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Introduction 

 

Phase unwrapping is a crucial and challenging step to most 

data-processing chains based on phase information in many 

fields of research, such as magnetic resonance imaging, 

synthetic aperture radar interferometry and optical metrology. 

In all these research fields, the measured parameters are 

modulated in the form of two-dimensional fringe pattern. To 

retrieve the phase information from the fringe pattern, Fourier 

domain filtering or phase shift technique can be used. The 

retrieved phase values, which are wrapped phase, are the 

distribution of principal values ranging from −π to π. Thus, 

phase unwrapping procedure is needed to get back the 

unknown multiple of 2π to each pixel. This is why many 

algorithms have been proposed for phase unwrapping. 

However, there is no agreement between the current phase 

unwrapping algorithms for different applications, due to the 

existence of disturbance in the measured phase data. In the 

case that there is no disturbance in the phase data, the 

unwrapped phase can be obtained by integrating the phase 

gradients over the whole data samples, which is independent 

from the integration path. However, there are several sources 

of errors in the phase images. Firstly, phase aliasing occurs 

when the true phase changes by more than one cycle (2π rad) 

between samples, which was caused by long baselines, objects 

discontinuities or high deformation. The second source is 

noise, which may be caused by speckle noise, electronic noise 

and/or fringe breaks. Those defected points in the measured 

phase images are called singular points (SPs). To exclude 

these invalid areas from unwrapping process and get precise 

unwrapped phase results can be a time-consuming process.  

For this purpose, we proposed a novel phase unwrapping 

algorithm for noisy phase images. The proposed algorithm is 

called rotational and direct compensators for phase 

unwrapping (RC+DC) [1]. The RC+DC algorithm is a new 

phase unwrapping approach for noisy wrapped phase maps of 

continuous objects to improve the accuracy and computational 

time requirements of phase unwrapping using a rotational 

compensator (RC) method.  

Fringe analysis techniques are considered to be effective 

and reliable optical noncontact methods for surface shape 

measurements. In these techniques, a structured lighting 

pattern is projected onto the surface of an object. According to 

the surface shape of the object, the projected pattern will be 

modified. This pattern is captured by a CCD camera and then 

stored into computer memory. The image is then analyzed by 

one of fringe analysis algorithms to extract the phase 

information and retrieved the continuous form of the phase 

distribution by applied one of phase unwrapping methods. 

Finally, by using phase-height relationship, the object height 

shape can be determined. Figure 1 is summarized these steps 

about fringe patterns analysis. 

Driven by these motivations, both theoretical aspects of 

the phase unwrapping problem as well as practical algorithms 

for its solution is examined in this dissertation. However, we 

begin with a brief explanation for the main stages of fringe 

analysis methods to figure out the problems of phase 

processing and the circumstances in which they arise. 

 

 

Phase extraction 

 

Many techniques have been proposed for the analysis of fringe 

patterns. These techniques vary in accuracy, the number of 

frames required and processing time. The aim of any fringe 

pattern analysis algorithm is to obtain the phase information 

modulated into the fringe pattern. This phase is wrapped 

between [−π, π) and needs to be unwrapped. Fringe pattern 

analysis algorithms can be classified into two categories, 

which are spatial and temporal techniques. Spatial methods 

calculate the phase of a pixel in a fringe pattern depending on 

its neighboring pixels. Examples for spatial technique such as 

Fourier fringe analysis and direct phase demodulation. Spatial 

 
 

Figure 1: Fringe analysis for an object 
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techniques require at least one fringe pattern to calculate the 

phase components. In contrast, temporal algorithms require at 

least three images to calculate the phase of a pixel depending 

on the values of that pixel in different images and independent 

of its surrounding pixels. An examples of a temporal methods 

is phase stepping. However, in this study our main concerning 

is for the unwrapping stage in the analysis of fringe pattern 

process. 

 

 

Phase unwrapping 

 

Phase unwrapping is a technique used on wrapped phase 

images to remove the 2π discontinuities embedded within the 

phase map. It detects a 2π phase jump and adds or subtracts an 

integer offset of 2π to successive pixels following a threshold 

mechanism, thus, retrieving the contiguous form of the phase 

map.  

Commonly, most of phase unwrapping algorithms are 

based on one assumption that the true unwrapped phase data 

varies slowly enough that neighboring phase differences 

values are within one half cycle (π radian) of each other. If 

this assumption is true everywhere the unwrapping process 

can be applied simply by integrating wrapped phase 

differences, or gradients, along any path from pixel to pixel 

throughout the phase data to obtain unwrapped phase. In one-

dimensional phase unwrapping, this process is repeated from 

first end point region (first pixel) toward the second end point 

region (last pixel); hence, the phase difference can be 

calculated as follows: 

                                                          (1) 

where Ψ
 i
 is the wrapped phase at pixel i in phase map. When 

the phase difference, △Ψ
 i

 is larger than a half cycle the 

wrapped phase is shifted one cycle, so the shifted difference is 

again smaller than a half cycle. This shift operation is same as 

the wrapping operation used to obtain the principal value of 

the true phase. The wrapping operator is defined as follows: 

                                    (2) 

where −π < W[Φi] ≤ +π, Φi is the continuous true phase at 

pixel i in phase map and Int[.] means a function that returns 

the nearest integer. The wrapping operator W[.] could be 

modified to specify the corrected gradient phase difference 

between two successive pixels in the unwrapping path as: 

                                                        (3) 

In two-dimensional phase unwrapping, there are paths with 

loop; it means that the last point can be considered as the first 

point. In the absence of discontinuity sources, the unwrapped 

result is independent on the unwrapping path; therefore, the 

unwrapped phase map is consistent. Consider that the path of 

loop consists of M points, using Eqs. (1)-(3) we can retrieve 

the true unwrapped phase as follows: 

                                                          (4) 

To find SPs, which are the error sources in the phase 

unwrapping process; consider a closed path starting in every 

point defined by the corners of a 2 × 2 square along the closed 

path in clockwise direction The SPs are marked the start and 

end of 2π discontinuity line. They are identified by summing 

the wrapped phase gradient, as follows: 

                                                                     (5) 

where S is the SP residue. The SP is called a positive residue 

when S in Eq. (5) is +1; otherwise, it is called a negative 

residue when S is −1. While, S = 0 indicates that no residue 

exists. 

In order to solve inconsistencies caused by SPs, many 

phase unwrapping algorithms have been proposed in the past, 

they can be divided into two categories. The first category 

contains algorithms based on following the paths [3–8]. These 

methods involve integrating the phase gradient of pixels in an 

image over a path starting from a certain point and going over 

all the pixels, in essence, unwrapping the image. Path 

independent unwrapping is obtained in the absence of error 

sources (singular points) that can arise from either noise or 

object discontinuities. The unwrapped result is independent of 

the unwrapping path; hence, the complete phase map is 

consistent. However, in the presence of corrupted pixels 

(singular points), taking just any path is not possible anymore. 

Consequently, unwrapping becomes path dependent, where it 

has to manoeuvre between pixels choosing the best path to 

follow where the pixels are not corrupted by error. To 

overcome path dependence, many ways have been suggested 

and implemented. Hence, it can be said that path following 

methods fist search for SPs, then pair these SPs by placing 

branch cuts. By examining the branch cuts and determining if 

any appear to be placed poorly or any isolate a region, it can 

be determined whether or not the paths can be followed to 

retrieve the phase maps, as well as whether these methods 

succeed or fail.  

The second category includes the methods which use the 

least-squares approach [9–12]. These algorithms use a 

different way for unwrapping images while still using the 

estimated phase gradient. They use the same idea of 

minimization of discrete gradients difference squares as used 

in the leased-squares approach. These differences are taken 

between the wrapped phase gradients and supposed 

unwrapped phase gradients. In these methods, a smooth 

solution is achieved by the resultant minimization. That can be 

done by integrating over all the possible paths within the 

image not like path following methods, which integrate over 

one single path, thus, spreading the error over the whole 

image. Like the previous methods, these methods also 

encounter a large number of errors once a corrupted region is 

present in the image. Hence, weighting parameters are 

introduced to exclude corrupted regions. However, the success 

of algorithms using such a method relies on choosing the 

weights, which puts a huge load on the performance of the 

algorithm. One advantage of these methods over algorithms 

based on following the paths is unwrapping SPs rich regions. 

Based on the above discussion, the existing phase 

unwrapping methods suffer from various problems that can 

affect time, cost, and accuracy of unwrapped results. 

Therefore, it is needed to investigate and improve the existing 

unwrapping methods. In this study, we attempt to reduce the 

computational time requirements of the RC method to a 



minimum, and to improve the level of efficiency and 

reliability as well. It was found that the distribution of dipole 

distance shows that there are a lot of dipole pairs that have 

short distances. According to this finding, the proposed 

algorithm is computing compensators for adjoining pairs of 

SPs directly; the new method is a coupling of the RC and the 

direct compensator (DC). 

 

 

Phase Unwrapping algorithm based on RC and 
DC techniques 
 

In a manner similar to the phase unwrapping algorithm 

developed by Tomioka et al. [2], the main issues determine 

the behavior of the proposed algorithm: the RC, unconstrained 

singular point positioning, and virtual singular points 

approaches to compensate the inconsistencies and to confine 

the effect of each one in a local region. The proposed 

algorithm is based on their method; however, the way of 

computing the compensators for adjoining SP pairs is different 

from RC. The following subsection explains and discusses the 

RC and DC principles and the description of the proposed 

algorithm. 

 

Rotational compensator technique 
 
Since phase unwrapping is an essential process of removing 

discontinuities by local neighborhood tests and corrections, 

the idea of compensator is proposed to compensate and cancel 

the singularity effect by the spreading singularity phase 

unwrapping (SSPU) [13] or RC methods [2]. The SSPU 

method requires iteration process to compute the 

compensators, while the RC method can compute the 

compensator by superposing the effect of each SP. RC can 

cancel singularity of each SP by adding an integral of 

isotropic singular function along any loops. When a closed 

loop includes SP, the integral along the loop will have a value 

of −2πS, where S is the residue of the SP shown in Eq. (5). 

Representing an integral of a segment i, which is a member of 

the loop comprising N segments, as C
 i
, we can reduce Eq. (5) 

as follows: 

                                                              (6) 

This suggests that the singularity of Ψ
 i
 is regularized by 

compensator C
 i

, and phase unwrapping becomes an 

independent path. The RC for the i
th

 segment, which is a path 

from ri to ri+1 to cancel the singularity of the j
th

 SP, 
R
C

i
j , is 

represented as follows: 

                                                        (7) 

where Sj denotes the residue of the j
th

 SP, and θi+1, j and θi,j are 

azimuthal angles of both ends of the i
th

 segment, where the 

origin is located at the j
th

 SP.  

When the measured data contains several SPs, the total 

compensator of the ith segment is estimated as the summation 

of the 
R
C

i
j with respect to j: 

                                                                     (8) 

Consequently, we can retrieve the true unwrapped phase 

data by summing the phase differences between the adjoining 

pixels and the total compensators as follows: 

                                               (9) 

where C
i
 = 

R
C

i
j . 

It is noteworthy that Eq. (9) is the modification of Eq. (4) 

after removing the effect of SPs by compensating each SP 

with the compensator, which has the opposite sign of SP. 

However, if the measured phase data contains several SPs, the 

computation of each compensator becomes a time-consuming 

process. This is one of the drawbacks of the RC method. 

Another drawback is that the RC introduces an undesirable 

distortion of phase in a large area which is far from the areas 

with SPs. Since the RC for the i
th

 segment caused by the j
th

 

SP, 
R
C

i
j, decreases with increasing the distance between the 

segment and the SP, the RC becomes small for the far 

segment. However, it is not exactly zero. This means that the 

RC affects the regular region and its effect is considered as an 

error of phase unwrapping. 

 

Direct compensator technique 
 

Every SP has a residue of ±1. A pair of two SPs with different 

polarity is considered as a dipole. It was found that the 

distribution of SP dipole distances shows that there are a lot of 

dipole pairs with short distances. We propose a new phase 

unwrapping algorithm based on this finding. The proposed 

algorithm reduces the drawbacks of the RC method, which are 

the high computational time cost and the undesired phase error 

due to its effect on the regular region. The proposed method 

compensates the singularities of adjoining SP pairs by adding 

the DC. Thus, the effect of each SP is confined in a closer 

local region. The RC computed by Eqs. (7) and (8) 

compensates the singularities of all SPs. The integral of the 

total RC along any closed path equals the negative sum of the 

residues of SPs in the domain surrounded by the closed path. 

In the case of DC, the domain is limited to a small region; 

however, the DC must have the same property. If the distance 

between two SPs with opposite polarity is one pixel, the DC is 

applied. The sum of the DC along the smallest path 

surrounding one of the two SPs, which consists of four 

segments, equals one cycle (2π radian). Furthermore, the sum 

of the DC along the path surrounding both SPs must vanish. A 

solution satisfying these conditions is obtained by setting of 

branch-cut. The branch-cut is placed between the two SPs. 

When the segment to unwrap crosses the branch-cut, the sum 

of DC for the two SPs is defined as one cycle. No DC is 

applied for the other segment.  

The adjoining pair is a dipole, which consists of two SPs 

with the opposite polarities, separated by one pixel 

horizontally or vertically. Figure 2 shows the configuration of 

the branch-cuts placed between the adjoining SPs in the phase 

map and the concept of the direct compensation. Figure 2(a) 

shows a case in which the branch-cut is placed between a pair 



of adjoining SPs horizontally, so that the DC will be added to 

the vertical segment that crosses the branch-cut. In contrast, 

Fig. 2(b) shows the case in which the branch-cut is placed 

vertically between the adjoining SPs and the DC is added 

horizontally. The compensator value of the segment is divided 

into two compensator values, and distributed through the two 

adjacent loops, which contain adjoining SP pairs, as illustrated 

in Fig. 2. The direction of the DC, 
D
C

i
j, for the segment is 

based on the position of this segment with respect to the 

location of the tested SP. Hence, the confinement of the DC 

effect in a closer region around the SPs leads to the 

improvement in the accuracy of the unwrapped phase results. 

When the segments are far from SPs, their DCs have zero 

value so that the computation of DC is not needed. In contrast, 

the RC requires computation according to Eq. (8). For this 

reason, the computation time requirements of the proposed 

algorithm for computing total compensators will be reduced 

and the accuracy of the unwrapped phase will be improved. 

 

Description of proposed algorithm 
 

The proposed method is based on coupling the RC and DC to 

compute the compensators in connection with the distance of 

SP pairs. In other words, it uses the DC for computing the 

compensators of adjoining SP pairs, and uses the RC to 

compute the compensators for other SP pairs. Therefore, the 

main steps in the proposed algorithm are as follows: 

 If a pair of SPs is an adjoining pair, a DC will be added. Its 

value is π and the sign is dependent on the position of the 

segment with respect to the location of the tested SPs.  

 In contrast, if a pair of SPs is not an adjoining pair, RC will 

be computed using Eq. (8).  

 Finally, after computing the total compensators for each 

segment, the true unwrapped phase values can be retrieved 

by summing the phase differences between the adjoining 

pixels and the total compensators, as illustrated in Eq. (9). 

 This description of the direct compensation for adjoining 

SP pairs ensures that the proposed algorithm is simple and 

easy to implement. It provides a fast and efficient way to 

unwrap the phase map. The performance and applicability of 

the proposed algorithm are examined in the following section. 

 

 

Results and discussion 
 
To evaluate the performance of the proposed phase 

unwrapping algorithm, both simulated and real wrapped phase 

maps have been used. These phase data are the same data that 

were used in the study of RC [2]. 

 

Computer Simulation Results 
 
In order to demonstrate the applicability of the proposed 

approach, a simulated noisy phase map with constant gradient 

is generated. This phase data has the image size 100 × 100 

pixels
2
, the gradient is (0.1,  − 0.1) cycle/pixel, and the noise 

has a normal distribution with 0.15 cycle standard deviation. 

The original and wrapped phase data are shown in Figs. 3(a) 

and 3(b), respectively. In addition, Fig. 3 presents the 

distribution patterns of SP pairs for real and virtual SPs to 

show the position of SP pairs in the phase map. In Fig. 3(c), 

all SP pair positions are presented, while in Figs. 3(d) and 

3(e), the positions of the pairs of non-adjoining and adjoining 

SPs are shown, respectively. This indicates that most of SP 

pairs in the phase map are adjoining pairs; therefore, the use 

 
 

Figure 2: Existence of the branch-cuts between adjoining SP 

pairs and the concept of direct compensation (DC). Open and 

filled squares represent positive and negative SPs, respectively. 

The thick dashed line denotes the branch-cut that connects two 

opposite sign SPs. Compensator positions are indicated by thick 

arrows. The thin arrows show the direction and distribution of 

compensators for the segments of each SP. 
 

 
Figure 3: A comparison of the unwrapped phase results for 

simulated phase data has noise with σ = 0.15 cycle: (a) the 

original phase data, (b) the wrapped data, (c) the positions of all 

SP pairs, (d) the positions of the pairs of non-adjoining SPs, (e) 

the positions of the pairs of adjoining SPs, (f) unwrapped result 

by LS-DCT, (g) unwrapped result by RC, and (h) unwrapped 

result by RC+DC. In (a), (b), and (f)-(h), the phase increases 

with the increases of brightness. In (f)-(h), contour lines of the 

phase with the interval of one cycle are also shown 



of DC will have an obvious effect on the unwrapping process. 

Hence, the accuracy of the unwrapped phase will be improved 

and the computation time will be reduced, as shown later. The 

unwrapped phase results obtained by the least-square method 

by using discrete cosine transform (LS-DCT) method [12], the 

RC method [2], and the proposed algorithm are shown in Figs. 

3(f) and 3(h) with contour lines. To evaluate the 

characteristics of the phase unwrapping methods, we can 

count the number of contour lines in the unwrapped results 

and compare them with the number of stripes in the wrapped 

data, shown in Fig. 3(b). From the comparison, we can find 

that the number of lines in the unwrapped results is less than 

that in the wrapped phase data. The wrapped phase data has 

20 lines, the unwrapped result of LS-DCT method has 14 lines, 

the unwrapped result of RC algorithm has 17 lines, and the 

proposed algorithm’s result has 18 lines. The unwrapped 

result of the proposed algorithm has the nearest number of 

lines to wrapped data, which shows the highest accuracy. 

Moreover, the accuracy of the proposed algorithm can be 

emphasized, as shown in Table 1, which shows a quantitative 

comparison of the original and unwrapped phase map 

gradients. The gradients shown in the second column are 

obtained by fitting them to a planar function and the σ denotes 

the mean residual that is defined as a square root of a mean 

square residual from the fitted function. The σ of the original 

phase data is not equal to zero, because the original data 

contains noise with the given standard deviation. The error of 

gradients shown in the third column is estimated as the 

normalized difference between the unwrapped result and the 

original one, where the normalizing factor is the reciprocal of 

original one. From the table, it can be observed that the 

proposed algorithm, RC+DC, gives the smallest error in terms 

of the error of gradients. This is due to the consideration of 

adjoining pair definition in computation of the compensators 

in the proposed algorithm. This result confirms that the 

proposed method (RC+DC) reduces the phase errors that exist 

mainly in the original RC method. Figure 4 shows a 

comparison of required computational time of LS-DCT and 

RC methods and the proposed RC+DC method for various 

image sizes; the horizontal axis N denotes one-dimensional 

area size in pixels. From the figure, the profile of the RC 

method and that of the proposed method show that the 

computation time is proportional to N4. Furthermore, from Eq. 

(8), we can note that the time cost to compute the RC for all 

segments is proportional to the product of both the number of 

SPs and the number of the segments of path to be 

compensated. Since both are proportional to the area size (∝ 

N2), the total evaluation time is proportional to N4. In the 

proposed algorithm, if the cost to compute the DC is 

adequately smaller than that of RC, the total cost might be 

similar to the case of the RC algorithm. Conversely, when the 

number of the times using DC computation is larger than that 

of RC in the proposed method, its execution time will be 

reduced compared to the RC algorithm case. As a result, by 

coupling RC and DC computations, the execution time of the 

proposed method is almost one third of the execution time of 

the original RC method. In contrast, the computational time of 

LS-DCT method increases with N3. In this computation, we 

use a matrix form of 2D discrete Fourier transform. Through 

the use of matrix form, the computational time of 2D cosine 

transform needs only N3 multiplications. 

 

Experimental Results 
 

The proposed algorithm has also been tested experimentally 

on a 2D wrapped phase map that resulted from the analysis of 

a real fringe pattern taken from the experiment carried out by 

using an interferometer. The purpose of this experiment is to 

measure the phase shift in candle flames. In this experiment, 

the exposure time cannot be set long enough because the 

flame is varying in time by convection flow around the flame 

itself. Therefore, the fringe pattern has low signal-to-noise 

ratio; hence, it contains some defects. The phase data has 

image size 256 pixels × 170 pixels and 2532 SPs (1267 

positive SPs and 1265 negative SPs). The wrapped phase data 

and its corresponding SPs distribution map are shown in Figs. 

5(a) and 5(b), respectively. Moreover, the unwrapped results, 

which have contour lines, obtained by RC method and the 

proposed algorithm are given in Figs. 5(c) and 5(d), 

respectively. By comparing the number of stripe lines in the 

wrapped phase data and the number of contour lines in the 

unwrapped results from the midpoint on the base line of each 

figure, it can be observed that the wrapped data has 10 lines, 

the unwrapped result of the RC algorithm has eight lines, and 

the proposed algorithm’s result has nine lines. The unwrapped 

results in both methods are underestimated; however, the 

 
 

Figure 4: Required computational time of each algorithm for 

various image sizes. The horizontal axis N denotes one-

dimensional area size in pixels. RC shows the required time cost 

for RC method, RC+DC shows the required execution time for 

the proposed method, and LS-DCT shows the required time cost 

for LS-DCT method. The computational time is measured with a 

PC including an Intel Core 2 DUO central processing unit 

(CPU) with a 2:13GHz clock in the single CPU operation mode. 

Table 1. Comparison of the Accuracy for the Simulation Data 

Shown in Figure 3. 

 

 



underestimation in the proposed algorithm is smaller than that 

in the RC method. This implies that the proposed algorithm 

succeeds to reduce the phase errors produced by the original 

RC method. 

 

 

Conclusions 
 
Several methods have been developed to solve phase 

unwrapping problems; nevertheless, providing satisfactory 

results leads to a time-consuming process. Phase unwrapping 

for noisy data by RC had higher accuracy than the other 

existing methods. However, it has a drawback of 

computational time requirement. To overcome this drawback, 

we propose a new method based on coupling the existing RC 

and the DC. The DC compensates the singularity of the pair of 

adjoining SPs connected by a branch cut with the length, 

which is shorter than 1 pixel. The compensator along the 

segment that crosses the branch cut is just 2π. For the SPs that 

are not members of adjoining pairs, RC is applied as a 

compensator. The proposed algorithm was tested on both 

computer-simulated and experimental noisy phase data. The 

results show that the proposed algorithm has a smaller 

computational time requirement compared to the original RC 

method, however, the execution time of the LS-DCT method 

is the least. Furthermore, the proposed method provides a 

more accurate unwrapped phase map than the past methods 

did. 
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Figure 5: Unwrapped phase result of experimental data for 

candle flame: (a) the wrapped data, (b) SPs distribution map, 

(positive and negative SPs are represented by white and black 

dots, respectively); (c) the unwrapped result of RC algorithm, (d) 

the unwrapped result of RC+DC method. 


