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Abstract A two compartment mathematical model for the individual plant growth under the stress of toxic metal is
studied. In the model it is assumed that the uptake of toxic metal adsorbed on the surface of soil by the plant is through root
compartment thereby decreasing the root dry weight and shoot dry weight due to decrease in nutrient concentration in each
compartment. In order to visualize the effect of toxic metal on plant growth, we have studied two models that is, mod el for
plant growth with no toxic effect and model for plant growth with toxic effect. Fromthe analysis of the models the criteria for
plant growth with and without toxic effects are derived. The numerical simulation is done using Matlab to support the

analytical results.
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1. Introduction

Soil normally contains a low concentration of heavy
metals such as copper (Cu) and zinc (Zn), which are the
essential macronutrients for the optimum growth of the
plants. Metals such as cadmium (Cd), arsenic (Ar),
chromium (Cr), lead (Pb), nickel(Ni), mercury(Hg) and
selenium (Se) toxic to plants are not usually found in
agricultural soil[1]. Over the last few years, the level of
heavy metals are increasing in the agricultural fields as a
consequence of increasing environmental pollution from
industrial, agricultural, energy and municipal wastes. A
reduction in plant growth has been observed due to the
presence of elevated levels of heavy metals like cadmium,
arsenic, nickel, lead and mercury[2]. Cadmium (Cd) is
among the most widespread heavy metals found in the
surface soil layer which inhibits the uptake of nutrients by
plants and as well as its growth[3]. The inhibition of plant
growth can be caused by the phytotoxic effect of cadmium
on different processes in plants, including respiration,
photosynthesis, carbohydrate metabolism and water
relation[4]. Cadmium (Cd) ia a toxic metal, causing
phytotoxicity, and its uptake and accumulation in plants
causes reduction in photosynthesis, diminishes water and
nutrient uptake[5]. Heavy metals interfere with the uptake
and distribution of essential mineral nutrients in a plant,
causing deficiencies and nutrient imbalance[6]. The toxic
metals in the soil system could result in the leaching of
essential cation away fromthe rooted zone, decreasing plant
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nutrient uptake causing root damage[7]. Cadmium inhibits
root and shoot growth and yield production, affects nutrient
uptake and homeostasis. Cadmium is a highly toxic,
metallic soil contaminant, which adversely affects the plant
growth especially at early stage reducing the crop
production[8]. The reduction of dry weight by Cd
toxicity could be the direct consequence of the inhibition of
chlorophyll synthesis and photosynthesis[9]. Excessive
amount of Cd may also cause decrease in uptake of
nutrient elements, inhibition of various enzyme activities,
induction of oxidative stress including alterations in the
enzymes of the antioxidant defense system[10]. Aluminium
(Al) interferes with the uptake, transport and utilization of

essential nutrients including Ca, Mg, K, P, Cu,

Fe, Mn and Zn in plant system[11]. Metals inhibit
the activities of several enzymes, seed germination and
seedling growth[12-15]. Seed gemination inhibition by
heavy metals has been reported by many researchers[16-18].
Agricultural research almost completely rely upon
experimental and empirical works, combined with statistical
analysis and very few mathematical modelling analysis has
been carried out in this direction[3-4],[19-20]. Many of the
models that are currently used by agronomists and foresters
to predict harvests and schedule fertilization, irrigation and
pesticides application are of empirical form. A major
limitation in all these approaches is the unpredictability of
the environmental inputs[21]. Thornley initiated the work
related to the mathematical modelling of individual plant
growth processes and mathematical models were applied to
a wide variety of topics in plant physiology[22]. The
majority of these focuses on processes that are modelled
independently such as photosynthesis, fluid transport,
respiration, transpiration and stomatal response and the
general goal of the models was to predict the effect of a
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variety of environmental factors, including radiation input,
humidity, wind, CO, concentration and temperature on
these process rates. The soil-nutrient-plant interaction
represents a good example of a relationship that operates at
individual, population, and ecosystem levels. Nutrients
influence individual plant growth, which has subsequent
effect on population growth dynamics which in turn
influence production of standing crop. The models that have
been developed to describe the growth of individual plants
in crop has been classified by Benamin and Hardwick[23],
according to the assumption that how resources are shared.
A continuous-time model for the growth and reproduction
of a perennial herb with discrete growing season is
considered in[24] and optimal resource allocation in
perennial plants has been determined and studied. In the
paper[25], a transient three-dimensional model for soil
water and solute transport with simultaneous root growth,
root water and nutrient uptake is studied and discussed. In
this paper, authors have presented a model to study the
interactive relationships between changing soil-water and
nutrient status and root activity. The authors in the paper[19]
have studied the influence of acid deposition on forests by
means of a mathematical model taking the state variables as
forest dry weight, aluminium concentration in trees and soil,
and proton concentration in soil. Referrence[3] have given a
mathe matical model to study the effect of cadmium (Cd) on
nutrient uptake by crop such as Barley and have shown
through their model that how the accumulation of Cd in
plants inhibit its growth rate. Experimental and
mathematical simu lation to study the effects of toxic metal,
cadmium on the plant growth promoting rhizobacteria and
plant interaction have been carried out by[4]. Nitrogen
dynamics in soil, its availability to the crop and the effects
of nitrogen deficiency on crop performance were studied in
the model given by the researchers[26]. A non-spatial, size-
structured continuum model of plant growth, without
focusing on a particular species, but with emphasis on a
dense tree-dominated forest is considered and studied by[27]
and in this paper a closed form solution for the equilibrium
size density distribution is obtained along with the
analytical conditions for communities persistence. Crops
and vegetables grown on polluted soil accumulate heavy
metals that cause decrease in their yield, and in order to
study the uptake of heavy metals and its accumulation by
crops, mathematical models can be used. In paper[20], a
study has been conducted through mathematical model to
understand the cadmium uptake by radish, carrot, spinach
and cabbage. In this paper a dynamic macroscopic
numerical model for heavy metal transport and its uptake by
vegetables in the root zone is considered and analysed
numerically. A very few mathematical models to study the
effects of toxic metal on plant growth exist[3-4],[19-20].

In view of the above, therefore in this paper, a two
compartment mathematical model for the plant growth
under the stress of toxic metal is proposed and analyzed.
For the modelling purpose, the plant is divided into root and
shoot compartments in which the state variables considered
are nutrient concentration and dry weight. In the model it is
assumed that the uptake of toxic metal adsorbed on the
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surface of soil by the plant is through root compartment
thereby decreasing the root dry weight and shoot dry weight
due to decrease in nutrient concentration in each
compartment. In the model it is further assumed that the
maximum root dry weight and shoot dry weight decrease
due to the presence of toxic metal in root compartment.
From the analytical and numerical analysis of the model the
criteria for plant growth under the stress of toxic metal are
derived.

2. Mathematical Model

Model 1 (Model with no toxic effect):

In this model the plant growth dynamics is studied by
assuming that the plant is divided into root and shoot (stem,
leaf, flower) compartments in which the state variables
associated with the each compartment are nutrient

concentration and dry weight. Let W, and W, denote
the root dry weight and shoot dry weight respectively. So

and S1 denote the nutrient concentration in root and shoot
respectively. With these notations, the mathe matical model
of the plant growth dynamics is given by the following
systemof nonlinear differential equations:

%0 = Ky —1(Sg)W; + Dyg(S; —Sp)
—Dyy(Sp —S1) — Sy, (1)
ds
L=ty (1,C) - T(SW, Dy (5, - y)
+D,, (S, —S,) - 6,5, 2)
dw SW?
r - r S W _ r r ,
dt ( 0)( Tk J X
dw SW?
S = r S W -3 ]
dt (1)( Tk J ¥
where,
£,(1,C,) = PS¢ (5)

A +C,
with the initial conditions as:
S,(0) >0, S;(0)>0, W, (0)>0, W,(0) >0.
In the present analysis we assume the following forms for
growth functions r(S,) and r(S;)[22],[28] :

r(Se) =mm, u, i r'(S,) >0 for S, >0,
Kr S0
Se 1 (6)
r(S)=mm.u ——, r'(S,)>0 for S, >0,
( l) 77 s/us K +Sl ( 1) 1

S

and r(0) =0.
In absence of nutrient concentration plant will not grow
and eventually they will die out.
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Here, 7 is the utilization coefficient. m_ and m, are
the proportion of total dry weight allocated to root and
shoot dry weight respectively. gz and g, are the
resource-saturated rates of resource uptake per unit of root
and shoot dry weight respectively. Kr and KS are half

saturation constants. K, is the rate of supply of nutrient.
f,(1,C,) is the specific gross photosynthetic rate[22].

U is the fraction of shoot in the form of leaf tissue. S is
senescence constant. 7, is the maximum age of shoot of
plant. | is the specific leaf area of whole plant. | is the
light flux density incident on the leaves in shoot

compartment. C, is the CO, density in plant. S is

the rate of senescence of the photosynthesis. B is the
photochemical efficency. y is the conductance to CO2 .

r(Sy)W,and r(S;)W, represent the use of nutrient by

root and shoot respectively[26]. In plant growth, it is
considered that during the initial stage, i.e., during the lag
phase, the rate of plant growth is slow. Rate of growth then
increases rapidly during the exponential phase. After some
time the growth rate slowly decreases due to limitation of
nutrient. This phase constitutes the stationary phase . The

2
SW? oW
r(S,)—— and r(S,)—
ro s0

account for the diminishing growth phase and stationary

phase in the plant growth dynamics. Where, krO is the

terms are taken to

maximum root dry weight. kSO is the maximum shoot dry

weight. 5r and 53 are nutrient limiting coefficients.

Dyo(S,—S,) and D, (S, —S,) represent the flux of
nutrient from shoot to root and root to shoot respectively.
Where, D, and D,, are  transfer rates. 0,5,

9,5,

represent the loss of nutrient due shedding of leaves. 51 is
leaching rate and O is natural decay rate of S, .

Model 2 (Model with toxic effect):

In this model, the effect of toxic metal on plant growth

dynamics is considered. Here, we assume that the nutrient
concentration and dry weight are adversely effected by

toxic heavy metal. Let C(t) is the concentration of toxic

represents the loss of nutreint due to leaching.

metal in soil and @, (t) is the concentration of toxic metal

adsorbed on the surface of soil. After incorporating the
stress of toxic metal in the model 1 with the assumptions
mentioned earlier in section 1, we get the following model
2:

ds,

dt = KN —F(SO)Wr + DlO(Sl

— 8,0, - 5,S,,

- So) - Dzo(so _81)

(7
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ds, _

P uf, (1,C,) —r(S, )W, — Dy (S, - S,)
+D,(S, —S,) —,5,0, — 5,5, (8)
W, _ s w Sw/’ ©

t Uk (6))

AW, _ s yfw, oW (10)

dt 1 k() )

dc

E:Qo—ac—lupkc, (11)
do. _

T_#,okc_a(lz(ec)Jr fO. )W, —h6., (12

with the initial conditions as:
S,()>0,5,(0)>0,W,(0)>0,W,(©0)>0,
C(0) >0, 6.(0)>0.
Here, we assume the following forms for K, (6.) .
Kk (6.) and uptake function F(6,) [25]:

K (0.) = — _ K'(6.)<0 for 6, >0,

1 k,0.
. k.(6.)<0 for 6. >0,
( )1 k H s( C) C (13)
k. (0) = kKo, K, (0) = Ky
Vmaxec ’
F(&C)—k o F'(6,)>0 for 6, >0,
F(0) = 0.

Along with the parameters of model 1, we have the
following additional parameters in model 2 such as K,
Ky Qo @, . ay, . p. K, 6, Vg Ky
f and h,which are described as follows:

Q, is the input rate of heavy metals. g is the first
order rate constant. p is the soil bulk density. K is the

linear adsorption and absorption coefficient. ¢, and «,

are decreasing rates of S0 and S1 respectively due to
0, .
\Y/

max is the

is the maximum uptake rate of 6. K,

Michaelis-Menten constant. f is the first order rate
coefficient. N is the natural decay rate of 6, due to soil
depletion on account of natural process. &
decay rate of C. Here, all the parameters K, D,,,
Dzo’ 51' 52’ Heo Hgo 17, Kr’ st S, 7, U, I
!
C’ﬁ*}/ Sp krO'ksO*é‘r*é‘s'al'aZ'

Q. u, p. k,a, o,V kK and h are taken

max ' m

is natural
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to be positive constants.

3. Boundedness and Dynamical
Behaviour

3.1. Analysis of Model 1

Now, we show that the solutions of the model given by (1)

to (4) are bounded in a positive orthant in R*. . The
boundedness of solutions is given by the following lemma.

Lemma 3.1: All the solutions of model will lie in the
region

Ky +ufq (1,
Blz{(so,sl,wr,ws)eR4+:osso+slsNTg(C1),
OSWrSM,OSWSSM},

5, 5
as t—o for all positive initial  values

(S0(0),51(0), W, (0),Ws (0)) e R*, where &, =min(5,,5,).
Proof: By adding Egs. (1) and (2), we get,

d(S,+S
%s Ky +uf, (1,C) - 6,(S, +8,)
where, 6, =min(J,,5,) and then by the usual

comparison theoremwe getas t —o0:

Ky +uf,(1,C,)
0,

Sp+5, <

From Eg. (3), we get,
O s w12

ro

SW.
k ro

if W, <K, /0, and then by the usual comparison
theorem we getas t — oo
W S nmrlurkro
' 0,

r

Similarly from Eq. (4), we get,

< nmr/urWr (1_

Ws < 77m51us ksO

S
This complete the proof of lemma.
Now we show the existence of the interior equilibrium
E  of Model 1. The system of equations (1) - (4) has one
E =(Sp .5 Wy W) . The

feasible  equilibria

*
equilibrium E  of the system is obtained by solving the
following equations,

KN =T1(So)Wr +Di1o(S1 ~So)
—D20(So —S1) - 4150 =0,
ufg (1,C1) —r(S1)Ws —Dyo(S1 —Sp)

(14)
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+D20(Sg ~ 1)~ 5281 =0, (15)
5rWr* —Kro =0, (16)
SWe —kep = 0. (17)

Thus, fromthe above set of equations we get the positive
equilibrium E” =(Sp .Sy W, Wy ), where,

* k
w, =10
S (18)
= Kk
W = s0O ’
s _55 (19)

and the positive value of 58 and Sf can be obtained by
solving the following pair of equations:

k
F(S0,S) =Ky - r(So)é‘;o"‘ Dy (S, —S,)

r

- Dzo (So - 81) _5180 =0, (20)
k
F2(So,51) = K +ufg (1,C1) ~r(S0) 2
:
Kso —
(815~ ~ a5 -5 =0 (21)

]
From Egs. (20) and (21), we have

1. F(S,,0) =0 implies
f11(S0) = 5r|113§ +(nmy ek + 0y (h1Ky —KN))So
-K, K, =0,
2. F(0,S,) =0 implies
f12(S1) = Ky +(Dyg + Dy)S, =0,
3. F,(5,,0) =0 implies
fZI(SO) = 5r51802 + (Umr/urkro + 5r (51Kr - m))SO
-K,6,m=0,
4. F,(0,S,)=0 implies
f22(S1) = 6,6,5¢ + (1M, Ko + 6, (5, K, —m))S,
-K,o,m=0,
where, l; =Dy +Dy+6, and M= KN +Ufg (I ’Cl) .
The two Egs. (20) and (21) intersect each other in the
positive phase plane satisfying dS,/dS, >0 for Eq. (20)
and dS,/dS, <O for Eq. (21), showing the existence of
the unique interior equilibrium g™ .
FromEq. (15)as 7; —> ©:
o _(Dip+ D20)S0
1= 1210 £ £20)°0

D1o + D2 +2
Now, we discuss the dynamical behaviour of the interior
equilibrium point E” of the model given by (1)-(4) and
for this local and global stability analysis have been carried
out subsequently.

(22)



O.P.Misraetal.:

The

variational matrix about equilibrium E” s given by
(A+P,)(A+P,) (22 + (P, +P,) 1+ PP, —P2)=0, 23)
where,

characteristic equation associated with the

=M+Q0+Dzo+5b F2 = D1o + D2o,
(Kr +350)
* =S, * %
KW 1 W
_ IMstisKs 592 +Dyg+ Dyg 4, F)4:r(30) r
(Ks +57) kro
* *
ks 2

Fromthe nature of the roots of the characteristic equation

(23) we derive that the equilibrium point E" is always
locally asymptotically stable.
Now, we discuss the global stability of the interior

equilibrium point E" ofthe system (1)-(4). The non-linear
stability of the interior positive equilibrium is determined
by the following theorem.

Therorem 3.2: In addition to assumptions (6), let

r(S,) and r(S,),satisfyin B,
0<r(So) <nmrur, 0=<r'(Sp) <nmyr Ky,
0<r(S) <mmsus, 0<r'(S1) <nmsusKs,
for some positive constants K, and K, less than 1.

(24)

Then if the following inequalities hold
*
nme 2 W,
%_}_ [)lo + D20 +5l]
Ky (L+7my 21y)

W *
Ks (1+7mg )

(D1o + Dzo)2 < {

2
My pr Ky 1
My Ly 1+{ - <
{ kro Ky (1+ e )

*
2[ My Wy

>+ D10+ D20 +51J{r(sl?i} (26)
Kr (1+7my zr) ro

2
K
Mg Lig l+[nm5,u5 S _ ! ZJ <
Kso Kg(1+nmgus)
*
2[ Mg Wy

> +Dyg + Dog +§2J{MJ, 27)
Ks (1+7mg p5) k

sO
EY is globally asymptotically stable with respect to
solutions initiating in the interior of the positive orthant.

Proof: Since B, is an attracting region, and does not
contain any invariant sets on the part of its boundary which
intersect in the interior of Rf, we restrict our attention to

the interior of B, .
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We consider a positive definite function about =
1 * 1 *
Vi(So, S1.Wr Ws) =2 (S0 S0 )7+ (S1-51)°
+{Wr —W =W, In W—';] + {WS ~Ws W In W—iJ
r WS
Then the derivatives along solutions, V1 is given by
KN =T (So)Wr + D1o(Sg —So)j
—D20(Sp —S1) - 6150
ufg (1,C) = r(SpWs — Dro(Sg - SO)J
+D20(S0 -S1) -62%1

W W, r(Sp) 1-9Wr ),
Wy kro

1-W—S Wsr(Sl){l— 55WSJ
Ws ksO

After some algebraic manipulations, this can be written
as

Vi =(Sp _SO*)(KN ~r(SoW, —(Dig +Dag +51)So)

+(81-51)(ufg (1,C)~r(SOWs” (P10 + Doo +52)51

Vi =(Sp - So*)(

+(S1 - S1*){

Wy —Wr*)r(SO*)[l—%“)

ro

j+ (Ws —Ws )r(sy)

[1— 5;VZS }r (S0—S0 )(S1—S1 )2(Dyg + D)
S

~(So—S0 )Wy —vvr*{r(sm +§1(So)(wf5r —1}}

kro

(5150 —Ws*){r(sl) +5(5) [W555 —1]}
S

ks
Where,
r(S0)-r(So ))/(So—S0 ). So#So-
51(30)={((0) (50 )/(S0-50"). So o
r,(SO)! SO = SO
r(Sq)-r S* S _S* S ;tS*
52(51)={((1) (N/G1-51) st 3
r'(S), $1=%
We note from (24) and the mean value theorem, that
nml’ﬂr
Kr(1+77mr;ur)2 |§1( o)l nm u K,
AL <&, (5) =
>~ <1rm K
Ks(l+77m3,us)2 |§2( 1)| nm,u K

We know that
KN —r(SoWy —(D1g +Dag +81)Sg =
(oM™ + Dig + Dag +41) So - 50").
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ufg (1,C) = r(SpWs — (D10 + D2g +52)51 =

~( £2(515" + 1o + Do + 82 |81 - 1),

r(SO*)(l— OrWrs j _ _[5r r(So )](Wr —Wr*):

kro kro
I'(Sl*) (l— 9s\Ws J =— UCW) (Wg _WS*)-
I<sO I‘sO

Hence Vl can be written as the sum of three quadratic
forms,

Vi =—{(So - So )2311 +($1-9 )2a22 + Wy —Wy )2333
+(Ws —Ws )2a44 —(So—=Sp )(S1-%51 )ar2

+(So —So JWr —Wy )3 +(S1—S1 JWs —Ws )aga}
Where,

aj] = (él(So)Wr* +Dyg +D2g +51),
ap = (e‘z (Sp)Ws +Djg +Dpg + 52),

5rr(So ) agy = Isr(S1)
kro kso

a8y, = 2(Dy, +Dy),

ay,; = 1(Sy) +§1(So)(w 0

r-r _1ji|

krO
W5, —1H.
ksO

By Sylvester’s criteria we find that V'l is negative
definite if

a33 =

Ay = |:r(Sl) + 52(81)(

2

o <1182, (28)
2

a3 < 2811833, (29)
2

54 < 2822844, (30)

hold. However (25) implies (28), (26) implies (29) and
(27) implies (30). Hence V, is negative definite and so

V| is a Liapunov function with respect to E", whose

domain contains B, proving the theorem.

The above theoremshows, that provided inequalities (25)
to (27) hold, the system settles down to a steady state
solution.

3.2. Analysis of Model 2

Now, in the following we show that the solutions of
model given by (7) to (12) are bounded in a positive orthant

in R®.. The boundedness of solutions is given by the
following lemma.
Lemma 3.3: All the solutions of model will lie in the
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region

B, ={(Sy,S1, W, W,,C,6.)eR®%.:0<S;+8, <

Ky +ufg(|,C1)
6,

0<W, smnfg—”fk”’,

0<w, <MK 0D g < 4Py
0, a ah

S
as T — oo, forallpositive initial values

(S0(0), 51(0), Wy (0)Ws 0),C(0),6¢ (0)) RS, ,
where 6, =min(4,,0,).
Proof: By adding Egs. (7) and (8), we get,

Wﬁ Ky +Uf, (1,C) = 6,(So +8S,)

where, € =min(d;,85,) and then by the
comparison theoremwe getas t — oo

Ky +Uf,(1,C,)
0

usual

Sp+S, <

From Eg. (9), we get,

dw 0,
L<r(S, )W |1-—-+

o122

ro

< nmr:urwr [1_ éENr J

ro

if W, <K/, and then by the usual comparison
theoremwe getas t — o0

Wr < 77mr:urkr0

r

Similarly from Eg. (10), we get,

Ws < nms:uskso
0,

S
From Eq. (11), we get,

d—CSQO—aC
dt
Then by the usual comparison theorem we get as
t>w:
c<
(04
From Eq. (12), we get,
di < /ud(QO _hgc
dt a
Then by the usual comparison theorem we get as
t—>o0:
H1PKQ,
ah
This complete the proof of lemma.

0, <

Now, we find the interior equilibrium E of Model 2.
The system of equations (7) - (12) has one feasible
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equilioria  E(S,,S,,W,,W,,C,8). The equilibrium E
of the system is obtained by solving the following
equations,

KN - r(§O)VVr + D10 (§1 _§o) - Dzo(go _§1)

—a,S,0. —5,S, =0, (31)

uf, (1,C,) - r(gl)vvs - DlO(gl - §o) + Dy (§o - §1)
~a,5,0, - 5,5, =0, (32)
SW, =k (6.) =0, (33)
SW, —k (6:) =0, (34)
Q,—aC—uKC =0, (35)
upKC —5(F(0.) + T0.)W. —hd, =0, (36)

Thus, fromthe above set of equatlons we get the positive

equilibrium E = (SO,Sl,W C 0) where,

V\7r - kr (GC)’ (37)

5|’
VVS — K, (‘90), (38)

I

-~ Q

C= .

pr (29)

It may be noted here from Egs. (37) and (38) that the dry
dry weight of root and shoot will decrease if the level of

6, increases.
The éc is given by the positive root of the equation
hky 563 + (8 keo +Srh(L+kikm)
_5rﬂPKék1)92 + (8¢ hkm + Ko (Vmax + tkm)
6 upKC(L+kikm))bc — 8y pKChkiy =0, (40)

and the positive value of S and S can be obtained by
solving the following pair of equations:

Kk, (6,
G,(S,,S,) = Ky —r(S,) f( ) 4 D4(S.-S,)
D, (S, —Sl)—alSO§C ~5,5,=0, @41)
K, (6,
Ga(50,5,) = K+, (1,C,) —r(5,) )

I'

Ks (6’ )

—1(S,) =20 — 2,86, —,5,6, — 5,5, — 5,5, = 0.(42)

From Egs. (41) and (42), we have
1.G,(S,,0) =0 implies
011(So) =1:Sg +(77mr/urV\7r +(LK, —Ky))S,
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~K,K, =0,

2. G,(0,S,)=0 implies

91,(S,) = Ky +(Dyy + Dyp)S; =0,
3.G,(S,,0) = Oimplies

051(So) = (8, + ,0,)S2 + (7, s, W, + (5, + 2,0 K,
-m))S,—K.m=0,

4.G,(0, S;) = Qimplies

022(S,) = (6, + ,00)S¢ + (. u W, + (5,
+a,0:)K, —m))S, — K.m =0,

|, =D, +D,,+9, +al§C

and m=Ky +uf,(1,C)).

The two Egs. (41) and (42) intersect each other in the
positive phase plane satisfying dS,/dS; >0 for Eqg. (41)

and dS,/dS, <O for Eq. (42), showing the existence of

where,

the unique interior equilibrium E .
FromEq. (32)as 7, —> 0

§ _ (D10+D20)S
! D10+D20+a2<9 +0,

(43)

Now, we discuss the dynamical behaviour of the interior

equilibrium point E of the model given by (7)-(12) and
for this local and global stability analysis have been carried
out subsequently.

The characteristic

variational matrix about equilibrium E is given by
(A+3;)( A+ 3) (B +(3,+3,) A+ 3,3, —(Dy +

Dy0)? A2 + (35 +3) A+ 30 —3,3,)=0, (4a)
where,

equation associated with the

_ i KW,

= (K +3 )2 + D,y + D,y + 0, + 2,6,
r 0

_ nmyu K Woe™"

+ D,y + Dy + 0,6, +9,,

27 (K +S,)°
5r(S W, ] _ SkW,?
k(%) fokg
_3S r(S;)W, Sk W,
Tok(G) ok
J; =a+pK, J8=5(F(§c)+f§c)a

J,=S8(F'(6,) + FW..
Fromthe nature of the roots of the characteristic equation
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(44) we derive that the equilibrium point E
stable if

is locally

J.Jg—J3,3,>0,
e, 1(So)(F'(6:)+ £)+K (6 r(So)(F'(6) + 1)) >
ki(F(6)+6f). (45)

Now, we discuss the global stability of the interior

equilibrium point E of the system (7)-(12). The
non-linear stability of the interior positive equilibrium state

is determined by the following theorem.
Therorem 3.4: In addition to assumptions (6) and (13),

let r(S,). r(S). F(8.). k. (6.) and Kk,(6.)

satisfy in B,
0<r(Sy) <mm, u,,
0<r(S;) <mmyuy,

O < r'(SO) < nmr/urKr
0<r'(S,) <mm, K,

0<F(6:) <V, 0<F'(6:) <VyakKn

Ko (46)
SR O ke 0K Skak
Koo (0) <k 0K (60:) <Kok
1+k

for some positive constants K, K and K less than 1.

Then if the following inequalities hold
4
[(A+A)(Dyg + D)J < S AA
M, 1\,
K, (L+7m, z2,)*

7, W,
K, (L+mm,u,)?

nm, ,urKr _ ! 2
S

2 7m ,uVV ~
= — T 4D,y + Dy + b +6
3A1A3[Kr(l+77mr/1r)2 10 20 1¥C l}

r(S,),
k (6) )

2
mm i K 1
m + A LSS <
{" S“S(A? ( @) Ks(1+nmsﬂs>2m
2
3

+D10+D20+a10 +5j

+Dyy+ Dy + a0, + 52} (47)

(48)

7, W + Dy, +D,, + 0529~c +52]

A
& “(Ks(lmmsus)z

r(S,)9,
ko (6:) )

(49)
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(A8, K Kk, (11, 22, (L+ K K, g) + SV + T)] <

2(rS)3,  ai  Vm
ASE( (@) Iéw K (1+vmax)2j’ 0

E is globally asymptotically stable with respect to
solutions intiating in the interior of the positive orthant.

Proof: Since B2 is an atttracting region, and does not
contain any invariant sets on the part of its boundary which
intersect in the interior of Rf , We restrict our attention to

the interior of B, .
We consider a positive definite function about E
1 i~ 1 ~
V,(Sy, S, W, W,,C,6,) = EAl(SO _So)2 +§A2(81 _Sl)z

+ A{Wr ~W, —eranYf} A{WS ~W, —vvsanYS]
Wr WS
1 ~o 1 ~
+EA5(C_C)2 +§(ec _0(:)2

where, A/l
constants.

=1, 2, 3, 4, 5) are arbitrary positive

Then the derivatives along solutions, \/z is given by

. ~ (Ky =r(S, )W +D,(S,-S
V2 - Al(SO_SO)( N ( O) r 10( 1 0) ]
=D, (Sy =S;) S0, - 0,5,

+ A2(31 _ §1)(Ufg (I ,C') - r(sl)Ws - DlO(Sl - SO)J
+ D, (S, —S,) —a,S,6, —0,S,;

W. SW,
+A{ Wr}Nrr(S(’){l_ kr(ec)j
¥ A{l—vi}wsr(sl)(l——&sws J

Ws ks (GC)

+A(C-C)(Q, —aC — upkC)
+ (0 — 0. )(upkC —5(F (6,) + 0. )W, —hd, )

After some algebraic manipulations, this can be written
as

r(S )W
6. +6,)S,
uf, (1,C") - r(Sl)WS

+a26? +0,)S,

{ —(Dyo + Dzo]
V, = A(S, -S, 0)

[ _(D10+D20}
+A(S,-85)

AW, —er)r(§o)( ‘3fo)}

k. (6c)

5SWS
k, (6c)

+ AW, —V‘v;)r(él)(
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+A5(C :6)(Q0 —O!C—,UPKC) and %Sl 4/3(0 )|<Vmaka
00 0, hoe) | el

+(S, —so)~(s1 - 81)(~A1 +A,)(Dyg + Dy) Ky —F(Se)W, —(Dyy + Dy + 2,0 +5,)S, =
= A (S, =S)O; —0.)a,S,

> & } 5 —(E.(SyW, +Dyg + Dy + 8 +5,XSo — So).
= A (S, =S)(Oc —0:)a, S, — (S, — Sp)W, —W,)

ufg(I,C')—r(Sl)W (D10+D20+052 +0,)S, =
{Aﬂ’(s )+ AE (S, )( - H —(52 (S)W, + D,y + D,y + 2,0, + 6, )(S1 -S)),

S, SIS Y 7
( 1)( k (9 )] (ks(é‘c)j(ws Ws)a

(Q, —aC — upKC) = ~(ar + upK XC ~C),
(~5(F @)+ f0. )W, —he,)
= _(gc _éc)(Mré’s(gc)+ h)
Hence \/'2 can be written as the sum of three quadratic

k(H)

~(8,-S)W, W)|:A2r(8)+A§2(S)(k( ) J

+(0c —0c)(C-ChupK
- (00 _Hc )(\Nr _Wr)(ASr(SO)Wrérgl (‘90)
+OF (0e) + &) — (0 — 0 )W, —W,)

I

A4 r(Sl)Wsés 52 (HC ) forms ~ ~ ~
where _ _ _ vz = (S, —So)*ay; +(S, = S,)*a, + (W, —W,)*ay,
5 (S ):{(F(SO)—I’(SO))/(SO—SO), S0 ¢S~0 +(\Ns _Vvs)za44+(c_6)23~55+(‘9c_éc)zaee
F'SSO), - SO - Sf _(So - SNo)(sl - §1)a12 + (So - §o)(gc _5C)a16
£,(S,) = {“(Sﬁ ~rED/(5,-8). S, 3 +(5,=5,)(6: — B )az, +(S, — S )W, W, )ay,
"), 75 +(8, - 5,)W, W, )y, ~ (6 ~6:)(C ~C)as,
[ 1 1~ J/ec —50), 0. # §C +(6; _50)(er _er)ase +(6; _éc)(ws _Vvs)a46}
ACHE K (%) kli (92) where
k;féc;’ 6. =6, 8., = Al&(SW, + Dy + Dy + i +5,),
( L rl ) _ _ ay, A2(§2(S )W +D10+D20+a20c+52)
————| /(0. -6.), b #06 5r(S )] (5r(§)]
k@) kswc)/ 2 - ( o, = nf 26
gz(ec) - kS’(ec 0. = -~ % k (9 ) ks(ec)
ksz(gc), © : a55—A5(0(+,upK), a66‘(5wr§3(9c)+h)1
_J(F6.)-F@:)/6: -6:), 6. =6, 8, = (A +A) Dy +Dy),
63(0c) = F'(6,) 6, :5
We note from (46) and the mean value theorem, that ha = _Air(s )+ A, )(k (49 ) J:|’
T & (S)) e K i
e (L+nm, ) a,, =| Ar(S)+ A% (S,) -
M1 7 <& (S)) I mm K, ‘ (9 :
K, (1+7m, ) A&als Ay = A,Sy, 856 = 1K,
| gl(gc) IS klkrO (1+ klkro)' 6 (%r(so) ré‘réll(ec) +a:(0C) +g )’

|5 (6c) IS Kokyo (L koK) 85 = A (SW, 6585 (6 )-
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By Sylvester’s criteria we find that \/2 iS negative
definite if

2

: 4 2 2 4
a, < §ana22, a3 < §a11a33' A < Ealla%’

, 2 ; 2 , 2
ayy < §a22a441 dgg < §a33a66’ A < §a44a66’

2

a2<2aa a<4aa (51)
56 3 55667 26 15 22667

hold. We note that inequalities in Eq. (51), ie,

2 _ 4 , _ 4 2 _2
Ajg < Eanase Ay < Eazzaee v Qg < §a44a66

2
2 . g . .
and agg < §a55a66 are satisfied due to arbitrary choice

of A, A, A, and A, respectively, and above
conditions reduces to the following conditions:

a’, < gauazz, (52)
ay; < %aﬂaggy (53)
az, < %azzaw (54)
al, < §a33a66, (55)

However (47) implies (52), (48) implies (53), (49)
implies (54) and (50) implies (55). Hence V2 is negative
definite and so V2 is a Liapunov function with respect to

E , whose domain contains B2 , proving the theorem.

The above theoremshows, that provided inequalities (47)
to (50) hold, the system settles down to a steady state
solution.

4. Numerical Example

For the model 1, consider the following values of
parameters-

Ky=3 K;=01, K,=01, =07 u =05
n=52, m =01 m=01 D,=03 D,=05
§$=001, 17,=9, k,=10, k,=10, u=05
I =30, p=01  y=1 C,=0374, |=5
S,=0014, ¢ =11, 4,=12, ¢4,=01, 6,=01

For the above set of parametric values, we obtain the

*
following values of interior equilibriumpoint E -

Sp =2.5899, S; =2.0083,
W, =9.0909, W, =8.3333

which is asymptotically stable (see Figure 1).
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Further, to illustrate the global stability of interior

equilibrium E* of model 1 graphically, numerical
simu lation is performed for different initial conditions (see
Table 1 and 2) and results are shown in Figures 2 and 3 for

S,—W, phase plane and S, —W, phase plane
respectively. All the trajectories are starting from different

*
initial conditions and reach to interior equilibrium E .
2 T T T T T

s
sl
—up
—

wf |

0 \ \ \ \ \
0 5 100 150 20 %0 30

t
Figure 1. Trajectories of the model 1 with respect to time (with no toxic
effect) showingthe stability behaviour

Table 1. Different initial conditions for So and Wr of model 1
S,(0) 01 6 7 2

W (0) 1 01 16 | 18

Table 2. Different initial conditions for Sl and WS of model 1

5,(0) 01 05 1 3

W, (0) 2 01 14 | 12

Figure 2. Phase plane graph for nutrient concentration in root SO and root
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dry weight Wr at different initial conditions given in Table 1 for model 1
(with no toxic effect) showing the global stability behaviour

4
H

0 2 4 6 8 10 12 14 16 18

Figure 3. Phase plane graph for nutrient concentration in shoot $; and
shoot dry weight W; at different initial conditions given in Table 1 for model
1 (with no toxic effect) showing the global stability behaviour

For the model 2, with above set of parametric values and
with the additional values of parameters given by-

a,=03 a,=02 m=4 p=02 k=4

0=01 V,=2 f=2 k,=1 h=1
k,=02 k, =02 Q,=35 =001
we obtain the following values of interior equilibrium point
E as
S, =17514, S, =1.2301, W, =7.4671,
W, = 6.8448 , C =1.0903 , 6, =1.0875.

For the set of parametric values considered, the stability
conditions given in Eq. (45) and Eqgs. (47)-(50) are satisfied.
Hence, E is asymptotically stable (see Figure 4).
8 T T T T T

T E

0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

t

Figure 4. Trajectories of the model 2 with respect to time (with toxic effect)
showingthe dtability behaviour

Further, to illustrate the global stability of interior

equilibrium E of model 2 graphically, numerical
simulation is performed for different initial conditions (see
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Table 3 and 4) and results are shown in Figures 5 and 6 for
S,—W, phase plane and S, —W, phase plane
respectively. All the trajectories are starting from different
initial conditions and reach to interior equilibrium E .

Table 3. Different initial conditions for S and W, of model 2

S(0)
W(0) 1

01 10 16 2

01 16 18

Table 4. Different initial conditions for S; and W of model 2

S:(0)
W(0) 1

01 10 16 2

01 16 18

25

g 15

05

0 2 4 6 8 10 12 14

Figure 5. Phase plane graph for nutrient concentration in root S and root
dry weight W, at different initial conditions given in Table 3 for model 2
(with toxic effect) showing the global stability behaviour

Figure 6. Phase plane graph for nutrient concentration in shoot S; and
shoot dry weight W at different initial conditions given in Table 4 for model
2 (withtoxic effect) showing the global stability behaviour

Tolerance indices (T.l.) are determined through use of the

following formula[29]:
_ Mean root biomass in presence of toxicant
T.l1.(root) =

Mean root biomass in absence of toxicant

100



287

Mean shoot biomass in presence of toxicant <100

T.1.(shoot) =
( ) Mean shoot biomass in absence of toxicant

Table 5. Tolerance indices of root dry weight and shoot dry weight at
different toxic input rate Qo

sNo. | Qo W, W, TIaw) | T.awy)
1 00 | 90909 | 83333 100 100
2 05 | 88883 | 8.1476 97.71 97.71
3 10 | 86724 | 79497 95.39 95.39
4 15 | 84451 | 77414 92.89 92.89
5 20 | 82085 | 7525 90.29 90.29
6 25 | 79651 | 73013 87.61 87.61
7 30 | 77172 | 70741 84.88 84.88
8 35 | 74671 | 6.8448 82.13 82.14

5. Conclusions

*
Equilibrium E  of model 1 is shown to be

asymptotically stable (see Fig. 1). The equilibria E of
model 2 is shown to be asymptotically stable (see Fig. 4).
From Figures 7(a) and 7(b), it may be noted that the
equilibrium levels of nutrient concentrations in each
compartment with no toxic effect are more than that of the
equilibrium levels of nutrient concentrations in respective
compartments when toxic effect is considered.

12 T
— With no toxic effect (model 1)
— With toxic effect (model 2)

10

0 1 1 1 1 1
0 50 100 150 200 250 300

t
Figure 7(a). Graph between nutrient concentration inroot S andtimet for
model 1(with notoxic effect) and for model 2(with toxic effect)

12 T
— With no toxic effect (model 1)
— With toxic effect (model 2)

0 1 1 1 1 1
0 50 100 150 200 250 300

t
Figure 7(b). Graph between nutrient concentration in shoot S; andtimet
for model 1(with notoxic effect) and for model 2(with toxic effect)
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Further, from Figures 8(a) and 8(b), it is observed that the
equilibrium levels of root dry weight and shoot dry weight
with no toxic effect are more than that of equilibrium levels
of the root dry weight and shoot dry weight when toxic
effect is being considered.

10 T

— With no toxic effect (model 1)
— With toxic effect (model 2) i

W,
o

ol I I I I I
50 100 150 200 250 300

t
Figure 8(a). Graph between root dry weight W, and time t for model 1
(with no toxic effect) and for model 2(with toxic effect)

9

— With no toxic effect (model 1) | +
— With toxic effect (model 2)

ol | | | | |
0 50 100 150 200 250 300
t

Figure 8(b). Graph between shoot dry weight Ws and time t for model
1(with no toxic effect) and for model 2(with toxic effect)

From the non-trivial positive equilibrium E and
tolerance indices (Table 5), it is concluded that the root dry
weight and shoot dry weight decrease as the input rate of

toxic metal Q, increases till Q, is less than or equal to
Qy, =3.95and upto this value the stability criteria is also
preserved. Further, in case if Q, increases from its

threshold value ch then the stability condition given by

Eq. (45) is voilated and equilibrium E loses its stability.
From the expressions (37) and (38) it may be noted that the
root dry weight and shoot dry weight will decrease and may

tend to zero with increasing ‘9c . From Egs. (22) and (43),

it is concluded that for large 7, , the nutrient concentration
in shoot with toxic effect is less than that of nutrient
concentration in shoot when no toxic effect is considered.
The Figures 9(a) and 9(b) represent the dynamical
behaviour of the of root dry weight and shoot dry weight
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respect to HC. From these figures it is observed that

the toxicity of the metal will adversely effect the plant

growth in its early stages resulting in

loss of crop

productivity[8],[29].

35

25

0.
~

15

05

Figure 9(a). Phase Plane Graph of root dry weight W, and 6 for model 2

35

25

0.®
o

15

0.5

Figure 9(b). Phas Plane Graph of shoot dry weight W, and 6 for model 2
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