
Linear Constraints over Infinite Trees

Martin Hofmann and Dulma Rodriguez

Department of Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany

{martin.hofmann,dulma.rodriguez}@ifi.lmu.de

Abstract. In this paper we consider linear arithmetic constraints over
infinite trees whose nodes are labelled with nonnegative real numbers.
These constraints arose in the context of resource inference for object-
oriented programs but should be of independent interest. It is as yet open
whether satisfiability of these constraint systems is at all decidable. For a
restricted fragment motivated from the application to resource inference
we are however able to provide a heuristic decision procedure based on
regular trees. We also observe that the related problem of optimising
linear objectives over these infinite trees falls into the area of convex
optimisation.

Keywords: Constraints, Infinite trees, Resource analysis.

1 Introduction

In this paper we present a new algorithmic problem related to linear arithmetic
over D = R

+ ∪ {∞}. Indeed, it can be seen as a special case of linear arithmetic
with infinitely many variables (with some schematic notation so as to make
instances of the problem finite objects).

While in general linear arithmetic with infinitely many variables is easily seen
to be undecidable (introduce a variable xit for every position i and time t of a
computation on a Turing machine) the question of decidability for our special
case remains open. We do, however, provide a heuristic solution for an important
subcase motivated by practical considerations.

We begin with an informal description of our constraint systems. We have
arithmetic variables that take on values in D = R

+ ∪ {∞} and tree variables
whose values are infinite trees whose nodes are labelled with elements of D. We
fix a finite set L = {�1, . . . , �n} of labels to address the children of a node, e.g.
L = {L,R} for infinite binary trees and L = {tl} for infinite lists.

Such trees can be added, scaled, and compared componentwise; furthermore,
we have an operation ♦(.) that extracts the root label of a tree, thus if t is a tree
expression then ♦(t) is an arithmetic expression. Finally, if t is a tree expression
and l ∈ L then l(t) is a tree expression denoting the l-labelled immediate subtree
of t.

Given a system of constraints built from these constructions we can ask for sat-
isfiability and for values of selected arithmetic variables. Asking for values of tree

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 343–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357582467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

344 M. Hofmann and D. Rodriguez

variables makes no sense in general as these are infinite objects. We can also ask
for the optimum value of some linear combination of the arithmetic variables.

In Figure 1 two infinite trees t1, t2 over label set L = {L,R} are defined. It also
contains two infinite trees over label set L = {tl} which are effectively infinite
lists. Within one and the same constraint system we can only use trees over one
and the same label set. These trees satisfy for example: L(t1) = R(t1) = t1,
t1 � t2, l2 � l1, ♦(t1) = 1, ♦(t2) = 2. We also have t1 + t1 = t2 and 2t1 = t2 and
tl(l1) = l1 + l2.

Now, the constraint system tl(x) � x ∧ ♦(x) ≥ 1 is satisfiable, for example
with x = l1 and its optimum value with respect to the objective c = ♦(x) to be
minimised equals 1. The constraint system L(x) � x ∧ R(x) � x ∧ ♦(x) ≥ 6 is
satisfiable, for example with x = 6t1.

The constraint system ♦(x) ≥ 1 ∧ 2tl(x) = tl(x) is also satisfiable, namely by
x = 10ω, but ♦(x) ≥ 1 ∧ 2tl(x) = tl(x) ∧ x = tl(x), however, is unsatisfiable.

2 2

2 222

2

... ...

t =

L L

RL

R R

2

1

l =2

tl tl tl tl

l =

...tl1 2 3 4 5

1 1 1 1 ...tl tl tl tl

1 1

1 111

1

... ...

L L

RL

R R

t =1

Fig. 1. Some infinite trees

As already mentioned, we currently do not know whether satisfiability of
such constraint systems is in general decidable, but the heuristic method we
shall present covers all the constraint systems given so far. This is because, the
trees witnessing satisfiability were regular in the sense that their set of subtrees
is finite. So, t1, t2, l2 are regular, but l1 is not. Accordingly, a constraint system
like ♦(x) ≥ 1 ∧ tl(x) � x ∧ tl(y) � x + y is not amenable to our heuristic as it
does not admit a regular solution.

In order to decide satisfiability of constraints in general it is tempting to use
Büchi tree automata; however, in order to represent our “arithmetic” trees as a
tree whose nodes are labelled with letters from a finite alphabet, we would have
to represent the numerical annotations using extra branches and then primitive
predicates such as equality cannot be recognised by a Büchi tree automaton.
Indeed, we conjecture that the algebraic structure of arithmetic trees is not
“automatic” in the sense of [BG00].

Nevertheless, we believe that satisfiability of our constraint systems is decid-
able; in support of this conjecture, we can enlist the fact that the set of solutions
to a constraint system is convex in the sense that if t1 and t2 are both solutions
then so is (1 − λ)t1 + λt2 for λ ∈ [0, 1]. Furthermore, constraint systems can
be reduced by algebraic manipulations and elimination steps to canonical forms
from which solutions can be read off.

Linear Constraints over Infinite Trees 345

We encountered these constraint systems as part of our endeavour of devel-
oping an automatic type inference for the object-oriented resource type system
presented in [HJ06,HR09]. Indeed, we were able to reduce the type inference
problem for that system to satisfiability of arithmetic tree constraint systems.
While we do not describe this rather intricate reduction in this paper we try to
give a rough indication of it so as to provide further motivation for the potential
usefulness of arithmetic tree constraint systems.

The type system presented in loc.cit. ascribes refined types to objects in such a
way that a concrete object together with its type defines a nonnegative number—
the potential of that object. The typing rules are formulated in such a way that
the potential of all reachable objects under their current typing furnishes an up-
per bound on the resource usage of any subsequent statement plus the potential of
all reachable objects after its execution. In this way, by telescoping, the potential
of the initial heap configuration furnishes an upper bound on the total resource
usage of a program and this then can be used to read off an input dependent re-
source bound, e.g. in the form of a linear function of the resource consumption of a
program. Through a very coarse lens we can represent the refined type of an object
of some class C with fields L and R also of class C as an arithmetic tree over label
set {L,R}. The potential of such an object is then given as the sum of all non-null
access paths. If, e.g., the “type” of some object o is t2 from Fig. 1 and its L,R fields
are both null then this object carries a potential of 2. If, on the other hand, object
o′ satisfies o′.L = o′.R = o then the potential of o will equal 6 (and not 4 because
ascription of potential is oblivious to aliasing).

In order to infer types one can then introduce an appropriate tree variable
wherever a type is required and generated constraints from side conditions of
typing rules. Constraints of the form t � t′ arise from subtyping, whereas con-
straints of the form t � t′ + t′′ arise from sharing, i.e. multiple use of a variable.

We hope, though, that due to their compact and general formulation our arith-
metic tree constraint systems will find other applications beyond type inference
as well.

We were surprised to find practically no directly related work. One notable
exception is [DV07] where constraint satisfaction problems with infinitely many
variables are introduced and studied. The difference to our work is twofold: first,
the range of individual variables in loc.cit. is finite, e.g. Boolean in contrast to
D in our case; secondly, the access policy is much more general and leads to
undecidability in general. Interestingly, the near absence of related work has
also been noted in loc.cit.

2 Infinite Trees

In this section we present infinite trees labelled with nonnegative real numbers.
Fix a finite set of labels L = {l1, . . . , ln}. The set TL

D
of infinite trees is given

by TL
D

= {t | t : L∗ → D} where D = R
+ ∪ {∞} with 0 ∈ R

+. We will refer
to elements w ∈ L∗ as paths. We write |w| for the length of w, where |ε| = 0
and |lw| = |w| + 1. A tree t′ is a sub-tree of a tree t if there exists w ∈ L∗ so
that t′(p) = t(w p) for all p ∈ L∗. Further, we say that an infinite tree is regular

346 M. Hofmann and D. Rodriguez

if it contains a finite number of different sub-trees. The set TL
D

carries a final
coalgebra structure consisting of the function

〈♦, step〉 : TL
D
→ D× (L → TL

D
)

t �→ 〈t(ε), λl w . t(l w)〉

where step li returns the ith subtree, and ♦ gives the label of the root node tree
[SR10]. We write li as a short notation for step li. For any domain U , every family
of functions lti : U → U and o : U → D defines a unique function h : U → TL

D
,

such that ♦(h(x)) = o(x) and li(h(x)) = h(lti(x)). We define a preorder �
between trees as follows:

Definition 1. Let t, t′ ∈ TL
D
. We define t � t′ coinductively by t � t′ ⇐⇒

♦(t) ≤ ♦(t′) and li(t) � li(t
′) for all li ∈ L.

Alternatively, we can define the same preorder pointwise by:

Definition 2. Let t, t′ ∈ TL
D
. Then t �ind t

′ ⇐⇒ for all w ∈ L∗ . t(w) ≤ t′(w).

Lemma 1. t �ind t
′ ⇐⇒ t � t′.

We define addition of trees (+ : TL
D
× TL

D
→ TL

D
) by: ♦(t + t′) = ♦(t) + ♦(t′)

and li(t+ t′) = li(t)+ li(t
′) and multiplication of trees with a nonnegative scalar

(· : R+ ×TL
D
→ TL

D
) by: ♦(c · t′) = c ·♦(t′) and li(c · t′) = c · li(t′) for each li ∈ L.

Defining a Complete Lattice For the following we recall that the domain
D = R

+ ∪ {∞} is a complete lattice under its usual order by the completeness
axiom for R and because it has top and bottom elements: ∞ and 0. For each

d ∈ D we define ̂d ∈ TL
D

by ♦
(

̂d
)

= d and li(̂d) = ̂d for each li ∈ L. Then,
∞̂ is the top element in TL

D
and ̂0 the bottom. We will show that (TL

D
,�) is a

complete lattice. For each subset of TL
D
, we define its least upper bound and its

greatest lower bound as follows.

–
∧

: P(TL
D
) → TL

D
is totally determined by ♦(

∧

T) = mint∈T (♦(t)) and
li(

∧

T) =
∧

li(T).
–

∨

: P(TL
D
) → TL

D
is totally determined by: ♦(

∨

T) = maxt∈T (♦(t)) and
li(

∨

T) =
∨

li(T).

Lemma 2 (Complete Lattice). Let t ∈ TL
D
and T ⊆ TL

D
. Then:

1. ∞̂ � t and t � ̂0.
2.

∨

T is the least upper bound of T and
∧

T is the greatest lower bound of T .
3. (TL

D
,�) is a complete lattice.

3 Constraints

Next, we consider a system of inequalities among tree expressions and a system of
linear arithmetic constraints. Let X be a fixed, countably infinite set of variables

Linear Constraints over Infinite Trees 347

and Λ be a fixed countably infinite set of arithmetic variables where X ∩Λ = ∅.
We write TAExp to denote the set of tree expressions that represent a path. We
call these expressions atomic. The set TExp denotes expressions that represent
either a path or a sum of paths. We call expressions in TExp, that are not atomic,
compound. Moreover, we write AExp to denote linear arithmetic expressions.
An arithmetic expression is either a number n, an arithmetic variable λ, an
expression representing a potential found at some path ♦(tae) or a sum of two
expressions ae1 + ae2. We build the sets of valid expressions TExp and AExp by
the following grammar, where x ∈ X , n ∈ D, λ ∈ Λ and l ∈ L.

tae ::= x | l(tae) ∈ TAExp
te ::= tae | te+ te ∈ TExp
ae ::= n | λ | ♦(tae) | ae+ ae ∈ AExp
tc ::= te � te ∈ TConstr
ac ::= ae ≤ ae ∈ AConstr

A system of constraints is a set of valid tree constraints and arithmetic con-
straints, i.e. a pair C = (T C,AC) where T C and AC are finite subsets of TConstr
and AConstr respectively. We write Vars(te) ⊆ X for the set of tree variables
that occur in the tree expression te and Vars(ae) ⊆ X ∪ Λ for the set of tree
and arithmetic variables that appear in the arithmetic expression ae. Moreover,
we write Vars(C) for the set of tree and arithmetic variables that appear in C.
Sometimes we write C(x,λ) as a short notation for Vars(C) = x,λ.

Meaning ofConstraints. Let π = (πt, πa) where πt : X → TL
D
and πa : Λ → D.

The meaning of arithmetic expressions π(ae) : D is defined in the obvious way, e.g.
π(λ) = πa(λ) and π(♦(tae)) = ♦(π(tae)). The meaning of tree expressions π(te) :
TL
D
is defined as one might expect, e.g. π(x) = πt(x) and π(l(tae)) = l(π(tae)).

Then, π satisfies a tree constraint te � te′ (written π |= te � te′) if π(te) �
π(te′). Similarly, π satisfies an arithmetic expression ae1 ≤ ae2 (π |= ae1 ≤ ae2) if
π(ae1) ≤ π(ae2). Finally, we say π satisfies a system of constraints C = (T C,AC)
if π |= tc for each tc ∈ T C and π |= ac for each ac ∈ AC.

We say that the variable x occurs only positively in the system of constraints
C (and write C(x+)) when it appears only on the right hand side of constraints.
Conversely, we say that it appears only negatively (and write C(x−)) when it
appears only on the left hand side. Finally, if the variable appears sometimes on
the left, sometimes on the right, we write C(x+, x−).

Lemma 3. Let C(x+) and D(x−) be systems of constraints and t, t̂ ∈ TL
D
with

t � t̂.

1. If π[x �→ t] |= C(x+) then π[x �→ t̂] |= C.
2. If π[x �→ t̂] |= D(x−) then π[x �→ t] |= D.

Given a tree expression te and a path w we define tew : AExp inductively by
teε = ♦(te) and telw = l(te)w. The resulting expression may not be valid, but
it can easily be transformed into an equivalent valid one with the following
transformations

348 M. Hofmann and D. Rodriguez

l(tae1 + tae2) = l(tae1) + l(tae2) ♦(tae1 + tae2) = ♦(tae1) + ♦(tae2) (3.1)

For example, (x+ y)l = ♦(l(x+ y)) is not valid but it is equivalent to ♦(l(x)) +
♦(l(y)). Moreover, we define substitution of tree variables with tree expressions in
constraints C [te/x] as usual and ensure that the resulting constraints are valid,
again by the transformations (3.1).

3.1 Algorithmic Problems

In this section we discuss algorithmic problems regarding a system of constraints
C whose study would be of interest.

Satisfiability. One important problem, with a direct application to type in-
ference for the RAJA typing system[HJ06], is satisfiability. That is, if we have
given a system of constraints, we would like to know whether it is satisfiable.
Moreover, we would like to obtain a valuation π that satisfies the constraints.
Here we give a slightly weaker definition of the satisfiability problem. We are in-
terested in a finite set of arithmetic constraints that is satisfiable iff the system
of constraints C is satisfiable. Since the trees we are studying are infinite, it is
not possible to obtain a valuation πt : X → TL

D
in general. However, we will see

in Section 4 that we can effectively deliver a valuation πt when all the values in
ran(πt) are regular trees.

Reducing the satisfiability problem to the problem of satisfying a finite set of
arithmetic constraints is advantageous because there are effective ways of solving
linear arithmetic constraints. Moreover, we remark that the problem of obtaining
an infinite set of arithmetic constraints equivalent to C is trivial. If we follow
the definition of inequality (�ind) we notice that a set of inequalities over trees
T C =

⋃

i tei � te′i is satisfiable iff the following set of arithmetic constraints
is satisfiable: Γ (T C) = {teiw ≤ te′iw | w ∈ L∗}. In Section 4 we provide an
algorithm for solving satisfiability that is sound in all cases and complete for
constraints systems of a restricted form.

Example 1. Let L = {l} and T C = {x � l(x), l(x) + l(x) � z} and AC = {1 ≤
♦(x)}. The set AC′ = {1 ≤ λ, λ+λ ≤ δ} is equivalent to (T C,AC). This example
can be analysed by our algorithm.

Elimination of a Tree Variable. The problem of eliminating a variable x
from a system of constraints C while keeping the satisfiability of the constraints
(Fig. 2) is interesting for various reasons. The first one is efficiency. Eliminating
variables can reduce significantly the size of a system of constraints. Thus, it is a
good idea to eliminate variables first, and then try to solve the resulting system.
On the other hand, eliminating variables can help in bringing constraints in a
form that is particularly suitable for applying a given algorithm (see Section
4.3). In Section 5 we give an algorithm for variable elimination that, however,
does not succeed in eliminating all variables. If we had an algorithm that solved

Linear Constraints over Infinite Trees 349

Satisfiability
Given: A finite system of constraints C = (T C,AC).
Wanted: A finite set of linear arithmetic constraints AC′ such that: there

is πa with πa |= AC′ iff there is πt such that (πt, πa) |= C.
Optimisation
Given: A finite system of constraints C = (T C,AC) and a linear objective

function f defined on the arithmetic variables.
Wanted: A valuation πa of the arithmetic variables such that (πt, πa) |= C

for some valuation of the tree variables and whenever (π′
t, π

′
a) |= C

then f(π′
a) ≤ f(πa).

Elimination of a tree variable
Given: A finite system of constraints C = (T C,AC) and a variable x ∈ X .
Wanted: A finite system of constraints C′ with x /∈ Vars(C′) ⊆ Vars(C) and

π |= C′ iff ∃t.π[x �→ t] |= C.

Fig. 2. Algorithmic problems

the elimination problem, the algorithm would solve satisfiability as well, since a
finite system of constraints without tree variables is automatically a finite set of
arithmetic constraints.

Example 2. Assume we wish to eliminate y from C = {x � y, y � l(x)}, {1 ≤
♦(y)}. Then our algorithm would return C′ = {x � l(x)}, {1 ≤ ♦(l(x))} which is
equivalent to C. However, our algorithm is not able to eliminate x from C′.

4 Solving a System of Constraints

In this section we present an algorithm for solving a system of constraints C =
(T C,AC). The linear arithmetic constraints AC can be solved easily by an LP-
Solver. Thus, the challenge is to deal with constraints over trees. Our goal is
to reduce the problem of solving these constraints to the problem of solving
a finite set of linear arithmetic constraints. We noticed in last section that the
canonical set Γ (T C) is infinite. But in some particular cases when the constraints
admit regular solutions, we can obtain a finite set of arithmetic constraints. Our
algorithm seeks solutions to the constraints in the case that the trees must also
satisfy some (given) regular structure. When the algorithm is given a regular
structure for the tree variables that occur in T C, that we call a tree schema Ts,
it calculates a finite set of arithmetic constraints. We prove that the algorithm
is sound. Clearly, the algorithm is not complete in the general case since not
all constraints admit a regular solution. Further, we give in Lemma 4 an upper
bound on the size of the resulting set of arithmetic constraints in terms of the
sizes of T C and Vars(T C).

Tree Constraints in Normal Form. We say that tree expressions are in
normal form when they are either atomic or a compound expression of the
restricted form: tae+ tae′. Moreover, we say that a tree constraint tc = te1 � te2

350 M. Hofmann and D. Rodriguez

is in normal form if te1 and te2 are in normal form and only one of them is
compound. Arbitrary tree constraints tc ∈ TConstr can be brought into this
form by introducing new variables, for example the tree constraint x � y+z+w
is equivalent to {x � y + v, v = z +w}. In the following section we assume that
the tree constraints are in normal form. This will simplify our computation of
|ΓTs(T C)| because we will be able to use the fact that |Vars(tc)| ≤ 3 for each
constraint tc.

4.1 Tree Schema Substitution and ΔTs(C)
In the following we define tree schemas: a finite set of tree variables, a finite set
of regular trees and a pair of maps, which represent a regular structure for a set
of infinite trees.

Definition 3 (Tree Schema). A tree schema Ts consists of

– a finite subset Ts.X ⊆ X.
– a finite subset Ts.TL

D
⊆ TL

D
closed under l(.) for every l ∈ L.

– a total map Ts.next : L × Ts.X → Ts.X ∪ Ts.TL
D
.

– a total injective map Ts.♦ : Ts.X → Λ.

A valuation π = (πt, πa) matches tree schema Ts if the following conditions hold
for every x ∈ Ts.X:

– if Ts.♦(x) = λ ∈ Λ then ♦(πt(x)) = πa(λ);
– if Ts.next(l, x) = y ∈ Ts.X then l(πt(x)) = πt(y).
– if Ts.next(l, x) = t ∈ TL

D
then l(πt(x)) = t.

Example 3 (Tree schema). Assume x1, x2 ∈ X and λ1, λ2 ∈ Λ and L = {l}. Let
Ts be a tree schema defined by Ts.X = {x1, x2} and Ts.♦(xi) = λi for i ∈ {1, 2}
and Ts.next(l, x1) = x2 and Ts.next(l, x2) = x1. Now define the trees t1 and t2
by ♦(t1) = 1, l(t1) = t2 and ♦(t2) = 2, l(t2) = t1. The valuation π given by
πt(xi) = ti and πa(λi) = i matches Ts.

The reason why the set Γ (T C) is infinite is that it contains expressions tew for
each w ∈ L∗. The main advantage of having a tree schema is that we can elimi-
nate expressions containing labels (like x1ll = l(l(x1))) from a set of constraints.
The substitution of such expressions with tree schemas delivers a variable. In this
case l(l(x1))[Ts] delivers x1 because Ts. next(l, x1) = x2 and Ts. next(l, x2) = x1.
We define the functions tae[Ts] : X ∪ TL

D
, te[Ts] : TExp and ae[Ts] : AExp for-

mally in Fig. 3. These functions simplify the given expressions with respect to a
particular tree schema so that T C[Ts] returns a set of constraints over trees with
no (sub)expressions of the form l(tae), while AC[Ts] returns a set of arithmetic
constraints that contains no tree variables.

In Fig. 3 we also define the set ΓTs(T C), a set of arithmetic constraints whose
satisfiability implies satisfiability of T C. We build the set ΓTs(T C) as follows:
for each constraint te � te′ ∈ T C and each path w ∈ L∗, we add the arithmetic
constraints tew[Ts] ≤ te′w[Ts] to the set. The use of tree schema substitution

Linear Constraints over Infinite Trees 351

te[Ts]

x[Ts] = x

l(tae)[Ts] =

{
Ts.next(l, y) if tae[Ts] = y ∈ Ts.X
l(t) if tae[Ts] = t ∈ Ts.TL

D

(te1 + te2)[Ts] = te1[Ts] + te2[Ts]

ae[Ts]

n[Ts] = n
λ[Ts] = λ

♦(tae)[Ts] =

{
Ts.♦(tae[Ts]) if tae[Ts] = y ∈ Ts.X
♦(t) if tae[Ts] = t ∈ Ts.TL

D

(ae1 + ae2)[Ts] = ae1[Ts] + ae2[Ts]

T C[Ts] =
⋃

i{tei[Ts] � te′i[Ts]} for T C =
⋃

i{tei � te′i}

AC[Ts] =
⋃

i{aei[Ts] ≤ ae′i[Ts]} for AC =
⋃

i{aei ≤ ae′i}

ΓTs(T C) =
⋃

te�te′ ∈ T C{tew[Ts] ≤ te′w[Ts] | w ∈ L∗}

ΔTs(C) = ΓTs(T C) ∪ AC[Ts]

Fig. 3. Tree schema substitution and ΓTs(T C) and ΔTs(C)

ensures that ΓTs(T C) is finite, in contrast to Γ (T C). In the following Lemma we
compute an upper bound on the size of ΓTs(T C) as a function of the sizes of T C
and Vars(T C).
Lemma 4 (Cardinality of the Set ΓTs(T C)). Let T C be a set of constraints
and Ts a tree schema with Ts.X = Vars(T C). Then |ΓTs(T C)| ≤ |T C| · |Ts.X |3.
The set of arithmetic constraints ΔTs(C), also defined in Fig. 3, is obtained
by adding the constraints in AC, after their substitution with the tree schema
Ts, to the set ΓTs(T C). Thus, ΔTs(C) is a finite set of arithmetic constraints
without tree variables. We will show below that satisfiability of ΔTs(C) implies
satisfiability of C.
Example 4. Let X,Λ,L and Ts be defined as in Example 3. Moreover, let C =
{l(x1) � x2, l(x2) � x1}, {1 ≤ ♦(x1), 2 ≤ ♦(x2)}. Then ΓTs(T C) = {λ2 ≤
λ2, λ1 ≤ λ1} and ΔTs(C) = {λ2 ≤ λ2, λ1 ≤ λ1, 1 ≤ λ1, 2 ≤ λ2}.
In the following we would like to show the soundness of the algorithm for com-
puting ΔTs(C): if we have a solution for ΔTs(C), we can also find a solution for
C. This result is based on the following Lemma, which states that, given a tree
schema Ts and a valuation π = (πt, πa) that matches Ts, π satisfies C iff πa

satisfies ΔTs(T C). Moreover we show that all the trees in ran(πt) are regular.

Lemma 5. Let Ts be a tree schema with Ts.X = Vars(T C) and π = (πt, πa) be
a valuation that matches Ts. Then:

1. πa |= ΓTs(T C) ⇐⇒ π |= T C.
2. πa |= ΔTs(C) ⇐⇒ π |= C.
3. if t ∈ ran(πt) then t is regular.

352 M. Hofmann and D. Rodriguez

subst(x,Ts, πa) = t
where ♦(t) = πa(Ts.♦(x))
and l(t) =

{
subst(y,Ts, πa) if Ts.next(l, x) = y ∈ Ts.X
t′ if Ts.next(l, x) = t′ ∈ Ts.TL

D

for each l ∈ L

Ts[πa] = {x �→ subst(x,Ts, πa) | x ∈ Ts.X}

Fig. 4. Extending a tree schema Ts to a valuation Ts[πa] : X → TL
D

Given a tree schema Ts and a valuation πa that satisfies ΔTs(C), we can build
a valuation Ts[πa] : Ts.X → TL

D
, as shown in Fig. 4, such that the valuation

(Ts[πa], πa) matches Ts. Thus, by Lemma 5, (Ts[πa], πa) satisfies C.

Theorem 1 (Soundness of ΔTs(C)). Let Ts be a tree schema with Ts.X =
Vars(T C) and πa : Λ → D be a valuation with πa |= ΔTs(C). Then there exists
a valuation πt : Ts.X → TL

D
such that (πt, πa) |= C and if t ∈ ran(πt) then t is

regular.

Lemma 5 also provides a sufficient condition on C which guarantees that its
satisfiability implies satisfiability of ΔTs(C). If it is possible to construct a tree
schema such that there is a satisfying valuation for C that matches it, then
ΔTs(C) is satisfiable. Moreover, it follows that C must admit regular solutions.

Lemma 6 (Condition for Completeness ofΔTs(C)). Let Ts be a tree schema
with Ts.X = Vars(T C) and let π |= C with π matches Ts. Then πa |= ΔTs(C).

4.2 Computation of ΔTs(C)
In last section we described the set ΔTs(C) and proved that its satisfiability
implies the satisfiability of C. The natural question that arises is how to com-
pute ΔTs(C). Computing AC[Ts] is simple, the challenge is the computation of
ΓTs(T C). Adding constraints to the set for each path w ∈ L∗ according to the
definition is clearly infeasible since there are infinitely many paths. However, we
can calculate the desired set by iteration: we build a set Γ i

Ts(T C) iteratively. In
the i-th step of the iteration the set contains exactly the constraints correspond-
ing to the paths w with |w| ≤ i. We prove that the iteration terminates, i.e. that
there is an index j with Γ j

Ts(T C) = Γ j+1
Ts (T C) and that this set contains all the

constraints in ΓTs(T C).
The sets Γ i

Ts(T C) are useful for proving the soundness of the iteration and for
understanding how it works. However, actually building the sets in each iteration
would be inefficient. Instead, we build a set of tree constraints T Ci

Ts iteratively
(Fig. 5), by adding new constraints in each step, so that the following invariant
holds: for all i, Γ 0

Ts(T Ci
Ts) = Γ i

Ts(T C). In the following, we prove the soundness
of the iteration: ΓTs(T C) = Γ 0

Ts(T C∞
Ts) that follows directly from the invariant.

Linear Constraints over Infinite Trees 353

Γ i
Ts(T C) =

⋃
te�te′∈T C{tew[Ts] � te′w[Ts] | w ∈ L∗, |w| ≤ i}

treeConstrs(T C) = {l(te)[Ts] � l(te′)[Ts] | te � te′ ∈ T C, l ∈ L}

T C0
Ts = T C[Ts]

T Ci+1
Ts = T Ci

Ts ∪ treeConstrs(T Ci
Ts)

T C∞
Ts =

⋃
i≥0 T Ci

Ts

Fig. 5. Γ i
Ts(T C) and T Ci

Ts

Lemma 7 (Soundness of Iteration). Let T C be a set of constraints and Ts
be a tree schema. Then:

1. For all i, Γ 0
Ts(T Ci) = Γ i

Ts(T C).
2. ΓTs(T C) = Γ 0

Ts(T C∞).

Next, we prove termination of the iteration. The proof consists of two parts.
First we notice that, since T Ci

Ts ⊆ T Ci+1
Ts for all i, if there exists an index

n0 with treeConstrs(T Cn0

Ts) ⊆ T Cn0

Ts , then T Cn0

Ts = T Cn0+1
Ts and for all i ≥ n0

T Ci
Ts = T Cn0

Ts . The second part of the proof consists in showing that such an
index exists for this sequence. It follows from the soundness of the iteration and
from the fact that the set ΓTs(T C) is finite.

Lemma 8 (Termination of Iteration). Let T C be a set of constraints and
Ts be a tree schema. Then:

1. If there is n0 with treeConstrs(T Cn0

Ts) ⊆ T Cn0

Ts then ∀i ≥ n0 . T Ci
Ts = T Cn0

Ts .
2. There is n0 with T Cn0

Ts = T Cn0+1
Ts and T C∞

Ts = T Cn0

Ts .

Example 5 (Computation of ΓTs(T C)). Let Ts and L be defined as in Example
3 and T C be defined as in Example 4. Then, we can build ΓTs(T C) as follows:
T C0

Ts = {x2 � x2, x1 � x1} and T C1
Ts = {x1 � x1, x2 � x2}. Since T C0

Ts = T C1
Ts,

it follows T C∞
Ts = T C1

Ts. Moreover ΓTs(T C) = Γ 0
Ts({x1 � x1, x2 � x2}) = {λ1 ≤

λ1, λ2 ≤ λ2}.

4.3 Linear Constraint System (LCS)

We proved in a previous section that our algorithm for solving satisfiability for
a system of constraints is sound for any given tree schema. We also noticed that
the algorithm can not be complete, because it imposes a regularity condition on
the solutions. In this section we study the following questions: Is there a subset
of TConstr, for which the algorithm is complete? Then, how do we find the right
tree schemas?

A set of tree constraints T C induces a graph G = (V,E) whose vertices V
are the tree variables occurring in T C. The set of edges E is defined as follows:
for each te � te′ ∈ T C, for each x ∈ Vars(te) and y ∈ Vars(te′), we add (x, y) to E.

354 M. Hofmann and D. Rodriguez

Then, we say that a set of tree constraints T C contains a loop, when its cor-
responding graph G contains a closed path. Moreover, we say that a subset
T C′ ⊆ T C is a loop, if the graph G contains a closed path P and for all tc ∈ T C′

there exists a variable xi ∈ P with xi ∈ Vars(tc) and for all xi ∈ P there exists
tc ∈ T C′ with xi ∈ Vars(tc).

We wish to describe a subset LCS of TConstr such that for each C ∈ LCS we
can effectively construct a tree schema TsC with the following property: there
exists a valuation π matching TsC and satisfying C. We will describe that set
as a collection of loops of a certain restricted form together with constraints
defining relations between the variables that appear in the loops. In particular,
the loops should not contain compound expressions. Moreover, every variable x
that appear in a loop may appear in arithmetic constraints only in subexpressions
♦(x). The following grammar describes the restricted sets of tree constraints
LTConstr, RTConstr and the restricted set of arithmetic constraints LAConstr.

ltc ::= l(x) � x ∈ LTConstr
rtc ::= x � l(x) ∈ RTConstr
pae ::= n | λ | ♦(x) | pae+ pae ∈ PAExp
lac ::= pae ≤ pae ∈ LAConstr

Definition 4 (Linear Loop). Let T C′ ⊆ T C be a loop.

1. We say that T C′ is a left linear loop if T C′ ⊆ LTConstr and for all x ∈ T C′

holds x occurs only positively in T C \ T C′.
2. Further, we say that T C′ is a right linear loop if T C′ ⊆ RTConstr and for

all x ∈ T C′ holds x occurs only negatively in T C \ T C′.
3. We say that T C′ is a linear loop if it is a left linear or a right linear loop and

for all x ∈ Vars(T C′) holds if x ∈ Vars(ac) for some arithmetic constraint ac
then ac ∈ LAConstr.

Definition 5 (Linear Constraint System (LCS)). We say that T C is linear
if T C = T C′ ∪ (

⋃

i=1,...,n T Ci) where each T Ci is a linear loop with Vars(T Ci) ∩
Vars(T Cj) = ∅ for i �= j and Vars(T C′) ⊆ Vars(

⋃

i=1,...,n T Ci).

T C′ does not contain loops. This follows by the definition since the variables in
T C must appear either only positively or only negatively in T C′.

Example 6. Let L = {l}. Let C = T C = {l(x1) � x2, l(x2) � x1}, {♦(x1) ≤
♦(x2) + 1, 1 ≤ ♦(x2)}. Then, T C is a left linear loop and C ∈ LCS.

In Fig. 6 we define a tree schema for a LCS C. We show in the following Lemma
that if C is satisfiable there is a valuation that both satisfies C and matches
the tree schema TsC . For the construction of such valuation we use a valuation
π
(πt,Ts)
a : Λ → D (Fig. 6) that we build on the basis of another valuation πt and

a tree schema Ts.

Lemma 9. Let C = (T C,AC) be a satisfiable LCS. Then there is a valuation π′

with π′ |= C and π′ matches TsC.

Linear Constraints over Infinite Trees 355

TsC .X = Vars(T C)
TsC .T

L
D = {0̂, ∞̂}

∀ xi ∈ TsC.X :
TsC.♦(xi) = λi where λi /∈ Vars(AC)

∀lj ∈ L .TsC.next(lj , xi) =

⎧⎨
⎩

xk if (lj(xi) � xk) ∈ T C or (xk � lj(xi)) ∈ T C
∞̂ otherwise, if xi occurs in a left linear loop.

0̂ otherwise, if xi occurs in a right linear loop.

π
(πt,Ts)
a = {δ �→ ♦(πt(x)) | x ∈ Ts.X,Ts.♦(x) = δ}

Fig. 6. Tree schema for a LCS C = (T C,AC)

Proof. We have given a valuation π = (πt, πa) with π |= C. Let T C = T C′ ∪
(
⋃

j=1,...,m T Cj(xj)). For ease of notation, let us assume that |xj | = 1. Thus,

xj = xj and let π(xj) = tj . We define t̂j by:

Case T Cj = l(xj) � xj). We set lk(t̂j) = ∞̂ for lk �= l ∈ L.
Case T Cj = xj � l(xj). We set lk(t̂j) = ̂0 for lk �= l ∈ L.

Moreover we set ♦
(

t̂j
)

= ♦(tj) and l(t̂j) = t̂j . Now we set π̂t = πt[xj �→ t̂j] and

π̂a = πa ∪ π
(π̂t,TsC)
a and π̂ = (π̂t, π̂a). We show π̂ |= C and π̂ matches TsC : π̂

matches TsC by construction, π̂ |= T Cj follows by construction and π̂ |= AC
follows by π |= AC and ♦

(

t̂j
)

= ♦(tj). Moreover, π̂ |= T C′ follows by Lemma 3

because if T Cj is a left linear loop then T C′(x+
j) and ti � t̂i and if T Cj is a right

linear loop then T C′(x−
j) and t̂i � ti.

Theorem 2 (Completeness of ΔTs(C)). Let C be a satisfiable LCS. Then
there is a tree schema Ts and a valuation πa with πa |= ΔTs(C).
Proof. By Lemma 9 we obtain a valuation π |= C with π = (πt, πa) matches TsC .
Moreover, by Lemma 6, we obtain πa |= ΔTsC(C).
The restriction to linear constraint systems could seem very strong. However,
we will show an algorithm for eliminating variables from constraints while main-
taining their satisfiability in the next section. In most cases we are able to elim-
inate the variables that are not part of a loop with that procedure. Further,
we can often bring the loops in the required form by eliminating intermedi-
ate variables. For example, the loop {l(x) � y, y � x} can be transformed
into l(x) � x if we eliminate y. On the other hand, there are systems such as
{x+x � l(x)}, {1 ≤ ♦(x)} that can not be transformed into an equivalent linear
one. In fact, there is no regular solution for that system.

5 Elimination of Tree Variables

In this section we define an algorithm for eliminating tree variables from a set
of tree constraints while keeping their satisfiability.

356 M. Hofmann and D. Rodriguez

C(y+) or C(y−)

erase y from C (� Prune)
(
⋃

i=1..n{y � tei}) ∪ D(y+),AC(y+)⋃
i=1..n (D,AC) [tei/y]

(� Elim+)

(
⋃

i=1..n{tei � y}) ∪ D(y−),AC(y−)⋃
i=1..n (D,AC) [tei/y]

(� Elim−)

C(y+, y−) C(yproj) ∩ C(ywhole) = ∅ li ∈ L and z, λ new

C(yproj) ∪ unfold(C(ywhole)) [zi/li(y)][λ/♦(y)]
(� Elim+/−)

Fig. 7. Elimination of tree variables from a set of tree constraints

We say that a variable x occurs projected in a set of tree constraints when
x appears exclusively in (sub)expressions l(tae), ♦(tae). If x appears exclusively
as a variable (sub)expression “x” we say that x occurs as a whole. We write
C(xproj) for the subset of C where x occurs projected and we write C(xwhole) for
the subset of C where x appears as a whole. The following function unfold(T C)
unrolls the definition of inequality (�) in the constraints once. The validity of
the resulting constraints is ensured by applying the transformations (3.1).

Definition 6 (Unfold Constraints). Let T C be a set of tree constraints. We
define a function unfold(T C) by unfolding the definition of inequality:
unfold(T C) =

⋃

te�te′∈T C
⋃

l∈L{l(te) � l(te′)},
⋃

te�te′∈T C{♦(te) ≤ ♦(te′)}.

In the following we define the algorithm elim.(.) as a set of inference rules (Fig. 7).
If the tree variable y appears only positively or negatively in the constraints then
it can be safely removed altogether from the system of constraints (
 Prune).
If the variable appears in a constraint such as tae1(y) + tae2 � tae, then we
return tae2 � tae. Otherwise, when it appears in a constraint tae1 � tae2 then
we remove the whole constraint. Further, if the variable appears in an arithmetic
constraint ♦(tae(y)) + ae2 ≤ ae, we return ae2 ≤ ae.

Next, we consider the case when the variable has at least one upper or lower
bound and appears otherwise only positively (
 Elim+) or only negatively (

Elim−) in the constraints. Then, the elimination takes place by substituting the
variable in the constraints with its upper bounds, if the variable occurs only
positively, or with its lower bounds, if the variable appears only negatively.

The last and more complicated case is when the variable appears both posi-
tively and negatively. Then we calculate C(yproj) and C(ywhole). If they are disjoint
sets, we unfold C(ywhole) and substitute li(y) and ♦(y) with fresh variables zi and
λ, respectively. If C(yproj) and C(ywhole) are not disjoint sets, then the variable
cannot be eliminated. The reason for this restriction is that, with this rule, we
create new variables and we want to eliminate them as well. However, if C(yproj)
and C(ywhole) are not disjoint sets, we would keep eliminating variables and cre-
ating new ones without ever coming to an end. Suppose we have the constraint

Linear Constraints over Infinite Trees 357

Table 1. Experimental results. |Vars(C)| represents the number of tree variables in the
constraints before the elimination. |Ts.X| represents the number of variables remaining
after the elimination which is equal to the number of variables in the created tree
schema Ts.

Program LoC |Vars(C)| |Ts.X|

List Duplication 37 362 4

Doubly-linked Lists 47 568 6

Constant-time List Append 60 674 12

Insertion Sort 66 872 32

List Append 80 1116 8

Merge Sort 127 2818 10

Bank Account 200 3566 10

l(x) � x and L = {l} and we want to eliminate the variable x. If we applied the

rule (
Elim+/−) we would obtain l(l(x)) � l(x) after unfolding and l(z) � z after
substituting l(x) with a fresh variable z. If we now tried to eliminate z, we would
go through the same procedure again and would never be able to eliminate the
variable. The correctness of the elimination procedure follows from the fact that
the trees form a complete lattice.

Theorem 3 (Correctness of elim()). Let C(x, y,λ) be a system of constraints.
If elimy(C) = C′(x,λ) then for all π : π |= C′ ⇐⇒ there exists t with π ∪ {y �→
t} |= C.

6 Applications to Resource Analysis

We have implemented the algorithms described in this paper in Ocaml and used
them for solving the constraints that arose during our static heap-space analysis
of object-oriented programs. Our implementation consists of the following steps:

1. Eliminate variables from the constraints until the only remaining variables
are those that appear in a loop.

2. Check if the resulting constraint system is a LCS. In the positive case, con-
struct the tree schema as described in Section 4.3, otherwise construct a tree
schema using a heuristic procedure.

3. Compute ΔTs(C) and solve it with an LP-Solver.

Table 1 shows the programs that we could analyse with our tool. For each ex-
ample, we could solve the constraints and resultantly provide a (linear) upper
bound for its heap-space requirements. Notice that the number of tree variables
that were generated is proportional to the size of the programs, while the number
of variables that remain after the elimination reflects the amount of loops in the
constraints and the amount of variables in the loops. There is a demo website
where all the examples can be analysed and downloaded [raj].

358 M. Hofmann and D. Rodriguez

7 Conclusions

We have presented a system of constraints over infinite trees and we have stud-
ied their satisfiability and elimination problems. We have given an algorithm
that solves satisfiability for a subcase. Moreover, we have presented a correct
algorithm that eliminates a tree variable in most cases. We hope to settle the
question of decidability of our tree constraints in general and plan to identify
larger tractable subproblems relevant for resource analysis.

Acknowledgements. We acknowledge support by the DFG Graduiertenkolleg
1480 Programm- und Modell-Analyse (PUMA). We also thank Luke Ong for
valuable comments.

References

BG00. Blumensath, A., Grädel, E.: Automatic structures. In: LICS, pp. 51–62 (2000)
DV07. Dantchev, S., Valencia, F.D.: On infinite csp’s (2007)
HJ06. Hofmann, M.O., Jost, S.: Type-Based Amortised Heap-Space Analysis. In:

Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg
(2006)

HR09. Hofmann, M., Rodriguez, D.: Efficient Type-Checking for Amortised Heap-
Space Analysis. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771,
pp. 317–331. Springer, Heidelberg (2009)

raj. http://raja.tcs.ifi.lmu.de

SR10. Silva, A., Rutten, J.J.M.M.: A coinductive calculus of binary trees. Inf.
Comput. 208(5), 578–593 (2010)

http://raja.tcs.ifi.lmu.de

	Linear Constraints over Infinite Trees
	Introduction
	Infinite Trees
	Constraints
	Algorithmic Problems

	Solving a System of Constraints
	Tree Schema Substitution and Ts(C)
	Computation of Ts(C)
	Linear Constraint System (LCS)

	Elimination of Tree Variables
	Applications to Resource Analysis
	Conclusions
	References

