
Verification of Invariant Properties of Business
Process based on Formal Approach

Shimpei Sasaki
Graduate School of Decision Science and Technology

Tokyo Institute of Technology
Tokyo, Japan

sasaki.s.ag@m.titech.ac.jp

Junichi Iijima
Graduate School of Decision Science and Technology

Tokyo Institute of Technology
Tokyo, Japan

iijima.j.aa@m.titech.ac.jp

Abstract-Recently, the concept of business process
management (BPM) is in the spotlight and it is getting popular to
design, enact and monitor a business process from the viewpoint
of BPM. It often happens, however, that designed business
process models often do not satisfy correctness properties such as
executability, satisfiability and so on. Therefore it is necessary to
check those correctness properties of a business process at its
design phase.

Although most of BPM systems have a functionality of
simulation, it is not based on rigorous mathematical background.
In this paper, we propose an approach to use formal specification
in order to verify invariant properties of a business process
rigorously at the design phase. Toward this goal, firstly, we
define the transformation from a business process model in XML
Process Definition Language (XPDL), which is one of the
standard description of a process in BPM, to the model in VDM
specification language (VDM-SL), which is one of popular formal
specification language for software. Then we verify the invariant
properties of the transformed model with VDM development
support tool called VDMTools.

Keywords-XPDL; VDM-SL; VDMTools; formalization;
verification; invariant

I. INTRODUCTION

Recently, the concept of business process management
(BPM) is getting popular in business context. One of
characteristics of BPM is to repeat the cycle which consists of
process design, system configuration, process enactment and
diagnosis, and improve the target business process
continuously.

Although there are many opportunities to design business
processes, the models of those business processes often do not
satisfy correctness properties such as invariants, executability,
satisfiability and so on.

Verification of a business process at the design phase has a
great advantage; for example, it will shorten time to modify the
model, reduce costs and utilize resources more properly if
correctness properties of the business process model are
verified.

Although most of BPM systems have a functionality of
simulation, it is not assured of the correctness of the designed
model for it is not based on rigorous mathematical background.

In this paper, we propose a formal approach for assuring
invariant properties of a business process at the design phase.
Concretely speaking, we adopt a business process model
described in XPDL and convert it into a formal specification
described in VDM-SL. VDM-SL is one of the well-known
formal specification language used in software development.
One of the distinguished characteristics of VDM-SL is that we
can discuss on the invariant properties of the described system
using the VDM development support tool called VDM Tools.

This paper consists of five sections. In section 2, we
introduce several basic concepts including XPDL and VDM,
and survey researches related to formal approach in BPM. Next,
we define a formal structure of a business process model
described in XPDL and VDM-SL as well. We also define
transformation of a model in XPDL into that in VDM-SL. In
section 4, we discuss on implementation of the transformation
tool developed in this research and show how to verify the
invariant properties of the target business process using VDM-
Tools. Finally, we conclude our research and discuss our future
work in section 5.

II. BACKGROUND KNOWLEDGE

XPDL is an XML-based process definition language
initiated by WfMC (Workflow Management Coalition). Since
XPDL is based on XML syntax, it enables us to interchange
data and integrate web services easily. However, there is a
difficulty to understand a model described in XPDL because
of its XML-based description. Therefore, the graphical
language, BPMN (Business Process Modeling Notation), will
be used in this paper when we show a business process model.

VDM (Vienna Development Method) is a model-oriented
formal method used in systems development. It was developed
in IBM Vienna Laboratory in the mid 1970s. The specification
language of VDM is called VDM-SL (VDM Specification
Language). There is an OO-extension called VDM++. In this
paper, VDM-SL will be used to model business processes.

Since a model described in VDM-SL has two
characteristics, that is, abstractness and rigorousness [1], it can
be verified readily and rigorously.

So far there are several formal approaches in BPM. One of
the representatives is an approach based on Petri net. Although

1-4244-1312-5/07/$25.00 © 2007 IEEE 6037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357582474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approaches based on logical languages are another
representative group [5], [8], it is difficult for people to take
the approach if he/she does not have enough background
knowledge.

χXPDL file

XPDL
formal structure

Γp

VDM-SL
formal structure

ΓVDM

VDM file

ω

Procedure
2.

VDMTools

Procedure
3.

To formal structure To program

Procedure
1.

XPDL
editor

business
process resultχXPDL file

XPDL
formal structure

Γp

VDM-SL
formal structure

ΓVDM

VDM file

ω

XPDL file

XPDL
formal structure

Γp

VDM-SL
formal structure

ΓVDM

VDM file

ω

Procedure
2.

VDMTools

Procedure
3.

VDMTools

Procedure
3.

To formal structure To program

Procedure
1.

XPDL
editor

business
process

Procedure
1.

XPDL
editor

business
process

XPDL
editor

business
process result

Figure 1. Outline

Li and Iijima proposed an approach to check correctness of
a business process described in XPDL after converting it into
XSSL-based expression [8], where XSSL proposed in the
paper is a newly developed language based on Situation
calculus in XML syntax.

In this paper, we focus on to assure invariant properties of a
business process and propose a new approach to verify the
correctness of the business process rigorously with XPDL and
VDM-SL.

III. BUSINESS PROCESS MODELING AND TRANSFORMATION

A. Outline
The outline of verification process of a business process is

shown in Fig. 1.

Step 1: Design a business process model in XPDL.
In this paper, some rules to design the model in XPDL are

assumed to be satisfied. Together Workflow Editor
Community Edition 2.0-2 is used as an XPDL editor in the
above figure.

Step 2: Transform from the model described in XPDL to the
model in VDM-SL.

In Figure 1, there are two transformations; χ and ω,
informal one and formal one, respectively, where χ is based
on ω. Using the formal structure, it is possible to define the
structure of the model and to understand correspondence
between the models.

The formal structure in XPDL is represented by p, that in
VDM-SL by γVDM and corresponding sets are denoted by Γp

and ΓVDM, respectively, where the transformation is
implemented in Java.

Step 3: Verify the model with VDM-Tools.
In this paper, we verify the invariant properties of a target

business process and executability of some activity sequence.

B. The Model in XPDL and Formalization of It
In this paper, we transform XPDL-based business process

into VDM-SL expression and verify the transformed model.

Although there are some ambiguous points in XPDL syntax,
we introduce the following five rules to design XPDL-based
business process model. For the readability, XPDL tags are
described in Sans-Serif font in this paper.

Rule 1: The contents of the activities must be described in the
element Description of Activity.

Rule 2: The invariants of the parameters must be described in
the element Description of DataField after describing
“<invariant>::=”.

Rule 3: If the parameter is the option type, it is to be de-
scribed “<option>” in the element Description of DataField.

Rule 4: If both of “<invariant>::=” and “<option>” are to be
described, it is necessary to write one blank line between them.

Rule 5: Each of two conditions of transitions from a XOR
split is ambivalent.

Concerning Rule 1, 2 and 3, the element Description is not
usually used like that, but for notes in natural language.

A model described satisfying the above rules in XPDL is
formalized as follows:

Definition 1. A formal structure of a business process model
in XPDL is

p = <A, Pm, PV, pms, pvs, conseq, inv, init, Tr>
, where
A: a set of activities,
Pm: a set of parameters,
PV: a set of the values which the parameter has in the process,
pms : A P(Pm), a mapping from an activity to the corre-
sponding parameter set,

pvs : Pm PV, a mapping from a parameter to the corre-
sponding value set,

conseq : A A(PV), a mapping from an activity to its con-
sequence,

inv : Pm A(PV), a mapping from a parameter to its
invariant,

init : Pm Pmp∈ pvs(p) s.t. init(p)∈ pvs(p), a mapping
from a parameter to its initial value,

Tr: a set of transitions, Tr ⊂ A×A×JoT×A(PV), where JoT is
the set of join types and consists of ANDjoin, XORjoin, and
NOTjoin.

P(Pm) denotes the power set of Pm, and A(PV) the set of
conjunctive normal forms with the closed literals defined on
PVn for n N.

Fig. 2 shows the meta-model of the components of XPDL.

1-4244-1312-5/07/$25.00 © 2007 IEEE 6038

Parameter

conseq

Process

Activity

Transition

Join Type

Closed Literal

to

from

Parameter
Value

PV

Pm

A

Tr

pvs

pmsinit

CNF
inv

JoT

A(PV)

Parameter

conseq

Process

Activity

Transition

Join Type

Closed Literal

to

from

Parameter
Value

PV

Pm

A

Tr

pvs

pmsinit

CNF
inv

conseq

Process

Activity

Transition

Join Type

Closed Literal

to

from

Parameter
Value

PV

Pm

A

Tr

pvs

pmsinit

CNF
inv

JoT

A(PV)

Figure 2. Process meta-model for XPDL

C. The Model in VDM-SL and Formalization of It
A state of a business process is represented by a tuple of

values of the variables. Therefore activities of business
processes exactly correspond to operations in VDM-SL since
they change the values of variables in the model.

Although the order of operations is important, there is no
way to represent it explicitly in VDM-SL. Therefore we
introduce flag variables in order to show whether an operation
is finished or not. Each variable is represented as “(operation
name)Status”, and has “nil” (not defined) if the operation is
not finished and while it is represented <done> if it is finished.

The model in VDM-SL based on the above idea is
formalized as follows:

Definition 2. A formal structure of a business process model
in VDM-SL is

γVDM = <O, Var, VV, vars, vvs, inv, init, pre, post>
, where
O: a set of operations,
Var: a set of variables,
VV: a set of the values which each variable has in the process,
vars : O P(Var), a mapping from an activity to the
corresponding variable set,

vvs : Var VV, a mapping from a variable to the
corresponding value set,

inv : Var A(VV), a mapping from a variable to its invariant,
init : Var Varv∈ vvs(v) s.t. init(v)∈ vvs(v), a mapping
from a variable to its initial value,

pre : O A(VV), a mapping from an operation to its pre-
condition,

post : O A(VV), a mapping from an operation to its post-
condition.

P(Var) denotes the power set of Var, and A(VV) the set of
the conjunctive normal forms with the closed literals defined
on VVn for n N.

D. Transformation from the model in XPDL to the model in
VDM-SL
According to Definition 1 and 2, the formal transformation

from a model in XPDL to its corresponding model in VDM-
SL is defined as follows:

Definition 3. A formal structure of a business process model
in XPDL

p = <A, Pm, PV, pms, pvs, conseq, inv, init, Tr>
is transformed by the mapping ω by

ω(p) = <A, Var, VV, vars, vvs, inv, init, pre, post>
, where

Var = Pm ∪ {statusi} (i∈A),
VV = PV ∪ {{done, Δ}},

Δ==
Δ=∪=

∈∀
}{{},}{

},{)(},{)()(
,,

ii

ii

statusinitstatusinv
donestatusvvsstatusipmsiarsv

Aii

post is defined with a∈A as follows:
post(a) = statusaET(done) ∧ conseq(a)

pre is defined with b∈A as follows:
(1) If there is/are a∈A such that (a, b, jot, condab)∈Tr,

pre(b) = statusbET(Δ) ∧ preJOIN(b)
, where

=∧⊕

=∧∧
=∧

=

)(})({

)(})({
)()(

)(

XORjoinjotifconddoneETstatus

ANDjoinjotifconddoneETstatus
NOTjoinjotifconddoneETstatus

bpreJOIN

baai

baai

aba

ii

ii

⊕ represents exclusive OR
(2) If there is no a∈A such that (a, b, jot, condab)∈Tr,

pre(b) = {statusbET(Δ)}

Δ denotes undefined, and statusiET(*) is the predicate

representing that the flag variable of the operation i is equal to
*. {} represents that there is no literal. In order for readability,
some parts are not described in CNF.

IV. INPLEMENTATION OF TRANSFORMATION TOOL AND
VERIFICATION OF THE MODEL

A. Implementation of transformation tool
Based on the mapping defined in 3.4, the transformation

tool is implemented in Java.

After reading the XPDL file, the tool checks every node
and puts the values of the nodes in the variables with DOM.
Then, the values are arranged to the VDM-SL expression, and
output into a new file.

B. Contents of verification
In this paper, the contents of the verification are two points;

the executability of an activity sequence and the satisfaction of
the invariants.

Executability of an activity sequence:

1-4244-1312-5/07/$25.00 © 2007 IEEE 6039

First, the executability of an activity sequence is defined as
follows:

An activity sequence a1, a2, …, an is executable.
⇔ An activity sequence a1, a2, …, an satisfies the following:
1. for every i∈{1, 2, …, n-1},

the contents of a1, a2, …, ai is finished.
the pre-condition of ai+1 is satisfied.

2. the initial state satisfies the pre-condition of a1 where the
initial state is the set of the initial values of all variables
in the process.

Satisfaction of the invariants:
The invariants of the process will be checked for each case.

This is a great advantage of using VDM.

Checking these two points leads to the verification of
correctness of the model.

receive
Order

check
Credit

check
Cash

enter
Order

fill
Order

email
Confirm

finish
Order

receive
Order

check
Credit

check
Cash

enter
Order

fill
Order

email
Confirm

finish
Order

Figure 3. Order process (BPMN)

C. Verification of a case
In order to illustrate our approach described in the previous

sections, let us take an order process shown in Fig. 3 as an
example.

Verification of executability of an activity sequence:
Suppose that we would like to check whether an activity

sequence “receive order”, “check cash”, “enter order”, “fill
order” and “finish order” with order one by cash is executable
or not. In this case, we can do it if we input “print
receiveOrder(1, <cash>), checkCash(),
enterOrder(), fillOrder(), emailConfirm()”
into VDMTools. An activity sequence is executable if it
outputs no error message.

Verification of satisfaction of the invariants:
Suppose that we would like to check whether the

invariant of the parameter cardNumber, that is, the condition
that cardNumber should be three digits if in case that the
quantity is 1, the way to pay is by credit card and the card
number is 1234.

In this case, it outputs the following error message:
(no return value)

C:/order.vdm, l. 17, c. 61:
Run-Time Error 99: State invariant was

broken
C:/order.vdm, l. 59, c. 1:
 Run-Time Error 58: The pre-condition
evaluated to false
…
if we input “print receiveOrder(1, <credit>),
checkCredit(), enterOrder(), fillOrder(),
emailConfirm(), finishOrder()” into VDMTools.
The output message shows that receiveOrder was normally
finished, but pre-condition of the following activities
evaluated false for the invariant of the parameter cardNumber
was broken.

V. CONCLUSION

In this paper, we propose a formal approach to verify
correctness of a business process, especially, invariants of the
process. Firstly, models in XPDL and in VDM-SL are formally
defined and then the transformation is also defined in a formal
way. The transformation tool was implemented in Java. Next,
we illustrate how to verify correctness of the transformed
model with VDMTools, especially with respect to two points;
executability of an activity sequence and satisfaction of the
invariants of a process of an activity sequence.

REFERENCES

[1] J.Fitzgerald and P.G.Larsen, Modelling Systems, Practical Tools
and Techniques in Software Development, Cambridge University
Press, 1998.
[2] CSKsystems, VDMTools VDM-SL Toolbox User Manual, 2006.
[3] VDM INFORMATION WEB SITE, http://www.vdmtools.jp/
[4] W.M.P van der Aalst, A.H.M. ter Hofstede, and Mathias Weske,
“Business Process Management: A Survey”, BPM 2003, LNCS 2678,
Springer, 2003, pp. 1-12.
[5] M. Havey, Essential Business Process Modeling, O’Reilly,
August 2005.
[6] WfMC, Process Definition Interface - XML Process Definition
Language, Document Number WFMC-TC-1025 Document Status -
Final Version 2.00, 2005.
[7] W.M.P van der Aalst, “Patterns and XPDL: A Critical Evalu-
ation of the XML Process Definition Language”, QUT Technical
Report, FIT-TR-2003-06, Queensland, Australia, 2003.
[8] B. Li and J.Iijima, “Formal Verification of XPDL-based Business
Process Definition”, International Journal of Business Process
Integration and Management, 2007., unpublished.

1-4244-1312-5/07/$25.00 © 2007 IEEE 6040

