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Abstract  A two compartment mathematical model for the ind ividual plant growth under the stress of toxic metal is 

studied. In the model it is assumed that the uptake of toxic metal adsorbed on the surface of soil by the plant  is through root 

compartment thereby decreasing the root dry weight and shoot dry weight due to decrease in nutrient concentration in each 

compartment. In order to visualize the effect of toxic metal on p lant growth, we have studied two models that is, mod el for 

plant growth with no toxic effect and model fo r plant growth with toxic effect. From the analysis of the models the criteria for 

plant growth with and without toxic effects are derived. The numerical simulation is done using Matlab to support the 

analytical results. 
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1. Introduction 

Soil normally  contains a low concentrat ion  of heavy 

metals such as copper (Cu) and zinc (Zn), which are the 

essential macronutrients for the optimum growth of the 

p lants . Metals  such  as  cadmium (Cd), ars en ic (Ar), 

chromium (Cr), lead (Pb), nickel(Ni), mercury(Hg) and 

selenium (Se) toxic to plants are not usually found in 

agricultural soil[1]. Over the last few years, the level of 

heavy metals are increasing in the agricu ltural fields as a 

consequence of increasing environmental pollution from 

industrial, agricu ltural, energy  and municipal wastes. A 

reduction in p lant growth has been observed due to the 

presence of elevated levels of heavy metals like cadmium, 

arsenic, n ickel, lead  and mercury[2]. Cadmium (Cd) is 

among the most widespread heavy metals found in  the 

surface soil layer which inhibits the uptake of nutrients by 

plants and as well as its growth[3]. The inhib ition of plant 

growth can be caused by the phytotoxic effect of cadmium 

on different p rocesses in p lants, includ ing respirat ion, 

photosyn thes is , carbohydrate  metabo lis m and  water 

relat ion [4]. Cadmium (Cd) ia a toxic metal, caus ing 

phytotoxicity, and its uptake and accumulation  in  plants 

causes reduction in photosynthesis, diminishes water and 

nutrient uptake[5]. Heavy metals interfere with the uptake 

and distribution of essential mineral nutrients in a plant, 

causing deficiencies and nutrient imbalance[6]. The toxic 

metals in the soil  system could result in the leach ing of 

essential cation away from the rooted zone, decreasing plant  
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nutrient uptake causing root damage[7]. Cadmium inhib its 

root and shoot growth and yield production, affects nutrient 

uptake and homeostasis. Cadmium is a highly toxic, 

metallic soil contaminant, which adversely affects the plant 

growth especially at early  stage reducing the crop 

production[8]. The reduction of dry weight by Cd  

toxicity  could be the direct  consequence of the inhib ition of 

chlorophyll synthesis and photosynthesis [9]. Excessive 

amount of Cd  may  also cause decrease in uptake of 

nutrient elements, inhibition of various enzyme activ ities, 

induction of oxidative stress including alterations in the 

enzymes of the antioxidant defense system[10]. Aluminium 

(Al) interferes with the uptake, transport and utilization of 

essential nutrients including Ca , Mg , K , P , Cu , 

Fe , Mn  and Zn  in plant system[11]. Metals inhibit 

the activities of several enzymes, seed germinat ion and 

seedling growth[12-15]. Seed gemination inhibit ion by 

heavy metals has been reported by many researchers[16-18]. 

Agricultural research almost completely rely upon 

experimental and empirical works, combined with statistical 

analysis and very few mathematical modelling analysis has 

been carried out in this direction[3-4],[19-20]. Many of the 

models that are currently used by agronomists and foresters 

to predict harvests and schedule fertilization, irrigation and 

pesticides application are of empirical form. A major 

limitat ion in all these approaches is the unpredictability of 

the environmental inputs[21]. Thornley  in itiated the work 

related to the mathematical modelling of ind ividual plant 

growth processes and mathemat ical models were applied to 

a wide variety of topics in p lant physiology[22]. The 

majority of these focuses on processes that are modelled 

independently such as photosynthesis, flu id transport, 

respiration, transpiration and stomatal response and the 

general goal of the models was to predict  the effect of a 



277 American Journal of Computational and Applied Mathematics 2012, 2(6): 276-289  

 

 

variety of environmental factors, including radiat ion input, 

humid ity, wind, CO2 concentration and temperature on 

these process rates. The soil-nutrient-plant interaction 

represents a good example of a relat ionship that operates at 

individual, population, and ecosystem levels. Nutrients 

influence individual plant growth, which has subsequent 

effect on population growth  dynamics which in turn 

influence production of standing crop. The models that have 

been developed to describe the growth of individual plants 

in crop has been classified by Benamin  and Hardwick[23], 

according to the assumption that how resources are shared. 

A continuous-time model fo r the growth and reproduction 

of a perennial herb with discrete growing season is 

considered in[24] and optimal resource allocation in 

perennial plants has been determined and studied. In the 

paper[25], a transient three-dimensional model for soil 

water and solute transport with simultaneous root growth, 

root water and nutrient uptake is studied and discussed. In 

this paper, authors have presented a model to study the 

interactive relationships between changing soil-water and 

nutrient status and root activity. The authors in the paper[19] 

have studied the influence of acid  deposition on forests by 

means of a mathematical model taking the state variables as 

forest dry weight, alumin ium concentration in trees and soil, 

and proton concentration in soil. Referrence[3] have given a 

mathematical model to  study the effect of cadmium (Cd) on 

nutrient uptake by crop such as Barley and have shown 

through their model that how the accumulation of Cd in 

plants inhibit its growth rate. Experimental and 

mathematical simulation to study the effects of toxic metal; 

cadmium on the plant growth promoting rhizobacteria and 

plant interaction have been carried out by[4]. Nit rogen 

dynamics in soil, its availab ility to the crop and the effects 

of nitrogen deficiency on crop performance were studied in 

the model g iven by the researchers [26]. A  non-spatial, size- 

structured continuum model of p lant growth, without 

focusing on a particular species, but with emphasis on a 

dense tree-dominated forest is considered and studied by[27] 

and in this paper a closed form solution for the equilibrium 

size density distribution is obtained along with the 

analytical conditions for communities persistence. Crops 

and vegetables grown on polluted soil accumulate heavy 

metals that cause decrease in their yield, and in order to 

study the uptake of heavy metals and its accumulation by 

crops, mathemat ical models can be used. In paper[20], a 

study has been conducted through mathematical model to 

understand the cadmium uptake by radish, carrot, spinach 

and cabbage. In this paper a dynamic macroscopic 

numerical model for heavy metal transport and its uptake by 

vegetables in the root zone is considered and analysed 

numerically. A very few mathemat ical models to study the 

effects of toxic metal on plant growth exist[3-4],[19-20]. 

In view of the above, therefore in this paper, a two  

compartment mathematical model for the plant growth 

under the stress of toxic metal is proposed and analyzed. 

For the modelling purpose, the plant is divided into root and 

shoot compartments in which the state variables considered 

are nutrient concentration and dry weight. In the model it is 

assumed that the uptake of toxic metal adsorbed on the 

surface of soil by the plant is through root compartment 

thereby decreasing the root dry weight and shoot dry weight 

due to decrease in nutrient concentration in each 

compartment. In the model it is further assumed that the 

maximum root dry weight and shoot dry weight decrease 

due to the presence of toxic metal in root compartment. 

From the analytical and numerical analysis of the model the 

criteria for p lant growth under the stress of toxic metal are 

derived.  

2. Mathematical Model 

Model 1 (Model with no toxic effect): 

In this model the plant growth dynamics is studied by 

assuming that the plant is divided into root and shoot (stem, 

leaf, flower) compartments in which the state variables 

associated with the each compartment are nutrient 

concentration and dry weight. Let 
rW  and 

sW  denote 

the root dry weight and shoot dry weight respectively. 
0S  

and 
1S  denote the nutrient concentration in root and shoot 

respectively. With these notations, the mathematical model 

of the plant growth dynamics is given by the following 

system of nonlinear differential equations: 

0
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with the in itial conditions as: 

0>(0)0S , 0>(0)1S , 0>(0)rW , 0>(0)sW . 

In the present analysis we assume the fo llowing forms for 

growth functions )( 0Sr  and )( 1Sr [22],[28] :   
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In absence of nutrient concentration plant will not grow 

and eventually they will die out. 
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Here,   is the utilization coefficient. 
rm  and 

sm  are 

the proportion of total dry weight allocated to root and 

shoot dry weight respectively. 
r  and 

s  are the 

resource-saturated rates of resource uptake per unit of root 

and shoot dry weight respectively. 
rK  and 

sK  are half 

saturation constants. 
NK  is the rate of supply of nutrient. 

),( 1CIfg  is the specific gross photosynthetic rate[22]. 

u  is the fraction of shoot in the form of leaf tissue. S  is 

senescence constant. 
1  is the maximum age of shoot of 

plant. l  is the specific leaf area of whole p lant. I  is the 

light flux density incident on the leaves in  shoot 

compartment. 
1C  is the 

2CO  density in plant. pS  is  

the rate of senescence of the photosynthesis. β is the 

photochemical efficency. γ is the conductance to 
2CO . 

rWSr )( 0
and 

sWSr )( 1
 represent the use of nutrient by 

root and shoot respectively[26].  In plant growth, it  is 

considered that during the initial stage, i.e., during the lag 

phase, the rate of plant growth is slow. Rate of growth then 

increases rapidly during the exponential phase. After some 

time the growth rate slowly decreases due to limitation of 

nutrient. This phase constitutes the stationary phase . The 

terms 
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 are taken to 

account for the dimin ishing growth phase and stationary 

phase in the plant growth dynamics. Where, 0rk  is the 

maximum root dry weight. 0sk  is the maximum shoot dry 

weight. r  and s  are nutrient limiting coefficients. 

)( 0110 SSD  and )( 1020 SSD   represent the flux o f 

nutrient from shoot to root and root to shoot respectively. 

Where, 
10D  and 

20D  are  transfer rates. 
01S  

represents the loss of nutreint due to leaching. 12S  

represent the loss of nutrient due shedding of leaves. 1  is 

leaching rate and 2 is natural decay rate of 1S .
 

Model 2 (Model with toxic effect): 

In this model, the effect of toxic metal on plant growth 

dynamics is considered. Here, we assume that the nutrient 

concentration and dry weight are adversely effected by 

toxic heavy metal. Let  )(tC  is the concentration of toxic 

metal in soil and )(tc  is the concentration of toxic metal 

adsorbed on the surface of soil. After incorporating the 

stress of toxic metal in the model 1 with the assumptions 

mentioned earlier in section 1, we get the fo llowing model 

2: 
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with the in itial conditions as: 

0>(0)0S , 0>(0)1S , 0>(0)rW , 0>(0)sW , 

0>(0)C , 0>(0)C . 

Here, we assume the following forms for )( Crk  , 

)( Csk   and uptake function )( CF  [25]: 
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Along with the parameters of model 1, we have the 

following additional parameters in  model 2 such as 1k , 

2k , 0Q ,  , 1 , 2 ,  ,  , k ,  , maxV , mk , 

f  and h , which are described as follows:  

0Q  is the input rate of heavy metals.   is the first 

order rate constant.   is the soil bulk density. k  is the 

linear adsorption and absorption coefficient. 1  and 2  

are decreasing rates of 0S  and 1S  respectively due to 

C . 

maxV  is the maximum uptake rate of C . mk  is the 

Michaelis-Menten constant. f  is the first order rate 

coefficient. h  is the natural decay rate of C  due to soil 

depletion on account of natural process.   is natural 

decay rate of C . Here, all the parameters NK , 10D , 

20D , 1 , 2 , r , s ,  , rK , sK , S , 1 , u , l , 

I , C  ,  ,   pS , 0rk , 0sk , r , s , 1 , 2 , 

0Q ,  ,  , k ,  ,  , maxV , mk  and h  are taken 
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to be positive constants. 

3. Boundedness and Dynamical 
Behaviour 

3.1. Analysis of Model 1  

Now, we show that the solutions of the model g iven by (1) 

to (4) are bounded in a positive orthant in 
4R . The 

boundedness of solutions is given by the following lemma.  

Lemma 3.1: All the solutions of model will lie in the 

region  
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Similarly from Eq. (4), we get,  
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This complete the proof of lemma. 

Now we show the existence of the interior equilibrium 

 of Model 1. The system of equations (1) - (4) has one 

feasible equilibria . The 

equilibrium  of the system is obtained by solving the 

following equations,  
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The two Eqs. (20) and (21) intersect each other in  the 

positive phase plane satisfying 0>/ 01 dSdS  for Eq. (20) 

and 0</ 01 dSdS  for Eq . (21), showing the existence of 

the unique interior equilibrium *E . 
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Now, we d iscuss the dynamical behaviour of the interior 

equilibrium point 
*E  of the model g iven by (1)-(4) and 

for this local and global stability analysis have been carried 

out subsequently. 
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The characteristic equation associated with the 

variational matrix about equilibrium *E  is given by  
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From the nature of the roots of the characteristic equation 

(23) we derive that the equilibrium point *E  is always 

locally asymptotically stable. 

Now, we d iscuss the global stability of the interior 

equilibrium point *E  of the system (1)-(4). The non-linear 

stability of the interio r positive equilib rium is determined 

by the following theorem. 
Therorem 3.2: In addition to assumptions (6), let 
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for some positive constants 
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Then if the fo llowing inequalities hold  
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*E  is globally asymptotically stable with respect to 

solutions initiating in the interior of the positive orthant.   

Proof: Since 1B  is an attracting region, and does not 

contain any invariant sets on the part of its boundary which 

intersect in the interior of 
4

R , we restrict  our attention to 

the interior of 1B .  
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After some algebraic manipulations, this can be written 

as 
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Hence 
1V  can be written as the sum of three quadratic 

forms, 
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By Sylvester’s criteria we find that 
1V  is negative 

definite if 

2
11 2212

< ,a a a                 (28) 

2
11 3313
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2
22 4424
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hold. However (25) implies (28), (26) implies (29) and 

(27) implies (30). Hence 
1V  is negative definite and so 

1V  is a Liapunov function with respect to 
*E , whose 

domain contains 1B , proving the theorem. 

The above theorem shows, that provided inequalities (25)  

to (27) hold, the system settles down to a steady state 

solution. 

3.2. Analysis of Model 2  

Now, in the following we show that the solutions of 

model given by (7) to (12) are bounded in a positive orthant 

in 
6R . The boundedness of solutions is given by the 

following lemma. 

Lemma 3.3: All the solutions of model will lie in the 

region  
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as t , for all positive in itial values  
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where ),(= 211  min .   

Proof:  By adding Eqs. (7) and (8), we get,  
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where, ),(= 211  min  and then by the usual 

comparison theorem we get as :t   
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From Eq. (9), we get,  
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if rrr kW /0  and then by the usual comparison 

theorem we get as :t   
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Similarly from Eq. (10), we get,  
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From Eq. (11), we get,  

CQ
dt

dC
 0

 
Then by the usual comparison theorem we get as 

:t   
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From Eq. (12), we get,  

C
C h
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Then by the usual comparison theorem we get as 

:t   

h
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This complete the proof of lemma. 

Now, we find the interio r equilibrium E
~

 of Model 2. 

The system of equations (7) - (12) has one feasible 
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of the system is obtained by solving the following 

equations,   
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Thus, from the above set of equations we get the positive 
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It may  be noted here from Eqs. (37) and (38) that the dry   

dry weight of root and shoot will decrease if the level of 

c  increases. 

The C
~

 is given by the positive root of the equation  
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solving the following pair of equations:   

)(
)

~
(

)(=),( 01100101 SSD
k

SrKSSG
r

Cr
N 





 

,0=
~

)( 01011020 SSSSD C    (41) 

r

Cr
gN

k
SrCIufKSSG



 )
~

(
)(),(=),( 01102 

 

0.=
~~)

~
(

)( 120112011 SSSS
k

Sr CC

s

Cs 



 (42) 

From Eqs. (41) and (42), we have 
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The two Eqs. (41) and (42) intersect each other in  the 

positive phase plane satisfying 0>/ 01 dSdS  for Eq. (41) 

and 0</ 01 dSdS  for Eq . (42), showing the existence of 

the unique interior equilibrium E
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Now, we d iscuss the dynamical behaviour of the interior 

equilibrium point E
~

 of the model given by (7)-(12) and 

for this local and global stability analysis have been carried 

out subsequently. 

The characteristic equation associated with the 
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From the nature of the roots of the characteristic equation 
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(44) we derive that the equilib rium point E
~

 is locally  

stable if  
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Now, we d iscuss the global stability of the interior 

equilibrium point E
~

 of the system (7)-(12). The 

non-linear stability of the interior positive equilibrium state 

is determined by the following theorem. 
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E
~

 is globally asymptotically stable with respect to 

solutions intiating in the interior of the positive orthant.   

Proof: Since
2B is an atttracting region, and does not 

contain any invariant sets on the part of its boundary which 

intersect in the interior of 
6

R , we restrict  our attention to 

the interior of 
2B . 

We consider a positive definite function about E
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 2 , 3 , 4 , 5)  are arbitrary positive 

constants.  

Then the derivatives along solutions, 
2V  is given by   
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After some algebraic manipulations, this can be written 
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By Sylvester’s criteria we find that 
2V  is negative 

definite if  
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However (47) implies (52), (48) implies (53), (49) 

implies (54) and (50) implies (55). Hence 
2V  is negative 

definite and  so 2V  is a  Liapunov function with  respect to 

E
~

, whose domain contains 2B , proving the theorem. 

The above theorem shows, that provided inequalities (47) 

to (50) hold, the system settles down to a steady state 

solution. 

4. Numerical Example 

For the model 1, consider the following values of 

parameters- 
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For the above set of parametric values, we obtain the 

following values of interior equilibrium point 
*E  - 

*
0 2.5899S  , 

*
1 2.0083S  ,  

* 9.0909rW  , 
* 8.3333sW   

which is asymptotically stable (see Figure 1). 

Further, to illustrate the global stability of interior 

equilibrium  of model 1 graphically, numerical 

simulation is performed  for different init ial conditions (see 

Table 1 and 2) and results are shown in Figures 2 and 3 for 

 phase plane and  phase plane 

respectively. All the trajectories are starting from different 

initial condit ions and reach to interior equilibrium . 

 

Figure 1.  Trajectories of the model 1 with respect to time (with no toxic 

effect) showing the stability behaviour 

Table 1.  Different initial conditions for 0S  and rW  of model 1 

(0)0S
 

0.1 6 7 2 

(0)rW  1 0.1 16 18 

Table 2.  Different initial conditions for 1S  and sW  of model 1 

(0)1S
 

0.1 0.5 1 3 

(0)sW  2 0.1 14 12 

 

Figure 2.  Phase plane graph for nutrient concentration in root S0 and root 
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dry weight Wr at different initial conditions given in Table 1 for model 1 

(with no toxic effect) showing the global stability behaviour 

 

Figure 3.  Phase plane graph for nutrient concentration in shoot S1 and 

shoot dry weight Ws at different initial conditions given in Table 1 for model 

1 (with no toxic effect) showing the global stability behaviour 

For the model 2, with above set of parametric values and 

with the additional values of parameters given by- 
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we obtain the following values of interior equilibrium point 

E
~

 as 

1.7514=
~

0S , 1.2301=
~

1S , 7.4671=
~

rW , 

6.8448=
~

sW , 1.0903=
~
C , 1.0875=

~
C . 

For the set of parametric values considered, the stability 

conditions given in Eq. (45) and Eqs. (47)-(50) are satisfied. 

Hence, E
~

 is asymptotically stable (see Figure 4). 

 

Figure 4.  Trajectories of the model 2 with respect to time (with toxic effect) 

showing the stability behaviour 

Further, to illustrate the global stability of interior 

equilibrium E
~

 of model 2 graphically, numerical 

simulation is performed  for different init ial conditions (see 

Table 3 and 4) and results are shown in Figures 5 and 6 for 

rWS 0
 phase plane and 

sWS 1
 phase plane 

respectively. All the trajectories are starting from different 

initial condit ions and reach to interior equilibrium E
~

. 

Table 3.  Different initial condit ions for S0 and Wr of model 2 

S0(0) 0.1 10 16 2 

Wr(0) 1 0.1 16 18 

Table 4.  Different initial conditions for S1 and Ws of model 2 

S1(0) 0.1 10 16 2 

Ws(0)
 

1 0.1 16 18 

 

Figure 5.  Phase plane graph for nutrient concentration in root S0 and root 

dry weight Wr at  different initial conditions given in Table 3 for model 2 

(with toxic effect) showing the global stability behaviour 

 

Figure 6.  Phase plane graph for nutrient concentration in shoot S1 and 

shoot dry weight Ws at different initial conditions given in Table 4 for model 

2 (with toxic effect) showing the global stability behaviour 

Tolerance indices (T.I.) are determined through use of the 

following formula[29]: 
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100
toxicantofabsenceinbiomassshoot Mean

toxicantofpresenceinbiomassshootMean
=).(. shootIT

 

Table 5.  Tolerance indices of root dry weight and shoot dry weight at 
different toxic input rate Q0 

S.No. Q0 Wr Ws T.I(Wr) T.I(Ws) 

1 0.0 9.0909 8.3333 100 100 

2 0.5 8.8883 8.1476 97.71 97.71 

3 1.0 8.6724 7.9497 95.39 95.39 

4 1.5 8.4451 7.7414 92.89 92.89 

5 2.0 8.2085 7.5245 90.29 90.29 

6 2.5 7.9651 7.3013 87.61 87.61 

7 3.0 7.7172 7.0741 84.88 84.88 

8 3.5 7.4671 6.8448 82.13 82.14 

5. Conclusions 

Equilibrium  of model 1 is shown to be 

asymptotically stable (see Fig. 1). The equilibria  of 

model 2 is shown to be asymptotically stable (see Fig. 4). 

From Figures 7(a) and 7(b), it may be noted that the 

equilibrium levels of nutrient concentrations in each 

compartment with no toxic effect are more than that of the 

equilibrium levels of nutrient concentrations in respective 

compartments when toxic effect is considered.  

 

Figure 7(a).  Graph between nutrient concentration in root S0 and time t for 

model 1(with no toxic effect) and for model 2(with toxic effect) 

 

Figure 7(b).  Graph between nutrient concentration in shoot S1 and time t 

for model 1(with no toxic effect) and for model 2(with toxic effect) 

Further, from Figures 8(a) and 8(b), it is observed that the 

equilibrium levels of root dry weight and shoot dry weight 

with no  toxic effect are more than that of equilibrium levels 

of the root dry weight and shoot dry weight when toxic 

effect is being considered.  

 

Figure 8(a).  Graph between root dry weight Wr and time t for model 1 

(with no toxic effect) and for model 2(with toxic effect) 

 

Figure 8(b).  Graph between shoot dry weight Ws and time t for model 

1(with no toxic effect) and for model 2(with toxic effect) 

From the non-trivial positive equilibrium E
~

 and 

tolerance indices (Table 5), it is concluded that the root dry 

weight and shoot dry weight decrease as the input rate of 

toxic metal 0Q  increases till 0Q  is less than or equal to 

95.3thQ and upto this value the stability criteria is also 

preserved. Further, in  case if 0Q  increases from its 

threshold value thQ  then the stability condition given by 

Eq. (45) is voilated and  equilibrium E
~

 loses its stability. 

From the expressions (37) and (38) it may be noted that the 

root dry weight and shoot dry weight will decrease and may 

tend to zero with increasing C . From Eqs. (22) and (43), 

it is concluded that for large 1 , the nutrient concentration 

in shoot with toxic effect is less than that of nutrient 

concentration in shoot when no toxic effect is considered. 

The Figures 9(a) and 9(b) represent the dynamical 

behaviour of the of root dry weight and shoot dry weight 
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with respect to 
C . From these figures it is observed that 

the toxicity of the metal will adversely effect the plant 

growth in its early stages resulting in loss of crop 

productivity[8],[29]. 

 

Figure 9(a).  Phase Plane Graph of root dry weight Wr and θC for model 2 

 

Figure 9(b).  Phase Plane Graph of shoot dry weight Wr and θC for model 2 
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