group (respectively, Lie algebra) of C 1 -smooth gauge transformations of E .

De¯nition 5.1.

(R) An ā ne Lie algebra ĝS is the one-dimensional central extension of the loop
algebra gS = C 1 (S1; g) (i.e. the gauge algebra over a circle) de ned by the
following 2-cocycle:

c(U; V ) =
S1

tr(U dV ) for U; V 2 gS :

Phil. Trans. R. Soc. Lond. A (2001)
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(C) An elliptic (or double-loop) Lie algebra ĝE is a one-dimensional (complex)
central extension of the gauge algebra gE over an elliptic curve E by means of
the following 2-cocycle,

c(U; V ) =
E

¬ ^ tr(U ·@V );

where ¬ is a holomorphic 1-form on E (its `holomorphic orientation’) and
U; V 2 gE (see Etingof & Frenkel 1994).

The original de nition in Etingof & Frenkel (1994) was for the case of the cur-
rent algebra gE = C 1 (E; g). However, it is valid in a more general case, which we
need, for the group of gauge transformations of a bundle E not necessarily of degree
zero.

The dual spaces to both ā ne and elliptic Lie algebras have a very natural geo-
metric interpretation. Denote by AM the in nite-dimensional a¯ ne space of all
smooth connections (respectively, of all (0; 1)-connections) in the G-bundle E over
real (respectively, complex) manifold M .

Note that over a real curve all connections are necessarily ®at. Analogously, over
a complex curve every (0; 1)-connection de nes a structure of holomorphic bun-
dle in E (since for such connections the curvature component F 0;2 is identically
zero).

Proposition 5.2.

(R) The space AS := fd + A j A 2 « 1(S1; g)g of smooth G-connections over the
circle S1 can be regarded as (a hyperplane in) the dual space to the a±ne
Lie algebra ĝS : the gauge transformations coincide with the coadjoint action.
Coadjoint orbits of the a±ne group, or the symplectic leaves of the linear
Lie{Poisson structure on the dual space (ĝS) ¤ , consist of gauge-equivalent con-
nections and di®er by (the conjugacy class of) the holonomy around S1 (see,
for example, Pressley & Segal 1986).

(C) The space of (0; 1)-connections f·@ + A(z; ·z) j A 2 « 0;1(E; g)g in the bundle
E over the elliptic curve E can be regarded as (a hyperplane in) the dual
space (ĝE) ¤ of the elliptic Lie algebra. The symplectic leaves of the Lie{Poisson
structure in the dual space (ĝE) ¤ are enumerated by the equivalence classes
of holomorphic G-bundles (or di®erent holomorphic structures in the smooth
bundle E) over the curve E (see Etingof & Frenkel 1994).

Remark 5.3. Feigin & Odesski (1998) found a very interesting class of Pois-
son algebras (as well as their deformations, associative algebras) given by certain
quadratic relations, and associated to a given complex G-bundle E over an elliptic
curve E. It turned out that the symplectic leaves of those Poisson brackets are enu-
merated by the isomorphism classes of holomorphic structures in E , i.e. by the very
same objects as the orbits of elliptic Lie algebras. Therefore, it would be interesting
to compare the transverse Poisson structures to the orbits of double-loop Lie alge-
bras with the transverse structures to the symplectic leaves of the Feigin{Odesski
quadratic Poisson brackets.

Phil. Trans. R. Soc. Lond. A (2001)
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(b) Gauge transformations over real surfaces

Let P be a real two-dimensional oriented manifold, possibly with boundary @P =

j ¡ j . Let AP be the a¯ ne space of all smooth connections in a trivial G-bundle E
over P . It is convenient to  x any trivialization of E and identify AP with the vector
space « 1(P; g) of smooth g-valued 1-forms on the surface,

AP = fd + A j A 2 « 1(P; g)g:

The space AP is, in a natural way, a symplectic manifold with the symplectic struc-
ture

W :=
P

tr( ¯ A ^ ¯ A);

where ¯ is the exterior di¬erential on AP and ^ denotes the wedge product both
on AP and P . The symplectic structure W is invariant with respect to the gauge
transformations

A 7! g¡1Ag + g¡1dg;

where g is an element of the group of gauge transformations, GP , i.e. it is a smooth
G-valued function on the surface P . However, if the surface P has a non-empty
boundary, this action is not Hamiltonian. In this case, the centrally extended group
ĜP of gauge transformations on the surface acts on AP in a Hamiltonian way.

We are interested in the quotient of the subset of ®at connections AP
® » AP

over the gauge groups action of ĜP ,

MP
® = AP

® =ĜP = fd + A 2 AP j dA + A ^ A = 0g=ĜP :

The moduli space MP
® is a  nite-dimensional manifold (with orbifold singularities);

it can also be described as the space of representations of the fundamental group
º 1(P ) in G modulo conjugation.

The manifold MP
® can be endowed with a Poisson structure. Its de nition and

properties can be conveniently dealt with by means of the Hamiltonian reduction
AP ==ĜP .

Theorem 5.4.

(1) If the surface P has no boundary, then the space MP
® of °at G-connections

modulo gauge transformations on a surface P is symplectic (see Atiyah & Bott
1982).

(2) If @P = j ¡ j , then the moduli space MP
®

on a surface P with holes inherits a
Poisson structure from the space of all (smooth) G-connections. The symplectic
leaves of this structure are parametrized by the conjugacy classes of holonomies
around the holes (that is, a symplectic leaf is singled out by ¯xing the conjugacy
class of the holonomy around each hole) (see Fock & Rosly 1993, 1999).

We note that the second part of the theorem claims that the symplectic leaves of
MP

® are labelled by the coadjoint orbits of the a¯ ne Lie algebra on a circle (or of
several copies of the a¯ ne algebra, with each copy situated at a di¬erent boundary
component of the surface P ), since those orbits are parametrized by the conjugacy
classes of holonomies around the circle.
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(c) Gauge transformations over complex surfaces

In this section we present a complex counterpart of the description of the Poisson
structures on moduli spaces. Let Y be a compact complex surface (dimC Y = 2).
Choose a polar analogue of orientation, i.e. a holomorphic or meromorphic 2-form 
on Y . Let  be a meromorphic 2-form on Y , which has only  rst-order poles on a
smooth curve X. The curve X » Y will play the role of the boundary of the surface Y
in our considerations. Moreover, assume that  has no zeros (the situation analogous
to a smooth oriented compact real surface). Then X is an anticanonical divisor in Y
and it has to be an elliptic curve E, or may be a number of non-intersecting elliptic
curves. (Example: Y = CP2 with a smooth cubic as an anticanonical divisor. As a
matter of fact, many Fano surfaces fall into this class.) If it happens that  has no
zeros and no poles (i.e. Y is `oriented, without boundary’), it means that we deal
with either a K3 or an abelian surface.

Let E be a smooth vector G-bundle over Y , which can be endowed with a holomor-
phic structure, and End E be the corresponding bundle of endomorphisms with the
 bre g = Lie(G). Let AY denote the in nite-dimensional ā ne space of smooth (0; 1)-
connections in E . By choosing in E a reference holomorphic structure ·@0, ·@2

0 = 0, the
space AY can be identi ed with the vector space « (0;1)(Y; End E) of (End E)-valued
(0; 1)-forms on Y , i.e.

AY = f·@0 + A j A 2 « (0;1)(Y; End E)g:

We shall often write ·@ instead of ·@0, keeping in mind that this corresponds to a
reference holomorphic structure in E when it applies to sections of E or associated
bundles.

The space AY possesses a natural holomorphic symplectic structure

WC :=
Y

 ^ tr( ¯ A1 ^ ¯ A2);

where  is the `polar orientation’ of Y , while the other notations are the same as
above. The symplectic structure WC is invariant with respect to the gauge transfor-
mations

A 7! g¡1Ag + g¡1 ·@g;

where g is an element of the group of gauge transformations, i.e. the group of auto-
morphisms of the smooth bundle E . Abusing notation, we denote this group by GY .

Again, we will need to centrally extend the group GY of gauge transformations to
make the action Hamiltonian. In the momentum map, the operation of taking the
curvature is replaced by the mapping

A 7!  ^ F 0;2(A) =  ^ (·@A + A ^ A):

When equating the result to zero, instead of the ®atness condition F (A) = 0, we
come to the relation F 0;2(A) = 0, which singles out (0; 1)-connections de ning holo-
morphic structures in E . Denote the space of such ·@-connections by AY

h ol. The set of
isomorphism classes of holomorphic structures in E is represented by the quotient

AY
h ol=ĜY = f·@ + A 2 AY j ·@A + A ^ A = 0g=ĜY :

Analogously to the moduli space of ®at connections on a real surface, we would
like to study the Poisson geometry of the moduli space of holomorphic bundles over
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a complex surface. However, the question of existence and singularities of such a
moduli space is much more subtle. Suppose the bundle E was chosen in such a way
that there exists some version of the moduli space of holomorphic structures in E
(e.g. (semi-)stable bundles). Denote by MY

h ol the non-singular part of that moduli
space. This  nite-dimensional manifold can be equipped with a holomorphic Poisson
structure.

Since MY
h ol is an open dense subset in the space of isomorphism classes of holo-

morphic bundles,
MY

h ol » AY
h ol=ĜY ;

the Poisson structure on MY
h ol can be studied by means of the Hamiltonian reduction.

Theorem 5.5.

(1) If Y is a K3 surface or a complex torus of dimension 2, i.e. if the 2-form
 is holomorphic on Y , then the moduli space MY

h ol
admits a holomorphic

symplectic structure (Mukai 1984).

(2) If  is meromorphic, the moduli space MY
h ol of holomorphic bundles possesses a

(holomorphic) Poisson structure (see A. Bondal (1995, unpublished research),
Bottacin (1995) and Tyurin (1987), where the Poisson structure is given in
intrinsic terms). The symplectic leaves of this structure are parametrized by the
isomorphism classes of the restrictions of bundles to the anticanonical divisor
X » Y (Khesin & Rosly 1999).

Thus the symplectic leaves of the Poisson structure on MY
h ol are distinguished by

the moduli of holomorphic bundles on elliptic curve(s) X , or, similarly, by coadjoint
orbits of the corresponding elliptic algebras ĝX on (the connected components of)
the smooth divisor X » Y .y

The above consideration can be extended with minimal changes to the case of a
non-smooth divisor X, in particular, to X consisting of several components inter-
secting transversally. (Example: Y = CP2 with  = dx ^ dy=xy.) In the latter case,
the corresponding degeneration of the elliptic algebra ĝX can be described in terms
of (several copies of) the current algebra on a punctured CP1.

(d ) Chern{Simons functionals

First, let M be a real compact three-dimensional manifold with boundary P = @M ,
and E a trivial G-bundle over M . The Chern{Simons functional CS on the space of
G-connections AM is given by the formula

CS(A) =
M

tr(A ^ dA + 2
3
A ^ A ^ A):

Extremals of this functional are ®at connections on M . An action functional on
the  elds in three dimensions de nes a symplectic structure on the space of  elds
in two dimensions. (It arises due to the relationship between the boundary values
of the  elds and the solutions to the Euler{Lagrange equations; this is essentially
the Hamiltonian approach to the corresponding variational problem.) In the present

y Note that the choice of isomorphism classes of bundles on X must be subject to the condition that
they arise as restrictions of bundles de ned over Y .
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case, as it is well known (Witten 1989), the corresponding symplectic manifold is the
moduli space of ®at connections MP

® on P = @M .
The path integral corresponding to the Chern{Simons functional can be related

with invariants of links in a three-dimensional manifold (Witten 1989) and, in the
simplest case of an abelian gauge group (G = U (1)), reproduces the de nition of the
Gauss linking number.

The `holomorphic’ counterpart of the Chern{Simons functional,

CSC(A) =
Z

® ^ tr(A ^ ·@A + 2
3
A ^ A ^ A);

suggested by Witten (1995), can be treated to some extent similarly. Here, CSC(A)
is considered as a functional on the space of ·@-connections A 2 AZ in a trivial G-
bundle E over a complex 3-fold Z , where Z is equipped with a meromorphic (`polar
orientation’) 3-form ® without zeros, but may be with poles of the  rst order. In
such a situation, one can apply the arguments similar to the case of the ordinary
Chern{Simons theory, provided that one replaces everywhere the di¬erential d by ·@
and, instead of real boundary, one deals with the polar boundary Y := div 1 ® » Z .
The extrema of CSC(A) are given now by integrable ·@-connections (·@2

A = 0), that
is, by holomorphic bundles over Z (which are counterparts of ®at connections in
three dimensions). Then, at the complex two-dimensional `boundary’, one gets the
symplectic manifold MY

h ol of moduli of holomorphic bundles over a complex surface
Y (as a counterpart of the moduli space of ®at connections in two real dimensions).

The holomorphic Chern{Simons theory in the case of an abelian gauge group G
on a complex simply connected 3-fold Z can be discussed even further, at the level of
path integrals, without much di¬erence with its `real’ prototype (unlike the case of
an arbitrary non-abelian gauge group G, which is much more complicated and still
lacks a rigorous treatment) (cf. Frenkel & Todorov 2001; Thomas 1997).

(e) Polar links

In the abelian case, the quantum holomorphic Chern{Simons theory reproduces
a holomorphic analogue of the linking number. Its de nition can be immediately
found, again, by analogy with the ordinary one.

Let Z be a complex projective three-dimensional manifold, equipped, as above,
with a meromorphic 3-form ® without zeros. Consider two smooth polar 1-cycles
(C1; ¬ 1) and (C2; ¬ 2) in Z , i.e. C1 and C2 are smooth complex curves equipped with
holomorphic 1-forms. Let us take the 1-cycles that are polar boundaries. This means,
in particular, that there exists a 2-chain (S2;  2) such that (C2; ¬ 2) = @(S2;  2).
Suppose that the curves C1 and C2 have no common points and that S2 is a smooth
surface which intersects transversely with the curve C1. Then we de ne the polar
linking number of the 1-cycles above as the polar intersection number (cf. x 2 e) of
the 2-chain (S2;  2) with the 1-cycle (C1; ¬ 1),

`k p olar((C1; ¬ 1); (C2; ¬ 2)) :=
P 2 C1 \ S2

¬ 1(P ) ^  2(P )

® (P )
:

One can show that the expression above does not depend on the choice of (S2;  2), and
has certain invariance properties mimicking those of the topological linking number
within the framework of the `polar’ approach.
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