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Abstract. In this paper we present a new and improved correlation at-
tack based on maximum likelihood (ML) decoding. Previously the code
rate used for decoding has typically been around r = 1/214. Our algo-
rithm has low computational complexity and is able to use code rates
around r = 1/233. This way we get much more information about the
key bits. Furthermore, the run time for a successful attack is reduced
significantly and we need fewer key stream bits.

1 Introduction

Linear feedback shift registers, LFSRs, are popular building blocks for stream
ciphers, since they are easy to implement, easy to analyze, and they have nice
cryptographic properties. But a linear shift register is not a cryptographic secure
function in itself. Assuming we know the connection points in the LFSRs, we
just need to know a few bits of the key stream to find the key bits, by using the
linear properties in the streams to set up an equation set that is easily solved.

To make such a cipher system more secure, it is possible to combine n
LFSRs with a nonlinear function f in such a way that linear complexity be-
comes very high. Fig 1 describes an example for this model. The key stream
z = (z0, z1, ..., zt, ..., zN−1) is generated by zt = f(u1

t , u
2
t , ..., u

n
t ) and the linearity

in the bit streams ui = (ui
0, u

i
1, ..., u

i
t, ..., u

i
N−1) from the n LFSRs is destroyed.

The plain text m of length N is then encrypted to cipher text c by ct = zt⊕mt,
0 ≤ t < N .

There exist different types of attacks on systems based on this scheme. The
type of attack we describe in this paper is the correlation attack. The attack
uses the fact that there often exist some correlations between the bits in some
of the shift register streams and the key stream z. This can be formulated as
the crossover probability p = P (ut �= zt), where ut is the bit stream from
a LFSR that has a correlation with z. When p �= 0.5, it is possible to do a
correlation attack. If p = 0.5 there would be no correlation, and a correlation
attack could not be done. But it is a well known fact that there always exists a
correlation between sums of u and z in the model described in Fig. 1. That is
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P (ut+j1 + ut+j2 + ... + ut+jM
�= zt) �= 0.5 for given M and (j1, j2, ..., jM ). When

we add a LFSR bit stream with a shift of itself, we always get a new LFSR bit
stream. Thus, the model is to decode a LFSR stream that has been sent through
a binary symmetric channel (BSC) with crossover probability p.

The simplest correlation attack[6] chooses the shift register LFSRi that has a
correlation to the key stream bit z. Then the initialization bits ûI for the LFSR
are guessed and the bit stream û = (û0, û1, ..., ûN−1) is generated. If for a chosen
threshold ptr there exists a correlation between the guessed bit stream û and z
such that P (ut �= zt) < ptr < 0.5 for 0 ≤ t < N , it is assumed that the correct
initialization bits are found. This attack has a complexity of O(2li ·N) which is
much better than O(2l1+l2+...+ln), the complexity for guessing the initialization
bits for all the LFSRs.

LFSR

LFSR

LFSR

u

zu

u

1

2

n
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2
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Fig. 1. An example of a stream cipher we are are able to attack using fast correlation
attacks. The linear feedback shift registers LFSRi of length li, for 1 ≤ i ≤ N , are sent
through a nonlinear function f to generate the key stream z

The complexity for guessing all the bits in a given LFSRi can be too high.
To get around this, the fast correlation attack was developed[7,8] by Meier and
Staffelbach. This attack uses parity check equations and reconstructs u from z
using an iterative decoding algorithm. The attack works well when the polyno-
mial that defines the LFSRi has few taps, but fails when the polynomial has
many taps.

In [4] Johansson and Jönsson presented a better attack that works for LFSRs
with many taps. Using a clever search algorithm, they find parity equations
that are suitable for convolutional codes. The decoding is done using the Viterbi
algorithm, which is maximum likelihood. This attack is briefly explained in Sect.
2.

In [1] David Wagner found a new algorithm to solve the generalized birthday
problem. In this paper we present an algorithm based on the same idea that
finds many equations suitable for correlation attacks. The problem with this
algorithm is that it finds many but weak equations, and previous attacks would
not be very effective since the code rate will be very low.
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In this paper we present an improvement on the attacks based on ML de-
coding. While Johansson and Jönsson use few but strong equations, we go in
the opposite direction and use many and weak equations. We present a new al-
gorithm that is capable of performing an efficient ML decoding even when the
code rate is very low. This gives us much more information about the secret
initialization bits, and the run time complexity goes down considerably. For a
crossover probability p = 0.47, polynomial of degree l = 60 and the number of
known key stream bits N = 100 · 106, our attack has complexity of order 239,
while the previous convolutional code attack[4,5] has complexity of order 248.
See Table 2 in Sect. 5 for more simulation results compared to previous attacks.

The paper will be organized as follows. First we will give a brief description
of the systems we try to attack. In Sect. 2 we will describe the basic mathematics
and some important previous attacks. In Sect. 3 we describe an efficient method
for finding parity check equations, using the generalized birthday problem. In
Sect. 4 we present a new algorithm that is capable of using the huge number of
equations found by the method in Sect. 3.

2 Definitions and Previous Attacks

First we will define the basic mathematics for the correlation attacks in this
paper.

2.1 The Generator Matrix

Let g(x) = 1 + gl−1x + gl−2x
2 + ... + g1x

l−1 + xl be the primitive feedback
polynomial over F2 of degree l for a linear feedback register, LFSR, that gen-
erates the sequence u = (u0, u1, ..., uN−1). The corresponding recurrence is
ut = g1ut−1 + g2ut−2 + ut−l. Let α be defined by g(α) = 0. From this we
get the reduction rule αl = g1α

l−1 +g2α
l−2 + ...+gl−1α+1. Then we can define

the generator matrix for sequence ut, 0 < t < N by the l ×N matrix

G = [α0α1α2...αN−1]. (1)

For each i > l, using the reduction rule, αi can be written as αi = hi
l−1α

l−1 +
... + hi

2α
2 + hi

1α + hi
0. We see that every column i ≥ l is a combination of the

first l columns. Any column i in G can be represented by

gi = [hi
0, h

i
1, ..., h

i
l−1]

T. (2)

Thus the sequence u with length N and initialization bits uI = (u0, u1, ..., ul−1),
can be generated by

u = uIG.

The shift register is now turned into a (N, l) block code.
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Example 1. Let g(x) = x4 + x3 + 1. Using the reduction rule we get α4 =
α3 + 1, α5 = α(α3 + 1) = α4 + α = α3 + α + 1 and so on. We choose N = 10,
and set G = [α0α1...α9]. The sequence u is generated by the 4 × 10 matrix G
like this,

u = uIG = [u0, u1, u2, u3]




1 0 0 0 1 1 1 1 0 1
0 1 0 0 0 1 1 1 1 0
0 0 1 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0 1 0


 . (3)

The reason that we use a generator matrix, is that we easily can see from G
which initialization bits (u0, u1, ..., ul−1) sum to ui for every 0 ≤ i < N by
looking at column i. For example the bit u9 (last column) in the example above
is calculated by u9 =u0 + u2, and it is independent of the initialization bits u1
and u3.

2.2 Equations

In [4] Johansson and Jönsson presented the following method for finding equa-
tions that are usable for decoding.

Let u be a sequence generated by the generator polynomial g(x) with degree
l. If we can find w columns in the generator matrix G that summarize to zero
in the l −B last bits,

(gi1 + gi2 + . . . + giw
)T = (c0, c1, ..., cB−1, 0, 0, ..., 0︸ ︷︷ ︸

l−B

), (4)

for a given B, 0 < B ≤ l, and l ≤ i1, i2, ..., iw < N , we get an equation of the
form

c0u0 + c1u1 + ... + cB−1uB−1 = ui1 + ui2 + ... + uiw . (5)

This can be seen by noting that column i in G shows which of the initialization
bits uI = (u0, u1, ..., ul−1) that summarize to the bit ui in the sequence u. When
two columns i and j in G sum to zero in the last l−B entries (uB , uB+1, ..., ul−1),
the sum ui +uj is independent of those bits. Then we can concentrate on finding
just the B first bit of uI . The equation (5) is cyclic and can therefore be written
as

c0ut + c1ut+1 + ... + cB−1ut+B−1 = ut+i1 + ut+i2 + ... + ut+iw
, (6)

for 0 ≤ t < N − iw.

Example 2. Let w = 2, and B = 1. If we examine the matrix G in equation (3),
we see that (g6 + g8)T = (1, 1, 1, 1) + (0, 1, 1, 1) = (1, 0, 0, 0). From this we get
c0 = 1, i1 = 6 and i2 = 8 and the equation is u0 = u6 + u8. Because of the
cyclic structure we finally get ut = ut+6 +ut+8. This equation will hold for every
sequence that is generated with g(x) = x4 + x3 + 1 as feedback polynomial.

In section 3 we will go further into how the actual search for columns that sum
to zero in the last l −B bits can be done efficiently.
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2.3 Principle for Decoding

In [2] Chepyzhov, Johansson and Smeets presented a simple maximum likelihood
algorithm that uses equations found in Sect. 2.2 for decoding. We will now briefly
describe this algorithm. First we take equation (5) and make the right side of
the equation point to the corresponding key stream bits z instead of u. From
this we get the following equation,

c0u0 + c1u1 + ... + cB−1uB−1 ≈ zi1 + zi2 + ... + ziw . (7)

Let m be the number of equations found by the method in Sect. 2.2. Then we
get the equation set

c0,0u0 + c0,1u1 + . . . + c0,B−1uB−1 ≈ zi1,1 + zi1,2 + ... + zi1,w

c1,0u0 + c1,1u1 + . . . + c2,B−1uB−1 ≈ zi2,1 + zi2,2 + .... + zi2,w . (8)
...

cm,0u0 + cm,1u1 + . . . + cm,B−1uB−1 ≈ zim,1 + zim,2 + ... + zim,w

We use ′ ≈′ to notify that the equations only hold with a certain probability.
Here (u0, u1, ..., uB−1) are the unknown secret bits we want to find and z is

the key stream. Remember that ut and zt are equal with a probability 1 − p
where p = P (ut �= zt). Thus, each equation in (8) will hold with a probability

Pw =
1
2

+ 2w−1(
1
2
− p)w, (9)

using the Piling up lemma[9]. Replace the bits (u0, u1, ..., uB−1) in the set (8)
with a guess Û = (û0, û1, ..., ûB−1). If (û0, û1, ..., ûB−1) �= (u0, u1, ..., uB−1),
(that is, if one or more of the guessed bits are wrong) each equation will hold
with a probability P = 0.5. If the guess is right, each equation will hold with a
probability Pw > 0.5. We see that the (N, l) block-code is reduced to a (m, B)
block-code, and the decoding problem is to decode message blocks of length
B that are sent as codewords of length m through a channel with crossover
probability 1− Pw.

The decoding can be done the following way. For all the 2B possible guesses
for Û = (û0, û1, ..., ûB−1), test Û with all the equations in the set (8), and give
the guess one point for every equation in the set that holds. Afterward, assume
that (u0, u1, ..., uB) = Û for the guess of Û that has the highest score. In this
way we get the first B bits of the secret initialization bits (u0, u1, ..., ul). The
procedure can be repeated to find the rest of the bits (uB , uB+1, ..., ul−1).

The complexity for this algorithm is

O(2B ·m) (10)

since we have to test m equations on the 2B different guesses of Û.
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2.4 Fast Correlation via Convolutional Codes

In [4] Johansson and Jönsson showed how the equation set (8) can be used to
decode the key stream z via convolutional codes. The problem is formulated as
decoding of a (m, 1, B) convolutional code, and the decoding is done using the
Viterbi algorithm. This algorithm is optimal, but has relatively high usage of
memory. In convolutional codes the coding is done over T bits. Using the fact
that the equations are cyclic, the algorithm in Sect. 2.3 is used for calculating
the metrics for each state Û at time t, 0 ≤ t < T . The algorithm in Sect. 2.3
is actually a special case of the fast correlation attack via convolutional code
with T = 1. When the metrics are calculated, we try to find the longest possible
path through the states 0 ≤ t < T . We see that the problem is transformed into
finding the longest path trough a 2B×T trellis. The Viterbi algorithm is optimal
for solving this problem. We refer [4] for details about the convolutional attacks.

2.5 Theoretical Analysis and Complexity

In [5] Johansson and Jönsson, presented a theoretical estimate of the success
rate for fast correlation attacks via convolutional codes.

For a given bit stream of length N generated by a shift register with feedback
polynomial g(x), the expected number of equations of type (5) is

E(m) =

(
N−T−l

w

)
2l−B

≈
(
N
w

)
2l−B

(11)

Let pe < l · 2−B and p = P (zt �= ut). Then the convolutional attack described in
Sect. 2.4 has a success with probability 1− pe if

p ≤ 1
2
− 1

2

(
8ln2
m

) 1
2w

. (12)

The probability p is set by the stream cipher. The closer p is to 0.5, the more
equations are needed to fulfill (12). One way to find more equations is to incre-
ment w, the number of bits on the right hand side of the equations. If we do this,
each equation we find gets weaker, see equation (9). But although each equation
is weaker, we find so many of them that they together give more information
about the unknown key bits uI . The problem with this is, as shown below, that
the complexity of the attack also increases when we use many more equations.
In Sect. 4 we will describe a new method to solve this problem.

The complexity of the convolutional attack in [4,5] is O(2B · m · T ), since
we decode over T bits. This can be rewritten using equation (11) and noting

that m = 2B (N
w)
2l . Let o = (N

w)
2l . In this way we see that the complexity can be

formulated as
O(22B · o · T ), (13)

The complexity for the simple attack in [2] is O(22B · o). Using this formulation,
we see that if we use all the equations for given w, N, B and l, the run time
complexity increases with a factor 4, when we increment B by one.
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3 Methods for Finding Equations

In this section we will describe a fast method for finding many equations. The
method is in some ways similar to the solution of the generalized birthday prob-
lem that Wagner presented in [1].

We have an equation of the form (5) if we find w columns in the generator
matrix G of length N that sum to zero in the last l − B positions. For w = 2
we sort the N columns from the generator matrix. Equal columns will then be
located next to each other. The complexity of this method is O(N log N).

3.1 A Basic Method for Finding Equations with w > 2

We will now describe a simple and well known algorithm for finding equations
when w > 2.

First we sort the columns in the l ×N generator matrix G according to the
values in last l−B bits. Then we run through all possible sums of w−1 columns,
and search for columns in G that are equal to the sums in the last l − B bits.
The sum of these w columns is then zero in the l −B last bits. The complexity
of this algorithm will be O(Nw−1 log N).

This method is straightforward and seems good since we find all the equa-
tions. The problem is when l − B becomes big, since it is less likely that the
sum of the combination of w− 1 columns matches a single column. The number
of possible different values in the l − B last bits are 2l−B . If we pick a random
combination of w−1 columns we will have a probability less than Pm = N/2l−B

of getting a match from the sorted generator matrix. If N = 220, B = 15 and
l = 40 then Pm = 2−5, so on average each 32’th sum combination will give an
equation. If we increase the degree of the feedback polynomial to l = 60, the
probability of finding an equation for given w − 1 columns will be reduced to
Pm = 2−25. Since an equation with w = 4 is a very weak equation, we need
millions of equations in most cases.

Table 1. The table shows the percentage of the total number of equations we need for
a successful convolutional attack when N = 221, l = 60, w = 4 and B = 20.

p v

0,41 0.00068%
0,43 0,0051%
0,45 0,075%
0,47 4.5%

The method above finds all the equations, but in fact we do not need all the
equations for the attack to succeed. From (12) we get the equation

ms =
8 ln 2

(1− 2p)2w
,
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where ms is the number of equations needed for success for a given crossover
probability p. Then v = ms

m will give us the rate of the total number of equations
m needed for a successful attack. Table 1 shows different rates needed for different
attacks. The fact that we do not need all the equations indicates that we may
use a fast method to find a subset of them.

3.2 A Method for Finding All the Equations with w = 4

The method described here works in certain situations where the parameters
are small. The algorithm works as follows. In the first step we go through all
the possible sums of pairs of columns in G. These sums are stored in a matrix
G2 and the indexes of the two columns in G are also stored. In the second step
we sort the matrix G2 according to the last l − B bits. Then we search for the
columns in G2 that are equal in the last l−B bits. In this way we get weight 4
equations of the form:

(fj1 + fj2)
T = (gi1 + gi2 + gi3 + gi4)

T = (c0, c1, ..., cB−1, 0, . . . , 0︸ ︷︷ ︸
l−B

) (14)

where the fj ’s are columns in G2 and the gj ’s are columns in G.
By this method we will find all the equations 3 times. The reason for this is

illustrated by the equation gi1 +gi2 +gi3 +gi4 = 0⇐⇒ gi1 +gi2 = gi3 +gi4 . Two
other pairs giving the same equation is gi1+gi4 = gi2+gi3 and gi1+gi3 = gi2+gi4 .
This collisions are avoided if the pairing in the second step has a restriction. All
the indexes on the left side of the equation must all be less or greater than the
indexes on the right side. In this way 2

3 of the equations will be thrown away, but
the remaining 1

3 will represent all the equations. This method will be impractical

if N is big, since G2 will have a length of N2 =
(

N
2

)
.

3.3 A Fast Method for Finding a Subset of the Equations with
w = 4

Here we will solve the problem concerning memory requirement in the algorithm
presented above. Using this algorithm we are able to find all the equations, but
the number of possible sums in step one is far too many. If we can reduce the size
of G2, without reducing the number of equations significantly, we have succeeded.

The algorithm is divided into two steps. In step one we find a subset of all the
sums, where the pairing in step 2 only involves elements in that subset. The sum
of two columns that are unequal in the last bits will never be zero. Therefore we
may look for sums of pairs in step 1 where we require a certain value in the last
l −B2 positions. Without loss of generality we require zeroes in the last l −B2
positions in G2.

Let B4 < B2 < l. First we sort the columns in G according to the last l−B2
positions. Then we go through the matrix and find the columns that sum to zero
in the last l−B2 positions and store them in matrix G2. The original positions
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Algorithm 1 Algorithm for finding a subset of all the equations with w = 4
Input: G, N , B2, B4 < B2, l.
Step 1:
sort the l ×N matrix G according to the last l −B2 bits.
For 0 ≤ i1, i1 < N find all pairs of columns gj1 and gj2 that sums to

fT
j = (gi1 + gi2)

T = (d0, d1, ..., dB2−1, 0, . . . , 0
︸ ︷︷ ︸

l−B2

)

Add fj and indexes i1 + i2 to matrix G2.
Step 2:
sort l ×N2 matrix G2 according to the last l −B4 bits.
For 0 ≤ j2, j4 < N2 find all pairs of columns gj1 and gj2 that sums to

(fj1 + fj2)
T = (gi1 + gi2 + gi3 + gi4)

T = (c0, c1, ..., cB4−1, 0, . . . , 0
︸ ︷︷ ︸

l−B4

)

Add c0, c1, ..., cB−1 and the indexes i1, i2, i3, i4 to F
Return: F

of the columns in the sum are also stored. The size of G2 is thereby reduced by
a factor of 2l−B2 . In the second step we repeat the algorithm using B4 on G2.
We sort the matrix G2 according to the last l − B4 bits, in order to find pairs
of columns from G2, where the sum is zero in the last l − B4 bits. In this way
we get weight 4 equations of the form (5). The pseudo code for this is shown in
Algorithm 1.

Algorithm 1 is a method which may keep the memory requirements suffi-
ciently low. From (11) we get the size N2 of G2 ,

N2 =

(
N
2

)

2l−B2
≈ N2

2l−B2+1 .

It is possible to run this algorithm several times to find even more equations.
Instead of keeping the last l −B2 bits zero in the first step, we may repeat this
algorithm requiring these bits having the fixed values (dB2 , dB2+1, ..., dl) �= 0.
We may choose to only vary the first two bits, and run the algorithm 22 times.
Thus we get four times as many equations compared to running it only once.
The cost is that we have to sort the matrixes G and G2

Using Algorithm 1 some of the equations we get will be equal, called collisions.
If we use algorithm 1 repeatedly changing r bits (that is: we repeat 2r times)
this bound is

p(collision) < 2(B2+r)−l + 22(B2+r−l) < 2 · 2(B2+r−l) = 2(B2+r+1−l)

since B2 + r − l < 0. If we do not use repetitions we set r = 0. In practical
attacks, this probability will be very low, and the simulations show that this has
little impact on the decoding.
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4 Fast Decoding Using Quick Metric

In Sect. 3 we presented a fast method for finding a huge number of equations.
These equations can give us a lot of information about the initialization bits. But
since there are so many of them, we get two new problems. It will take too much
memory to store all the equations, and the complexity will be too high when we
use them to calculate the metrics during decoding. Thus, we need an efficient
method for storing the equations, and an efficient method for using them.

The complexity for calculating the metrics by the method in Sect. 2.3, is
O(2B ·m), where m is the number of equations and B is the message block size
of the code. If m is very high, the decoding problem can be to complex. We
reduce the decoding complexity to O(22B + m) by the following two methods
referred to as Quick Metric.

4.1 A New and Efficient Method for Storing the Equations

Let m � 2B be the number of equations found using the method described in
Sect. 3 with B = B4. We get an equation set like (8). The main observation here
is that although there are m different equations, there exist only 2B different
versions of the left side of the equations. This means that many equations will
share the same left sides defined by (c0, c1, ..., cB−1) when m� 2B . We can now
use counting sort to store the equations. Let E be an integer array of size 2B .
When an equation of the form (5) is found, we set

e = c0 + 2c1 + 22c2 + ... + 2B−1cB−1. (15)

Then we count the equation by setting E(e)← E(e) + 1.
At this point we have stored the left side of the equation. To store the right

side, we use another integer array, sum(), of size 2B . Then we calculate the
binary sum s = (zi1 + zi1 + ... + ziw

) mod 2 for the given (i1, i2, ..., iw). Finally
we set Sum(e)← Sum(e) + s.

When the search for equations is finished, E(e) is the number of the equations
of type e that was found, and Sum(e) is the number of equations of type e that
sum to 1 on the right hand side for a given key stream z.

Algorithm 2 shows a pseudo code for this idea. Here the idea is expanded
so that it works with decoding via convolutional codes as presented in [4,5]. We
assume that the search methods in Algorithm 1 are used to find the w columns
that sum to zero in the last B bits. When decoding is done via convolutional
codes, the equations are cycled T times when we decode over T bits. This means
that we have to calculate Sum(e) for every 0 ≤ t < T , since the right side of
(7) is not cyclic itself. From this we get the 2-dimensional array Sum(e, t). One
little detail to make this work with convolutional codes, is that the bit cB in the
sum of the columns has to be 1. But this has no impact on the complexity for
the algorithm.
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Algorithm 2 Algorithm for storing equations (first step)
Input: G, N , T , B,w and z.
For every i1, i2, ..., iw, T ≤ i1, i2, ..., iw < N − T ,
If the columns gi1 ,gi2 , ...,giw in G summarize to

(gi1 + gi2 + ... + giw )T = (c0, c1, ..., cB−1, 1, 0, . . . , 0
︸ ︷︷ ︸

l−B

)

Let e be the integer value of the bits (c0, c1, . . . , cB−1).
E(e)← E(e) + 1
For every t, 1 ≤ t ≤ T ,

Sum(e, t)← Sum(e, t) + (zt+i + zt+j + zt+k mod 2)
Return:The integer arrays Sum and E

4.2 A New and Efficient Method for Calculating the Metrics

Assume we have done the search for equations according to Sect. 3.3 and Algo-
rithm 2. After this preprocessing step, we have the two arrays E and sum. Let
me = E(e) be the number of equations found of type e. Now we can test me

equations on a guess Û in just one step instead of me .
Make a guess Û for uI . For every equation type e, do as follows: If the sum

c0û0 + c1û1 + ...+ cB−1ûB−1 corresponding to the equation type e (see equation
15) is 1, the number of the me = E(e) equations that hold is sum(e). The metric
for the guess Û is incremented with sum(e). If c0û0 + c1û1 + ...+ cB−1ûB−1 = 0,
the number of the me equations that hold is me − sum(e), and the metric is
incremented with me − sum(e). Algorithm 3 shows the pseudo code for this
idea.

Now we have calculated the metric for one guess in just 2B steps instead of
m > 2B steps. The complexity for this part of the attack is actually independent
of the amount of equations that are used, and the complexity for calculating the
metrics for all the 2B guesses is O(22B). The reason that the overall complexity
is O(22B + m), is that we have to go through all m equations once in the pre-
processing, each time we want to analyze a new key stream z. Using the search
algorithm in Sect. 3, we can do some processing independently from z. But in
the end we have to go through m equations and save the zi1 + zi2 + ... + ziw in
array sum for each equation. This part of the search algorithm is almost linear
in m.

4.3 Complexity and Properties

When we use Quick Metric, the decoding is done in two steps. The first step is
the building of the equation count matrix E. The second step is decoding using
the Viterbi algorithm with complexity O(T · 22B), because of Quick Metric. The
building of matrix E can be divided into 3 parts. First the sorting of G of length
N , then the sorting of G2 of length N2. Finally we have to go through the sorted
G2 and save all the equations in E. Thus, the total complexity for the first step
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Algorithm 3 Quick Metric algorithm (second step)

Input: state ̂U, time t, and the tables Sum and E .
metricÛ ← 0
For every e, 0 ≤ e < 2B

If equation e over state ̂U sums to 1,
metricÛ ← metricÛ + Sum(e, t)
Else

metricÛ ← metricÛ + (E(e)− Sum(e, t))
Return: metricÛ

is O(N · logN + N2 · logN2 + T ·m). Since m has to be very high for our attack,
the complexity is most often dominated by T ·m, and the overall complexity for
the first step is O(T ·m).

It will vary which of the two steps that will dominate the complexity. Thus,
the total run time complexity for both step is given by

O(T ·m + T · 22B).

To guarantee success (99, 9%), the number of equations m and the convolutional
memory B should satisfy equation (12) where p and l is are set by the cipher
system. T must be high enough so that the algorithm converge to the right path
in the trellis. T ≈ l is enough for most cases. The complexity for the attack in

[4,5] is O(22B · o · T ), where o = (N
w)
2l .

The first observation is that when we use Quick Metric, the computational
complexity for the Viterbi algorithm is independent from the number of equa-
tions m that is used for decoding. The main difference from the attacks in [4,5]
is that we just have to go through all m equations once in the first step. In [4,
5] they have to go through all the m equations for every time they test one of
the 2B states. Thus, our algorithm has a big advantage when we choose to use
more than 2B equations.

A drawback for our algorithm is that we have to do the first step every time
we want to decode a new stream generated by the same system. In [4,5], they
just have to do the preprocessing once for each cipher system. Therefor we have
to keep the complexity in the first step as low as possible. There is actual a trade
off between the two steps. When the first step takes long time, the second step
takes less time, and the other way around. This means that we have to choose
the parameters N , B and m carefully to get the best possible attack.

The next observation is that our algorithm is stronger for last B, since we
can use many more equations. That means that we can attack a system using a
last B than is possible with the attacks in [4,5]. Thus, the run time for given B,
w and m goes down considerably since B has a huge impact on the complexity.
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Table 2. Our attack compared to previous attacks. The generator polynomial degree
l for the LFSR is 60 for all the simulations. We set T = 60. The * is a theoretical
estimate using the success rate equation (12).

Improved convolutional attack

B p N w
Total

decoding
complexity

14 0.43 15 · 106 4 235

10 0.43 100 · 106 4 231

16 0.47 100 · 106 4 239

11 0.43 40 · 106 4 230

Previous convolutional attack[5]

B p N w
Decoding

complexity

20 0.43 100 · 106 2 238

18 0.37 600 · 103 3 237

25∗ 0.47 100 · 106 2 248

Previous attack through reconstruction
of linear polynomials[3]

B p N w Rounds n
Decoding

complexity

25 0.43 40 · 106 2 4 241.5

5 Simulations

The evaluation of the attacks need some explanation. The interesting parameters
of the cipher systems we attack, are the polynomial degree l and the crossover
probability p. Finally we are given a key stream of length N . We want for a
given high l to be able to decode a key stream z where the crossover probability
p = (ui �= zi) is as near 0.5 as possible. Of course we want to use few key stream
bits and low run time complexity.

To be able to compare the different attacks, we compute the complexity for
decoding as the total number of times we have to test an equation on a guessed
state. The complexity for the pre-computation is computed as the number of
table lookups that have to be done during the search for equations. When we
use Quick Metric we have 2 steps, so the overall complexity is given by the sum
of the two steps.

See Table 2 for the simulation results. It is important to notice that we have
programmed and tested all the attacks in the table, and the results for p come
from these tests, not the theoretical estimate (12). For this purpose we used a
2.26 GHz Pentium IV with 1 gigabyte memory running on Linux. The algorithm
is fast in practice and even the biggest attack (p = 0.47) was done in just a few
hours including the search for equations.
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From the table we see that our attack is best when p is close to 0.5. For p =
0.47 the run time complexity of our attack is dominated by the pre-computation
step which is m·T ≈ 239. The parameters for this attack is B2 = 34, B = B4 = 16
and m = 233 which gives the code rate r = 2−33. If we use the method in [4,5],
the estimated run time complexity is 248.

Another attack from Johansson and Jönsson is the the fast correlation attack
through reconstruction of linear polynomials[3]. This attack has lower complexity
than fast correlation via convolutional codes and it uses less memory. We can
apply Quick Metric on the reconstruction algorithm, but unfortunately this will
not give a better result than using it on the convolutional code attack. The
reason for this is that in each round in the algorithm we would have to repeat
the search for equations. To keep B sufficient low, we would have to use many
rounds. Thus, the computational complexity for this would become too high.

But when we use Quick Metric on the convolutional attack, the attack
achieves in most cases a much lower run time complexity than the attack in
[3]. This is shown by the two attacks in Table 2 using N = 40 · 106.

6 Conclusion

We have presented a new method for calculating the metrics in fast correlation
attacks. This method enable us to handle the huge number of parity check equa-
tions we get when we use w = 4 and the method in Sect. 3. Earlier it has only
been possible to handle convolutional code rates down to around r = 1/214. Us-
ing our method we have decoded convolutional codes with rates down to 1/232

in just a few hours. Because of this we have done attacks on cipher systems with
higher crossover probability p than before.

An open problem is the search for equations with w = 3. We use w = 4 since
there exists a fast method for finding those equations. But the equations with
w = 4 are weak, and this gives the first step high complexity. A good solution
would be to use w = 3, with a fast search algorithm.
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