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Abstract

We formulate a general class of allocation prob-
lems called categorized domain allocation problems
(CDAPs), where indivisible items from multiple cate-
gories are allocated to agents without monetary trans-
fer and each agent gets at least one item per category.

We focus on basic CDAPs, where the number of items
in each category equals to the number of agents. We
characterize serial dictatorships for basic CDAPs by
a minimal set of three desired properties: strategy-
proofness, non-bossiness, and category-wise neutrality.
Then, we propose a natural extension of serial dicta-
torships called categorical sequential allocation mecha-
nisms (CSAMs), which allocate the items in multiple
rounds: in each round, the active agent chooses an item
from a designated category. We fully characterize the
worst-case ordinal efficiency of CSAMs for optimistic
and pessimistic agents. We believe that these consti-
tute a promising first step towards theoretical founda-
tions and applications of general CDAPs.

Introduction
Suppose we are organizing a seminar and must allo-
cate 10 discussion topics and 10 dates to 10 students.
Students have heterogeneous and combinatorial prefer-
ences over (topic, date) bundles: their preferences over
the topics may depend on the date and vice versa, be-
cause she may prefer an early date if she gets an easy
topic and may prefer a late date if she gets a hard topic.

This example illustrates a common setting for allo-
cating multiple indivisible items, which we formulate as
a categorized domain. A categorized domain contains
multiple indivisible items, each of which belongs to one
of the p ≥ 1 categories. In categorized domain allocation
problems (CDAPs), we want to design a mechanism to
allocate the items to agents without monetary trans-
fer, such that each agent gets at least one item from
each category. In the above example, there are two
categories: topics and dates, and each agent (student)
must get a topic and a date.

Many other allocation problems are CDAPs. For ex-
ample, in cloud computing, agents have heterogeneous
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preferences over multiple types of items including CPU,
memory, and storage1 [15, 14, 1]; patients must be al-
located multiple types of resources including surgeons,
nurses, rooms, and equipments [17]; college students
need to choose courses from multiple categories per
semester, e.g. computer science courses, math courses,
social science courses, etc.

The design and analysis of allocation mechanisms for
non-categorized domains have been an active research
area at the interface of computer science and economics.
In computer science, allocation problems have been
studied as multi-agent resource allocation [12]. In eco-
nomics, allocation problems have been studied as one-
sided matching, also known as assignment problems [26].
Previous research faces three main barriers.
• Preference bottleneck: When the number of items is

not too small, it is impractical for the agents to express
their preferences over all (exponential) bundles of items.
• Computational bottleneck: Even if the agents can

express their preferences compactly using some pref-
erence language, computing an “optimal” allocation is
often a hard combinatorial optimization problem.
• Threats of agents’ strategic behavior: An agent may

have incentive to report untruthfully to get a more pre-
ferred bundle. This may lead to a socially inefficient
allocation.

Our Contributions. We initiate the study of mech-
anism design under the novel framework of CDAPs
towards breaking the three aforementioned barriers.
CDAPs naturally generalize classical non-categorized
allocation problems, which are CDAPs with one cat-
egory. CDAPs are our main conceptual contribution.

As a first step, we focus on basic categorized domain
allocation problems (basic CDAPs), where the number
of items in each category is exactly the same as the num-
ber of agents, so that each agent gets exactly one item
from each category. See e.g. the seminar-organization
example. As we will show, mechanism design for basic
CDAPs is already highly non-trivial.

Our technical contributions are two-fold. First, we
characterizes serial dictatorships for any basic CDAPs

1Suppose each type contains discrete units of resources
that are essentially indivisible for operational convenience.



with at least two categories by a minimal set of three
axiomatic properties: strategy-proofness, non-bossiness,
and category-wise neutrality. This helps us understand
the possibility of designing strategy-proof mechanisms
to overcome the third barrier, i.e. threats of agents’
strategic behavior.

Second, to overcome the preference bottleneck and
the computational bottleneck, and to go beyond serial
dictatorships, we propose categorical sequential alloca-
tion mechanisms (CSAMs), which are a large class of
indirect mechanisms that naturally extend serial dicta-
torships [27], sequential allocation protocols [6], and the
draft mechanism [11]. For n agents and p categories, a
CSAM is defined by an ordering over all (agent, cate-
gory) pairs: in each round, the active agent picks an
item that has not been chosen yet from the designated
category. CSAMs have low communication complexity
and can be implemented in a distributed manner.

We completely characterize the worst-case ordinal
efficiency of CSAMs, measured by agents’ ranks of
the bundles they receive, for any combination of two
types of myopic agents: optimistic agents, who al-
ways choose the item in their top-ranked bundle that
is still available, and pessimistic agents, who always
choose the item that gives them best worst-case guar-
antee.2 This characterization naturally leads to useful
corollaries on worst-case efficiency of various CSAMs.
For example, we show that while serial dictatorships
with all-optimistic agents have the best worst-case util-
itarian rank, they have the worst worst-case egalitar-
ian rank. On the other hand, balanced CSAMs with
all-pessimistic agents have good worst-case utilitarian
rank.

Related Work and Discussions. We are not aware
of previous work that explicitly formulates CDAPs.
Previous work on multi-type resource allocation as-
sumes that items of the same type are interchangeable,
and agents have specific preferences, e.g. Leontief pref-
erences [15] and threshold preferences [17]. CDAPs are
more general as agents’ preferences are only required to
be rankings but not otherwise restricted.

From the modeling perspective, ignoring the categor-
ical information, CDAPs become standard centralized
multi-agent resource allocation problems. However, the
categorical information opens more possibilities for de-
signing natural allocation mechanisms such as CSAMs.
More importantly, we believe that CDAPs provide a
natural framework for cross-fertilization of ideas and
techniques from other fields of preference representa-
tion and aggregation. For example, the combinato-
rial structure of categorized domains naturally allows
agents to use graphical languages (e.g. CP-nets [4]) to
represent their preferences, which is otherwise hard [7].
Approaches in combinatorial voting [10] can also be nat-
urally considered in CDAPs.

Technically, one-sided matching problems are basic

2Similar types of agents have been studied in other social
choice settings [8, 19, 9].

CDAPs with one category. Our characterization of se-
rial dictatorships for basic CDAPs may look similar
to characterizations of serial dictatorships and similar
mechanisms for one-sided matching [27, 21, 22, 23, 13,
16]. However, our theorem is stronger as the category-
wise neutrality used in our characterization is weaker
than the neutrality used in previous work.

Our analysis of the worst-case ordinal efficiency of
categorical sequential allocation mechanisms resembles
the price of anarchy [18], which is defined for strategic
and self-interested agents, with the presence of a social
welfare function that numerically evaluates the quality
of outcomes. Our theorem is also related to distortion
in the voting setting [25, 5], which concerns the social
welfare loss caused by agents reporting a ranking in-
stead of a utility function. Nevertheless, our approach
is significantly different because we focus on allocation
problems for myopic agents, and we do not assume the
existence of agents’ cardinal preferences nor a social
welfare function, even though our theorem can be eas-
ily extended to study worst-case social welfare loss given
a social welfare function, as in Proposition 2 through 5.

Categorized Domain Allocation Problems

Definition 1 A categorized domain is composed of
p ≥ 1 categories of indivisible items, denoted by
{D1, . . . , Dp}. In a categorized domain allocation prob-
lem (CDAP), we want to allocate the items to n agents
without monetary transfer, such that each agent gets at
least one item from each category.

In a basic categorized domain for n agents, for each
i ≤ p, |Di| = n, D = D1 × · · · ×Dp, and each agent’s
preferences are represented by a linear order over D.
In a basic categorized domain allocation problem (ba-
sic CDAP), we want to allocate the items to n agents
without monetary tranfer, such that every agent gets
exactly one item in each category.

In this paper, we focus on basic categorized domains
and basic CDAPs for non-sharable items [12], that is,
each item can only be allocated to one agent. Therefore,
for all i ≤ p, we write Di = {1, . . . , n}. Each element
in D is called a bundle. For any j ≤ n, let Rj denote
a linear order over D and let P = (R1, . . . , Rn) denote
the agents’ (preference) profile. An allocation A is a
mapping from {1, . . . , n} to D, such that

⋃n
j=1[A(j)]i =

Di, where for any j ≤ n and i ≤ p, A(j) is the bundle
allocated to agent j and [A(j)]i is the item in category
i allocated to agent j. An allocation mechanism f is a
mapping that takes a profile as input, and outputs an
allocation. We use f j(P ) to denote the bundle allocated
to agent j by f for profile P .

We now define three desired axiomatic properties for
allocation mechanisms. The first two properties are
common in the literature [27], and the third is new.
• A direct mechanism f satisfies strategy-proofness,

if no agent benefits from misreporting her preferences.
That is, for any profile P , any agent j, and any linear
order R′j over D, f j(P ) �Rj f j(R′j , R−j), where R−j is



composed of preferences of all agents except agent j.
• f satisfies non-bossiness, if no agent is bossy. An

agent is bossy if she can report differently to change
the bundles allocated to some other agents without
changing her own allocation. That is, for any pro-
file P , any agent j, and any linear order R′j over D,

[f j(P ) = f j(R′j , R−j)]⇒ [f(P ) = f(R′j , R−j)].
• f satisfies category-wise neutrality, if after applying

a permutation over the items in a given category, the
allocation is also permuted in the same way. That is,
for any profile P , any category i, and any permutation
Mi over Di, we have f(Mi(P )) = Mi(f(P )), where for

any bundle ~d ∈ D, Mi(~d) = (Mi([~d]i), [~d]−i).
When there is only one category, category-wise neu-

trality degenerates to the traditional neutrality for one-
sided matching [27]. When p ≥ 2, category-wise neu-
trality is much weaker than the traditional neutrality.

A serial dictatorship is defined by a linear order K
over {1, . . . , n} such that agents choose items in turns
according to K. A truthful agent chooses her top-
ranked bundle that is still available in each step.

Example 1 Let n = 3 and p = 2. D = {1, 2, 3} ×
{1, 2, 3}. Agents’ preferences are as follows.
R1 = [12 � 21 � 32 � 33 � 31 � 22 � 23 � 13 � 11]
R2 = [32 � 12 � 21 � 13 � 33 � 11 � 31 � 23 � 22]
R3 = [13 � 12 � 11 � 22 � 32 � 21 � 33 � 31 � 23]

Suppose the agents are truthful. Let K = [1B 2B 3].
In the first round of the serial dictatorship, agent 1
chooses 12; in the second round, agent 2 cannot choose
32 or 12 because item 2 in D2 is unavailable, so she
chooses 21; in the final round, agent 3 chooses 33. �

An Axiomatic Characterization

Theorem 1 For any p ≥ 2 and n ≥ 2, an alloca-
tion mechanism for basic categorized domain is strategy-
proof, non-bossy, and category-wise neutral if and only
if it is a serial dictatorship. Moreover, the three axioms
are minimal for characterizing serial dictatorships.

Proof sketch: It is easy to check that any serial dicta-
torship satisfies strategy-proofness, non-bossiness, and
category-wise neutrality. We prove the converse by four
lemmas. The first three lemmas are standard and the
last one (Lemma 4) is novel, whose proof is more in-
volved and heavily depends on the categorical struc-
ture. Due to the space constraint, most proofs
are omitted. All missing proofs can be found in
the supplementary material.

The first lemma resembles strong monotonicity in
voting theory: for all strategy-proof and non-bossy
mechanism f and all profile P , if each agent j reports
differently without enlarging the set of bundles ranked
above f j(P ), then the allocation does not change.

Lemma 1 Let f be a strategy-proof and non-bossy al-
location mechanism. For any pair of profiles P and P ′

such that for all j ≤ n, {~d ∈ D : ~d �R′j
f j(P )} ⊆ {~d ∈

D : ~d �Rj
f j(P )}, we have f(P ′) = f(P ).

For any linear order R over D and any bundle ~d ∈ D,

we say a linear order R′ is a pushup of ~d from R, if
R′ can be obtained from R by raising the position of
~d without changing the orders of other bundles. The
second lemma states that for any strategy-proof and
non-bossy mechanism f , if an agent reports differently

by only pushing up a bundle ~d, then either the alloca-

tion does not change, or she gets ~d.

Lemma 2 Let f be a strategy-proof and non-bossy al-
location mechanism. For any profile P , any j ≤ n, any

bundle ~d, and any R′j that is a pushup of ~d from Rj,

either (1) f(R′j , R−j) = f(P ) or (2) f j(R′j , R−j) = ~d.

The third lemma states that strategy-proofness, non-
bossiness, and category-wise neutrality altogether im-
ply Pareto-optimality, which means that for any profile
P , there is no allocation A such that all agents prefer
their bundles in A than their bundles in f(P ), and some
of these preferences are strict.

Lemma 3 For any basic categorized domains with p ≥
2, any strategy-proof, non-bossy, and category-wise neu-
tral allocation mechanism is Pareto optimal.

The fourth lemma says that for any strategy-proof and
non-bossy allocation mechanism f , any profile P , and
any pair of agents (j1, j2), there is no bundle ~c that only
contains items allocated to agent j1 and j2, and both
agents prefer ~c to their allocated bundles respectively.

Lemma 4 Let f be a strategy-proof and non-bossy al-
location mechanism. For any profile P and any j1 6= j2,

let ~a = f j1(P ) and ~b = f j2(P ), there is no ~c ∈
{a1, b1} × {a2, b2} × · · · × {ap, bp} such that ~c �Rj1

~a

and ~c �Rj2

~b, where ai is the i-th component of ~a.

Proof sketch: Suppose for the sake of contradiction

that such a bundle ~c exists. Let ~d denote the bundle
such that ~c ∪ ~d = ~a ∪ ~b. For example, if ~a = 1213,
~b = 2431, and ~c = 1211, then ~d = 2433.

We derive a contradiction in 6 steps illustrated in
Table 1. In each step, we prove that the boxed bundles
are allocated to agent j1 and agent j2 respectively, and
all other agents get their top-ranked bundles. The first
two steps are shown as an example.

Step 1. Let R̂j1 = [~c � ~a � ~d � ~b � others], R̂j2 =

[~c � ~b � ~a � ~d � others]. For any j 6= j1, j2, let

R̂j = [f j(P ) � others]. By Lemma 1, f(P̂ ) = f(P ).

Step 2. Let R̄j2 = [~c � ~a � ~b � ~d � others]. We

will prove that f(R̄j2 , R̂−j2) = f(P̂ ) = f(P ). Be-

cause R̄j2 is a pushup of ~a from R̂j2 , by Lemma 2,

f j2(R̄j2 , R̂−j2) is either ~a or ~b. The former case is

impossible, otherwise f j1(R̄j2 , R̂−j2) cannot be ~c, ~a,

or ~d because otherwise some item will be allocated
twice. This means that f(R̄j2 , R̂−j2) is Pareto domi-

nated by the allocation where j1 gets ~d, j2 gets ~c, and
all other agents get their top-ranked bundles. This con-
tradicts the Pareto-optimality of f (Lemma 3). Hence



R̂j1 : ~c � ~a � ~d � ~b � others

R̂j2 : ~c � ~b � ~a � ~d � others

Step 1

R̂j1 : ~c � ~a � ~d � ~b � others

R̄j2 : ~c � ~a � ~b � ~d � others

Step 2

R̄j1 : ~c � ~b � ~a � ~d � others

R̄j2 : ~c � ~a � ~b � ~d � others

Step 3

R̄j1 : ~c � ~b � ~a � ~d � others

R̊j2 : ~c � ~a � ~d � ~b � others

Step 4

R̊j1 : ~c � ~a � ~b � ~d � others

R̊j2 : ~c � ~a � ~d � ~b � others

Step 5

R̊j1 : ~c � ~a � ~b � ~d � others

R̄j2 : ~c � ~a � ~b � ~d � others

Step 6

Table 1: Proof sketch for Lemma 4. In all steps any other agents j’s preferences are f j(P ) � others.

f j2(R̄j2 , R̂−j2) = ~b = f j2(P̂ ). By non-bossiness we have

f(R̄j2 , R̂−j2) = f(P̂ ) = f(P ).
Contradiction. The observations in Step 5 and Step 6
(see Table 1) imply that when agents’ preferences are as

in Step 6, agent j2 has incentive to report R̊j2 in Step 5

to improve her allocation from ~b to ~a. This contradicts
the strategy-proofness of f . �

Let R∗ be a linear order over D that satisfies the
following conditions.
• (1, . . . , 1) � (2, . . . , 2) � · · · � (n, . . . , n).
• For any j < n, the bundles ranked between

(j, . . . , j) and (j + 1, . . . , j + 1) are those that satisfy
the following two conditions: (1) at least one compo-
nent is j, and (2) all components are in {j, j+1, . . . , n}.
Let Bj denote these bundles.

• For any j and any ~d,~e ∈ Bj , if there are more j’s

in ~d than in ~e, then ~d � ~e.

Claim 1 Let P ∗ = (R∗, . . . , R∗). For any l ≤ n, there
exists jl ≤ n such that f jl(P ∗) = (l, . . . , l).

The proof of Claim 1 uses Lemma 4. W.l.o.g. let j1 = 1,
j2 = 2, . . ., jn = n denote the agents in Claim 1. For
any profile P ′ = (R′1, . . . , R

′
n), we define n bundles as

follows. Let ~d1 denote the top-ranked bundle in R′1, and

for any l ≥ 2, let ~dl denote agent l’s top-ranked available

bundle after { ~d1, . . . , ~dl−1} have been allocated. Then,
for any i ≤ m, we define a category-wise permutation

Mi such that for all l ≤ n, Mi(l) = [~dl]i, where we

recall that [~dl]i is the item in the i-th category in ~dl.
Let M = (M1, . . . ,Mm). It follows that for all l ≤
n, M(l, . . . , l) = ~dl. By category-wise neutrality and

Claim 1, f l(M(P ∗)) = M(f l(P ∗)) = ~dl.
Comparing M(P ∗) to P ′, we have that for all l ≤ n

and all bundle ~e, if ~dl �M(R∗) ~e then ~dl �R′l
~e. This

is because if there exists ~e such that ~dl �M(R∗) ~e but

~e �R′l
~dl, then ~e is still available after { ~d1, . . . , ~dl−1}

have been allocated, and ~e is ranked higher than ~dl in

R′l. This contradicts the selection of ~dl. By Lemma 1,
f(P ′) = f(M(P ∗)) = M(f(P ∗)), which proves that f
is the serial dictatorship w.r.t. the order 1B2B · · ·Bn.

Finally, we show the minimality of {strategy-
proofness, non-bossiness, category-wise neutrality}.
Strategy-proofness is necessary by considering the

allocation mechanism that maximizes the social welfare
w.r.t. the following utility functions. For any i ≤ np and
j ≤ n, the bundle ranked at the i-th position in agent
j’s preferences gets (np − i)(1 + ( 1

2np )j) points.
Non-bossiness is necessary by considering the
following “conditional serial dictatorship”: agent 1
chooses her favorite bundle in the first p rounds, and if
the first component of agent 1’s second-ranked bundle is
the same as the first component of her top-ranked bun-
dle, then the order over the rest of agents is 2B3B· · ·Bn;
otherwise the order is nB n− 1B · · ·B 2.
Category-wise neutrality is necessary by consid-
ering the following “conditional serial dictatorship”:
agent 1 chooses her favorite bundle in the first p rounds,
and if agent 1 gets (1, . . . , 1), then the order over the
rest of agents is 2 B 3 B · · · B n; otherwise the order is
nB n− 1B · · ·B 2. �

Categorical Sequential Allocation
Mechanisms

Given a linear order O over {1, . . . , n}× {1, . . . , p}, the
categorical sequential allocation mechanism (CSAM) fO
allocates the items in np steps as illustrated in Proto-
col 1. In each step t, suppose the t-th element in O
is (j, i), (equivalently, t = O−1(j, i)). Agent j is called
the active agent in step t and she chooses an item dj,i
that is still available from Di. Then, dj,i is broadcast
to all agents and we move on to the next step.

Protocol 1: Categorical sequential allocation
mechanism (CSAM) fO.

Input: An order O over {1, . . . , n} × {1, . . . , p}.
1 Broadcast O to all agents.
2 for t = 1 to np do
3 Let (j, i) be the t-th element in O.
4 Agent j chooses an available item dj,i ∈ Di.
5 Broadcast dj,i to all agents.
6 end

In CSAMs, in each step the active agent must choose
an item from the designated category. Hence, CSAMs
are different from sequential allocation protocols [6] and
the draft mechanism [11], where in each step the active
agent can choose any available item from any category.



Example 2 The serial dictatorship w.r.t. K = [j1 B
· · ·Bjn] is a CSAM w.r.t. (j1, 1)B(j1, 2)B · · ·B(j1, p)B
· · ·B (jn, 1)B (jn, 2)B · · ·B (jn, p).

For any even number p, given any linear order K =
[j1 B · · · B jn] over the agents, we define the balanced
CSAM to be the mechanism where agents choose items
in p phases, such that for each i ≤ p, in phase i all agents
choose from Di w.r.t. K if i is odd, and w.r.t. inverse
K if i is even.

For example, when n = 3, p = 2, and K = [1 B 2 B
3], the balanced CSAM uses the order (1, 1) B (2, 1) B
(3, 1)B (3, 2)B (2, 2)B (1, 2). �

Similar to sequential allocations [6], CSAMs can be
implemented in a distributed manner. Communica-
tion cost for CSAMs is much lower than for direct
mechanisms, where agents report their preferences in
full to the center, which requires Θ(npp log n) bits
per agent, and thus the total communication cost is
Θ(np+1p log n). For CSAMs, the total communica-
tion cost of Protocol 1 is Θ(n2p log n + np(n log n)) =

Θ(n2p log np), which has a Θ(np−2 · logn
logn+log p ) multi-

plicative saving. In light of this, CSAMs preserve more
privacy as well.

To analyze the outcomes of CSAMs, we focus on two
types of myopic agents. For any 1 ≤ i ≤ p, we let Di,t

denote the set of available items in Di at the beginning
of round t.

• Optimistic agents. An optimistic agent chooses the
item in her top-ranked bundle that is still available,
given the items she chose in previous steps.

• Pessimistic agents. A pessimistic agent j in round
t chooses an item dj,i from Di,t, such that for all
d′i ∈ Di,t with d′i 6= dj,i, agent j prefers the worst
available bundle whose i-th component is dj,i to the
worst available bundle whose i-th component is d′i.

In this paper, we assume that whether an agent is opti-
mistic or pessimistic is fixed before applying a CSAM.

Example 3 Let n = 3, p = 2. Consider the same pro-
file as in Example 1, which can be simplified as follows.

Agent 1 (optimistic): 12 � 21 � others � 11
Agent 2 (optimistic): 32 � others � 22

Agent 3 (pessimistic): 13 � others � 33 � 31 � 23
Let O = [(1, 1)B (2, 2)B (3, 1)B (3, 2)B (2, 1)B (1, 2)].
Suppose agent 1 and agent 2 are optimistic and agent
3 is pessimistic. When t = 1, agent 1 (optimistic)
chooses item 1 from D1. When t = 2, item 32 is the
top-ranked available bundle for agent 2 (optimistic),
so she chooses 2 from D2. When t = 3, the available
bundles are {2, 3} × {1, 3}. If agent 3 chooses 2 from
D1, then the worst-case available bundle is 23, and
if agent 3 chooses 3 from D1, then the worst-case
available bundle is 31. Since agent 3 prefers 31 to 23,
she chooses 3 from D1. When t = 4, agent 3 chooses 3
from D2. When t = 5, agent 2 choses 2 from D1 and
when t = 6, agent 1 choses 1 from D2. Finally, agent 1
gets 11, agent 2 gets 22, and agent 3 gets 33. �

Ordinal Efficiency of CSAMs
In this section, we focus on characterizing the ordinal
efficiency of CSAMs measured by agents’ ranks of the
bundles they receive.3 For any linear order R over D

and any bundle ~d, we let Rank(R, ~d) denote the rank of
~d in R, such that the highest position has rank 1 and
the lowest position has rank np. Given a CSAM fO, we
introduce the following notation for any j ≤ n.
• Let Oj denote the linear order over the categories

{1, . . . , p} according to which agent j chooses items
from in O.
• For any i ≤ p, let kj,i denote the number of items in

Di that are still available right before agent j chooses
from Di. Formally, kj,i = 1 + |{(j′, i) : (j, i)BO (j′, i)}|.
• Let Kj denote the smallest index in Oj such that no

agent can “interrupt” agent j from choosing all items
in her top-ranked bundle that is available in round
(j,Oj(Kj)). Formally, Kj is the smallest number such
that for any l with Kj < l ≤ p, between the round
when agent j chooses an item from category Oj(Kj)
and the round when agent j chooses an item from cat-
egory Oj(l), no agent chooses an item from category
Oj(l). We note that Kj is defined only by O and is
thus independent of agents’ preferences.

Example 4 Let O∗ = [(1, 1)B (1, 2)B (1, 3)B (2, 1)B
(2, 2)B (2, 3)B (3, 1)B (3, 2)B (3, 3)]. That is, fO∗ is a
serial dictatorship. Then O∗1 = O∗2 = O∗3 = 1 B 2 B 3.
K1 = K2 = K3 = 1. k1,1 = k1,2 = k1,3 = 3, k2,1 =
k2,2 = k2,3 = 2, k3,1 = k3,2 = k3,3 = 1.

LetO be the order in Example 3, that is, O = [(1, 1)B
(2, 2)B (3, 1)B (3, 2)B (2, 1)B (1, 2)].
O1 = 1B 2. K1 = 2 since (2, 2) is between (1, 1) and

(1, 2) in O. k1,1 = 3, k1,2 = 1.
O2 = 2B 1. K2 = 2 since (3, 1) is between (2, 2) and

(2, 1). k2,1 = 1, k2,2 = 3.
O3 = 1B 2. K3 = 1 since between (3, 1) and (3, 2) in

O, no agent chooses an item from D2. k3,1 = k3,2 = 2.�

Proposition 1 For any CSAM fO, any combination
of optimistic and pessimistic agents, any j ≤ n, and
any profile:

• Upper bound for optimistic agents: if j is opti-
mistic, then the rank of the bundle allocated to her is
at most np + 1−

∏p
l=Kj

kj,Oj(l).

• Upper bound for pessimistic agents: if j is pes-
simistic, then the rank of the bundle allocated to her
is at most np −

∑p
l=1(kj,Oj(l) − 1).

Proof sketch: W.l.o.g. let Oj = 1 B 2 B · · · B p. If
j is optimistic, then we let tj = O−1(j,Kj) and let
(dj,1, . . . , dj,Kj−1) ∈ D1×· · ·×DKj−1 denote the items
agent j chose in the previous rounds. It follows that at
the beginning of round tj , the following

∏p
l=Kj

kj,l bun-

dles are available for agent j: Dj = (dj,1, . . . , dj,Kj−1)×∏p
l=Kj

Dl,tj . By the definition of Kj , no agent can

3This is different from the ordinal efficiency for random-
ized allocation mechanisms [2].



interrupt agent j from choosing the items in her top-
ranked bundle in Dj , and |Dj | =

∏p
l=Kj

kj,l.

If j is pessimistic, then we let ~dj = (dj,1, . . . , dj,p) =

f j
O(P ) denote her allocation by fO. By the definition of

pessimism and the assumption that for any 1 ≤ l ≤ p,
in round t∗ = O−1(j, l) agent j chose dj,l from Dl,t∗ ,
we must have that for all d′l ∈ Dl,t∗ with d′l 6= dj,l,
there exists an bundle (dj,1, . . . , dj,l−1, d

′
l, . . . , d

′
p) that

is ranked below ~dj . Such bundles are all different and
the number of them is

∑p
l=1(kj,l− 1), which proves the

bound for pessimistic agents. �
We note that Proposition 1 works for any combina-

tion of optimistic and pessimistic agents, which is much
more general than the setting with all-optimistic agents
and the setting with all-pessimistic agents. In addition,
once the CSAM and the properties of the agents (that
is, whether each agent is optimistic or pessimistic) is
given, the bounds hold for all preference profile.

Our main theorem in this section states that, surpris-
ingly, for all combinations of optimistic and pessimistic
agents, all upper bounds described in Proposition 1 can
be matched in a same profile. Even more surprisingly,
for the same profile there exists an allocation where al-
most all agents get their top-ranked bundle, and the
only agent who may not get her top-ranked bundle gets
her second-ranked bundle. Therefore, the theorem not
only provides a worst-case analysis in the absolute sense
in that all upper bounds in Proposition 1 are matched
in the same profile, but also in the comparative sense
w.r.t. the optimal allocation of the profile.

Theorem 2 For any CSAM fO and any combination
of optimistic and pessimistic agents, there exists a pro-
file P such that for all j ≤ n:

1. if agent j is optimistic, then the rank of the bundle
allocated to her is np + 1−

∏p
l=Kj

kj,Oj(l);

2. if agent j is pessimistic, then the rank of the bundle
allocated to her is np −

∑p
l=1(kj,Oj(l) − 1);

3. there exists an allocation where at least n− 1 agents
get their top-ranked bundles, and the remaining agent
gets her top-ranked or second-ranked bundle.

The proof is quite involved and can be found in the
supplementary material.

Example 5 The profile in Example 3 is an example
of the profile guaranteed by Theorem 2: agent 1 (opti-
mistic) gets her bottom bundle (K1 = 2 and k1,2 = 1),
agent 2 (optimistic) gets her bottom bundle (K2 = 2
and k2,1 = 1), and agent 3 (pessimistic) gets her third
bundle (k3,1 = k3,2 = 2). Moreover, there exists an al-
location where agent 2 and agent 3 get their top bundles
and agent 1 gets her second bundle. �

Theorem 2 can be used to compare various CSAMs with
optimistic and pessimistic agents w.r.t. worst-case util-
itarian rank and worst-case egalitarian rank.

Definition 2 Given any CSAM fO and
any n, the worst-case utilitarian rank is

maxPn

∑
Rj∈Pn

Rank(Rj , f
j
O(Pn)), and the worst-case

egalitarian rank is maxPn maxRj∈Pn Rank(Rj , f
j
O(Pn)),

where Pn is a profile of n agents.

In words, the worst-case utilitarian rank is the worst
(largest) total rank of the bundles (w.r.t. respective
agent’s preferences) allocated by fO. The worst-case
egalitarian rank is the worst (largest) rank of the least-
satisfied agent, which is also a well-accepted measure of
fairness. The worst case is taken over all profiles of n
agents.

Proposition 2 Among all CSAMs, serial dictator-
ships with all-optimistic agents have the best (small-
est) worst-case utilitarian rank and the worst (largest)
worst-case egalitarian rank.

Proposition 3 Any CSAM with all-optimistic agents
has the worst (largest) worst-case egalitarian rank,
which is np.

Proposition 4 For any even number p, the worst-case
egalitarian rank of any balanced CSAM (defined in Ex-
ample 2) with all-pessimistic agents is np − (n− 1)p/2.
These are the CSAMs with the best worst-case egalitar-
ian rank among CSAMs with all-pessimistic agents.

A natural question after Proposition 4 is: do the bal-
anced CSAMs with all-pessimistic agents have optimal
worst-case egalitarian rank, among all CSAMs for any
combination of optimistic and pessimistic agents? The
answer is negative.

Proposition 5 For any even number p with 2p > 1 +
(n−1)p/2, there exists a CSAM with both optimistic and
pessimistic agents, whose worst-case egalitarian rank is
strictly better (smaller) than np − (n− 1)p/2.

Summary and Future Work
In this paper we propose CDAPs to model allocation
problems for indivisible and categorized items without
monetary transfer, when agents have heterogenous and
combinatorial preferences. We characterize serial dic-
tatorships for basic CDAPs, propose CSAMs and char-
acterize worst-case ordinal efficiency for CSAMs with
any combination of optimistic and pessimistic agents,
which leads to characterizations of utilitarian rank and
egalitarian rank of various CSAMs.

There are many open questions and directions for
future research, including analyzing the outcomes and
ordinal efficiency for CSAMs for other types of agents,
e.g. strategic agents and minimax-regret agents. We
also plan to work on expected utilitarian rank and egal-
itarian rank (some simulation results are included in
the supplementary material), and randomized alloca-
tion mechanisms. For general CDAPs, we are excited
to explore generalizations of CP-nets [4], LP-trees [3],
and soft constraints [24] for preference representation.
Based on these new languages we can analyze fairness
and computational aspects of CSAMs and other mech-
anisms. Mechanism design for CDAPs with sharable,
non-sharable, and divisible items is also an important
and promising topic for future research.
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location, and Exchange of Discrete Resources. In Jess
Benhabib, Alberto Bisin, and Matthew O. Jackson, ed-
itors, Handbook of Social Economics, chapter 17, pages
781–852. North-Holland, 2011.

[27] Lars-Gunnar Svensson. Strategy-proof allocation of in-
divisible goods. Social Choice and Welfare, 16(4):557–
567, 1999.



Appendix A: Full Proofs

Proof of Theorem 1
Proof: We first prove four lemmas. The first three lemmas
are standard in proving characterizations for serial dictator-
ships and their proofs can be found in the Appendix. The
last one (Lemma 4) is new, whose proof is the most involved
and heavily relies on the categorical information.

The first lemma (roughly) says that for all strategy-proof
and non-bossy mechanism f and all profile P , if every agent
j reports a different ranking without enlarging the set of
bundles ranked above f j(P ) (and she can shuffle the bundles
ranked above f j(P ) and she can shuffle the bundles ranked
below f j(P )), then the allocation to all agents does not
change in the new profile. This resembles (strong) mono-
tonicity in social choice.

Lemma 1 Let f be a strategy-proof and non-bossy alloca-
tion mechanism over a basic categorized domain with p ≥ 2.
For any pair of profiles P and P ′ such that for all j ≤ n,

{~d ∈ D : ~d �R′j
f j(P )} ⊆ {~d ∈ D : ~d �Rj f j(P )}, we have

f(P ′) = f(P ).
Proof: We first prove the lemma for the special case where
P and P ′ only differ on one agent’s preferences. Let j be

an agent with R′j 6= Rj and {~d ∈ D : ~d �R′j
f j(P )} ⊆

{~d ∈ D : ~d �Rj f j(P )}. We will prove that f j(R′j , R−j) =

f j(Rj , R−j).
Suppose for the sake of contradiction f j(R′j , R−j) 6=

f j(Rj , R−j). If f j(R′j , R−j) �Rj f j(Rj , R−j) then it means
that f is not strategy-proof since j has incentive to report
R′j when her true preferences are Rj . If f j(Rj , R−j) �Rj

f j(R′j , R−j) then f j(Rj , R−j) �R′j
f j(R′j , R−j), which

means that when agent j’s preferences are R′j she has in-
centive to report Rj ,. This again contradicts the assump-
tion that f is strategy-proof. Therefore f j(Rj , R−j) =
f j(R′j , R−j).

By non-bossiness, f(Rj , R−j) = f(R′j , R−j). The lemma
is proved by recursively applying this argument to j =
1, . . . , n. �

For any linear order R over D and any bundle ~d ∈ D,

we say a linear order R′ is a pushup of ~d from R, if R′ can

be obtained from R by raising the position of ~d while keep-
ing the relative positions of other bundles unchanged. The
next lemma states that for any strategy-proof and non-bossy
mechanism f , if an agent reports her preferences differently

by only pushing up a bundle ~d, then either the allocation to

all agents does not change, or she gets ~d.

Lemma 2 Let f be a strategy-proof and non-bossy alloca-
tion mechanism over a basic categorized domain with p ≥ 2.

For any profile P , any j ≤ n, any bundle ~d, and any R′j that

is a pushup of ~d from Rj, either (1) f(R′j , R−j) = f(R)

or (2) f j(R′j , R−j) = ~d. Proof: We first prove that

f j(R′j , R−j) = f j(R) or f j(R′j , R−j) = ~d. Suppose on

the contrary that f j(R′j , R−j) is neither f j(R) nor ~d. If

f j(R′j , R−j) �Rj f j(R), then f is not strategy-proof since
when agent j’s true preferences are Rj and other agents’
preferences are R−j , she has incentive to report R′j to make

her allocation better. If f j(R) �Rj f j(R′j , R−j), then

since ~d 6= f j(R′j , R−j), we have f j(R) �R′j
f j(R′j , R−j).

In this case when agent j’s true preferences are R′j and

other agents’ preferences are R−j , she has incentive to re-
port Rj to make her allocation better, which means that
f is not strategy-proof. Therefore, f j(R′j , R−j) = f j(R)

or f j(R′j , R−j) = ~d. If f j(R′j , R−j) = f j(Rj , R−j), then
by non-bossiness f(R′j , R−j) = f(R). This completes the
proof. �

We next prove that strategy-proofness, non-bossiness,
and category-wise neutrality altogether imply Pareto-
optimality, which states that for any profile P , there does
not exists an allocation A such that all agents prefer their
bundles in A than their bundles in f(P ), and some of them
strictly prefer their bundles in A.

Lemma 3 For any basic categorized domains with p ≥ 2,
any strategy-proof, non-bossy, and category-wise neutral al-
location mechanism is Pareto optimal. Proof: We prove
the lemma by contradiction. Let f be a strategy-proof, non-
bossy, category-wise neutral, but non-(Pareto optimal) al-
location mechanism. Let P = (R1, . . . , Rn) denote a pro-
file such that f(P ) is Pareto dominated by an allocation
A. For any i ≤ m, let Mi denote the permutation over Di

so that for every j ≤ n, [f j(P )]i is permuted to [A(j)]i.
Let M = (M1, . . . ,Mm). It follows that for all j ≤ n,
M(f j(P )) = A(j).

Let R′j denote an arbitrary ranking where A(j) is ranked

at the top place, and f j(P ) is ranked at the second place if
it is different from A(j). Let R∗j denote an arbitrary rank-

ing where f j(P ) is ranked at the top place, and A(j) is
ranked at the second place if it is different from f j(P ). Let
P ′ = (R′1, . . . , R

′
n) and P ∗ = (R∗1, . . . , R

∗
n). P ′ and P ∗ are

illustrated as follows.

P ′ =


R′1 : A1 � f1(P ) � Others

...
R′n : An � fn(P ) � Others


P ∗ =


R∗1 : f1(P ) � A1 � Others

...
R∗n : fn(P ) � An � Others


Since A Pareto dominates f(P ), by Lemma 1 we have

f(P ′) = f(P ), because for any j ≤ n, in R′j the only bundle

ranked ahead of f j(P ) is A(j), if it is different from f j(P ),
and A(j) is also ranked ahead of f j(P ) in Rj . By Lemma 1
again we have f(P ∗) = f(P ). Comparing M(P ′) and P ∗,
we observe that the only differences are the orderings among
D \ {A(j), f j(P )}. Applying Lemma 1 to P ∗ and M(P ′),
we have that f(M(P ′)) = f(P ∗) = f(P ). However, by
category-wise neutrality f(M(P ′)) = M(f(P ′)) = A, which
is a contradiction. �

The next lemma states that for any strategy-proof and
non-bossy allocation mechanism f , any profile P , and any
pair of agents j1, j2, there is no bundle ~c that only contains
items allocated to agent j1 and j2 by f , such that both j1
and j2 prefer ~c to their bundles allocated by f .

Lemma 4 Let f be a strategy-proof and non-bossy al-
location mechanism over a basic categorized domain with
p ≥ 2. For any profile P and any j1 6= j2 ≤ n, let

~a = f j1(P ) and ~b = f j2(P ), there does not exist ~c ∈
{a1, b1} × {a2, b2} × · · · × {ap, bp} such that ~c �Rj1

~a and

~c �Rj2
~b, where ai is the i-th component of ~a.

Proof: Suppose for the sake of contradiction that such a

bundle ~c exists. Let ~d denote the bundle such that ~c ∪ ~d =



R̂j1 : ~c � ~a � ~d � ~b � others

R̂j2 : ~c � ~b � ~a � ~d � others

Other j : f j(P ) � others

Step 1

R̂j1 : ~c � ~a � ~d � ~b � others

R̄j2 : ~c � ~a � ~b � ~d � others

Other j : f j(P ) � others

Step 2

R̄j1 : ~c � ~b � ~a � ~d � others

R̄j2 : ~c � ~a � ~b � ~d � others

Other j : f j(P ) � others

Step 3

R̄j1 : ~c � ~b � ~a � ~d � others

R̊j2 : ~c � ~a � ~d � ~b � others

Other j : f j(P ) � others

Step 4

R̊j1 : ~c � ~a � ~b � ~d � others

R̊j2 : ~c � ~a � ~d � ~b � others

Other j : f j(P ) � others

Step 5

R̊j1 : ~c � ~a � ~b � ~d � others

R̄j2 : ~c � ~a � ~b � ~d � others

Other j : f j(P ) � others

Step 6

Table 2: Proof sketch of Lemma 4.

~a ∪ ~b. More precisely, for all i ≤ m, {ci, di} = {ai, bi}.
For example, if ~a = 1213, ~b = 2431, and ~c = 1211, then
~d = 2433.

The rest of the proof derives a contradiction by proving
the a series of observations as illustrated in Table 2, which is
the same as Table 1. In each step, we prove that the boxed
bundles are allocated to agent j1 and agent j2 respectively,
and all other agents get their top-ranked bundles.

Step 1. Let R̂j1 = [~c � ~a � ~d � ~b � others], R̂j2 =

[~c � ~b � ~a � ~d � others], where “others” represents an
arbitrary linear order over the remaining bundles, and for

any j 6= j1, j2, let R̂j = [f j(P ) � others]. By Lemma 1,

f(P̂ ) = f(P ).

Step 2. Let R̄j2 = [~c � ~a � ~b � ~d � others] be a pushup

of ~a from R̂j2 . We will prove that f(R̄j2 , R̂−j2) = f(P̂ ) =

f(P ). Since R̄j2 is a pushup of ~a from R̂j2 , by Lemma 2,

f j2(R̄j2 , R̂−j2) is either ~a or ~b. We now show that the for-
mer case is impossible. Suppose for the sake of contradiction

f j2(R̄j2 , R̂−j2) = ~a, then f j1(R̄j2 , R̂−j2) cannot be ~c, ~a, or
~d since otherwise some item will be allocated twice. This
means that f(R̄j2 , R̂−j2) is Pareto dominated by the alloca-

tion where j1 gets ~d, j2 gets ~c, and all other agents get their
top-ranked bundles. This contradicts the Pareto-optimality

of f (Lemma 3). Hence f j2(R̄j2 , R̂−j2) = ~b = f j2(P̂ ). By

non-bossiness we have f(R̄j2 , R̂−j2) = f(P̂ ) = f(P ).

Step 3. Let R̄j1 = [~c � ~b � ~a � ~d � others] be a pushup of
~b from R̂j1 . We will prove that in f(R̄j1 , R̄j2 , R̂−{j1,j2}),

j1 gets ~b, j2 gets ~a, and all other agents get the same

items as in f(P ). Since R̄j1 is a pushup of ~b from R̂j1 ,

by Lemma 2, f j1(R̄j1 , R̄j2 , R̂−{j1,j2}) is either ~a or ~b. We
now show that the former case is impossible. Suppose for

the sake of contradiction that f j1(R̄j1 , R̄j2 , R̂−{j1,j2}) = ~a.

By non-bossiness, f j2(R̄j1 , R̄j2 , R̂−{j1,j2}) = ~b. This means

that f(R̄j1 , R̄j2 , R̂−{j1,j2}) is Pareto-dominated by the al-

location where j1 gets ~b, j2 gets ~a, and all other agents
get their top-ranked bundles. This contradicts the Pareto-
optimality of f (Lemma 3).

Step 4. Let R̊j2 = [~c � ~a � ~d � ~b � others] be a pushup

of ~d from R̄j2 . By Lemma 1, f(R̄j1 , R̊j2 , R̂−{j1,j2}) =

f(R̄j1 , R̄j2 , R̂−{j1,j2}).

Step 5. Let R̊j1 = [~c � ~a � ~b � ~d � others] be a pushup

of ~a from R̄j1 . We will prove that f(R̊j1 , R̊j2 , R̂−{j1,j2}) =

f(R̄j1 , R̊j2 , R̂−{j1,j2}). Since R̊j1 is a pushup of ~a from R̄j1 ,

by Lemma 2, f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) is either ~a or ~b. We
now show that the former case is impossible. Suppose for

the sake of contradiction that f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) =

~a. Then in f(R̊j1 , R̊j2 , R̂−{j1,j2}), agent j2 cannot get

~c, ~a, or ~d, which means that f(R̊j1 , R̊j2 , R̂−{j1,j2}) is
Pareto-dominated by the allocation where j1 gets ~c,

j2 gets ~d, and all other agents get their top-ranked
bundles. This contradicts the Pareto-optimality of f .

Hence, f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) = ~b. By non-bossiness

f(R̊j1 , R̊j2 , R̂−{j1,j2}) = f(R̄j1 , R̊j2 , R̂−{j1,j2}).

Step 6. We note that R̊j1 is a pushup of ~b from R̂j1 (and
~b is still below ~a). By Lemma 1, f(R̊j1 , R̄j2 , R̂−{j1,j2}) =

f(R̂j1 , R̄j2 , R̂−{j1,j2}). We note that the right hand side is
the profile in Step 2.
Contradiction. Finally, the observations in Step 5 and
Step 6 imply that when agents’ preferences are as in Step 6,

agent j2 has incentive to report R̊j2 in Step 5 to improve the

bundle allocated to her (from ~b to ~a). This contradicts the
strategy-proofness of f and completes the proof of Lemma 4.
�

It is easy to check that any serial dictatorship satisfies
strategy-proofness, non-bossiness and category-wise neu-
trality. We now prove that any mechanism satisfying the
three properties must be a serial dictatorship. Let R∗ be a
linear order over D that satisfies the following conditions.
• (1, . . . , 1) � (2, . . . , 2) � · · · � (n, . . . , n).
• For any j < n, the bundles ranked between (j, . . . , j)

and (j + 1, . . . , j + 1) are those satisfying the following two
conditions: 1) at least one component is j, and 2) all compo-
nents are in {j, j + 1, . . . , n}. Let Bj denote these bundles.

That is, Bj ⊆ D and Bj = {~d : ∀l, dl ≥ j and ∃l′, dl′ = j}.
• For any j and any ~d,~e ∈ Bj , if the number of j’s in ~d is

strictly larger than the number of j’s in ~e, then ~d � ~e.

Claim 1 Let P ∗ = (R∗, . . . , R∗). For any l ≤ n, there exists
jl ≤ n such that f jl(P ∗) = (l, . . . , l).
Proof: The claim is proved by induction on l. When l = 1.



For the sake of contradiction suppose there is no jl with
f jl(P ∗) = (1, . . . , 1). Then there exist a pair of agents j

and j′ such that both ~a = f j(P ∗) and ~b = f j′(P ∗) contain
1 in at least one category.

Let ~c be the bundle obtained from ~a by replacing items

in categories where ~b takes 1 to 1. More precisely, we let
~c = (c1, . . . , cp), where

ci =

 1 if ai = 1 or bi = 1

ai otherwise

It follows that in R∗, ~c �R∗ ~a and ~c �R∗ ~b since the
number of 1’s in ~c is strictly larger than the number of 1’s

in ~a or ~b. By Lemma 4, this contradicts the assumption
that f is strategy-proof and non-bossy. Hence there exists
j1 ≤ n with f j1(P ∗) = (1, . . . , 1).

Suppose the claim is true for l ≤ l′. We next prove that
there exists jl′+1 such that f jl′+1(P ∗) = (l′ + 1, . . . , l′ + 1).
This follows after a similar reasoning to the l = 1 case.
Formally, suppose for the sake of contradiction there does
not exist such a jl′+1. Then, there exist two agents who

get ~a and ~b in f(P ∗) such that both ~a and ~b contain l′ + 1
in at least one category. By the induction hypothesis, items
{1, . . . , l′} in all categories have been allocated, which means

that all components of ~a and ~b are at least as large as l′+ 1.
Let ~c be the bundle obtained from ~a by replacing items in all

categories where ~b takes l′+1 to l′+1. We have ~c �R∗ ~a and

~c �R∗ ~b, leading to a contradiction by Lemma 4. Therefore,
the claim holds for l = l′ + 1. This completes the proof of
Claim 1. �

Back to the proof of Theorem 1, w.l.o.g. we let j1 = 1,
j2 = 2, . . ., jn = n denote the agents in Claim 1. For any
profile P ′ = (R′1, . . . , R

′
n), we define n bundles as follows.

Let ~d1 denote the top-ranked bundle in R′1, and for any l ≥
2, let ~dl denote agent l’s top-ranked available bundle given

that items in ~d1, . . . , ~dl−1 have already been allocated. That

is, ~dl is the most preferred bundle in {~d : ∀l′ < l, ~d∩ ~dl′ = ∅}
according to R′l. Then, for any i ≤ m, we define a category-

wise permutation Mi such that for all l ≤ n, Mi(l) = [~dl]i,

where we recall that [~dl]i is the item in the i-th category in
~dl. Let M = (M1, . . . ,Mm). It follows that for all l ≤ n,

M(l, . . . , l) = ~dl. By category-wise neutrality and Claim 1,

in f(M(P ∗)) agent l gets M(f l(P ∗)) = ~dl.
Comparing M(P ∗) to P ′, we notice that for all l ≤ n and

all bundle ~e, if ~dl �M(R∗) ~e then ~dl �R′
l
~e. This is because if

there exists ~e such that ~dl �M(R∗) ~e but ~e �R′
l

~dl, then ~e is

still available after { ~d1, . . . , ~dl−1} have been allocated, and ~e

is ranked higher than ~dl in R′l. This contradicts the selection

of ~dl. By Lemma 1, f(P ′) = f(M(P ∗)) = M(f(P ∗)), which
proves that f is the serial dictatorship w.r.t. the order 1 B
2B · · ·B n.

Next, we show that strategy-proofness, non-bossiness,
and category-wise neutrality are a minimal set of proper-
ties that characterize serial dictatorships.

Strategy-proofness is necessary: Consider the al-
location mechanism that maximizes the social welfare
w.r.t. the following utility functions. For any i ≤ np and
j ≤ n, the bundle ranked at the i-th position in agent j’s

preferences gets (np − i)(1 + ( 1
2np )j) points.4 It is not hard

to check that for any pair of different allocations, the so-
cial welfares are different. It follows that this allocation
mechanism satisfies non-bossiness. This is because if agent
j’s allocation is the same when only she reports differently,
then the set of items left to the other agents is the same,
which means that the allocation to the other agents by the
mechanism is the same. Since the utility of a bundle only de-
pends on its position in the agents’ preferences rather than
the name of the bundle, the allocation mechanism satisfies
category-wise neutrality. This mechanism is not a serial
dictatorship. To see this, consider the basic categorized do-
main with p = n = 2, R′1 = [11 � 12 � 22 � 21], and
R′2 = [12 � 21 � 11 � 22]. A serial dictatorship will either
give 11 to agent 1 and give 22 to agent 2, or give 21 to agent
1 and give 12 to agent 2, but the allocation that maximizes
social welfare w.r.t. the utility function described above is
to give 12 to agent 1 and give 21 to agent 2.

non-bossiness is necessary: Consider the following
“conditional serial dictatorship”: agent 1 always chooses
her favorite bundle in the first round, and the order over
the remaining agents {2, . . . , n} depends on agent 1’s pref-
erences in the following way: if the first component of agent
1’s second-ranked bundle is the same as the first component
of her top choice, then the order over the rest of agents is
2 B 3 B · · · B n; otherwise it is n B n − 1 B · · · B 2. It is
not hard to verify that this mechanism satisfies strategy-
proofness and category-wise neutrality, and is not a serial
dictatorship (where the order must be fixed before seeing
the profile).

Category-wise neutrality is necessary: Consider
the following “conditional serial dictatorship”: agent 1 al-
ways chooses her favorite bundle in the first round, and the
order over agents {2, . . . , n} depends on the allocation of
agent 1 in the following way: if agent 1 gets (1, . . . , 1), then
the order over the rest of agents is 2B 3B · · ·Bn; otherwise
it is nBn−1B· · ·B2. It is not hard to verify that this mech-
anism satisfies strategy-proofness and non-bossiness, and is
not a serial dictatorship. �

Proof of Proposition 1
Proof: Equivalently, we need to prove that for any opti-
mistic agent, the bundle allocated to her is ranked no lower
than the (

∏p
l=Kj

kj,Oj(l))-th position from the bottom, and

for any pessimistic agent, the bundle allocated to her is
ranked no lower than the (1 +

∑p
l=1(kj,Oj(l) − 1))-th po-

sition from the bottom.
W.l.o.g. let Oj = 1 B 2 B · · · B p. That is, agent j

chooses items from categories 1, . . . , p in sequence in the
sequential allocation. This means that in this proof, for any
l ≤ p, Oj(l) = l. We first prove the proposition for an opti-
mistic agent j. In the beginning of round tj = O−1(j,Kj)
in Algorithm 1, agent j has already chosen items from
D1, . . . , DKj−1, and is ready to choose an item from DKj .
We recall that Dl,t is the set of remaining items in Dl at

4The ( 1
2np )j terms in the utility functions are only used

to avoid ties in allocations. In fact, any utility functions
where there are no ties satisfy non-bossiness and category-
wise neutrality, but some of them are equivalent to serial
dictatorships, which are the cases we want to avoid in our
proof.



the beginning of round t. By definition, kj,l = |Dl,tj |. Let
(dj,1, . . . , dj,Kj−1) ∈ D1 × · · · × DKj−1 denote the items
agent j has chosen in previous rounds. It follows that at the
beginning of the round tj , the following

∏p
l=Kj

kj,l bundles

are available for agent j:

Dj = (dj,1, . . . , dj,Kj−1)×
p∏

l=Kj

Dl,tj

We now show that an optimistic agent j is guaranteed to
obtain her top-ranked bundle in Dj . Intuitively this holds
because by the definition of Kj , for any l ≥ Kj , when it is
agent j’s round to choose an item from Dl, the l-th compo-
nent of her top-ranked bundle in Dj is always available. For-

mally, let ~dj = (dj,1, . . . , dj,p) denote agent j’s top-ranked
bundle in Dj . We prove that agent j will choose dj,l from Dl

in round O−1(j, l) by induction on l. The base case l = Kj is
straightforward. Suppose she has chosen dKj , dKj+1, . . . , dl′

for some l′ ≥ Kj . Then in round O−1(j, l′ + 1) when agent j
is about to choose an item from Dl′+1, the following bundles
are available:

(dj,1, . . . , dj,l′)×
p∏

l=l′+1

Dl,tj

This is because by the induction hypothesis,
(dj,1, . . . , dj,l′) have been chosen by agent j in previ-
ous rounds. Then, by the definition of Kj , for any
l ≥ l′ + 1 no agent choses an item from Dl between round
tj = O−1(j,Kj) and round O−1(j, l′). Hence the remaining
items in Dl is still the same as that in round tj . This means

that ~dj ∈ (dj,1, . . . , dj,l′) ×
∏p

l=l′+1 Dl,tj ⊆ Dj . Therefore,
~dj is still agent j’s top-ranked available bundle in the
beginning of round O−1(j, l′), when she is about to choose
an item from Dl′+1. Hence agent j will choose dj,l′+1. This
proves the claim for l = l′+1, which means that it holds for

all l ≤ p. Therefore, agent j is allocated ~dj by the sequential
allocation protocol. We note that |Dj | =

∏p
l=Kj

kj,l. This

proves the proposition for optimistic agents.
We next prove the proposition for an pessimistic agent

j. Let ~dj = (dj,1, . . . , dj,p) denote her allocation by the
sequential allocation protocol. Since agent j is pessimistic,
for any 1 ≤ l ≤ p, in round t∗ = O−1(j, l) agent j chose
dj,l from Dl,t∗ , we must have that for all d′l ∈ Dl,t∗ with
d′l 6= dj,l, there exists an bundle (dj,1, . . . , dj,l−1, d

′
l, . . . , d

′
p)

that is ranked below ~dj . These bundles are all different
and the number of all such bundles is

∑p
l=1(kj,l− 1), which

proves the proposition for pessimistic agents. �

Proof of Theorem 2

Proof: Given O and the information on whether each agent
j is optimistic or pessimistic, we will construct a profile P
such that in O(P ), for all j ≤ n, agent j obtains (j, . . . , j).

We prove the theorem in the following three steps:

• Step 1: define bottom bundles. We specify a set of
bundles that are ranked in the bottom positions for each
agent j, and require (j, . . . , j) to be ranked on the top of
them.

• Step 2: define top bundles. We specify top-1 and
sometimes also top-2 bundles for each agent.

• Step 3: extend to full profile. We take a profile that
extends the partial orders constructed in the first two
steps, and then show that it satisfies all three properties
in the theorem.

The construction is summarized in Table 3 (for optimistic
agents) and Table 4 (for pessimistic agents).

We first introduce some notation that will be useful to
define the profile in Step 1 and Step 2. Let O(1) = (j1, i1).
That is, agent j1 is the first to choose an item in the sequen-
tial allocation, and she chooses from category Di1 . Let Li1

denote the order over {1, . . . , n} representing the order for
the agents to choose items from Di1 in O. That is, jBLi1

j′

if and only if (j, i1) BO (j′, i1). By definition we have j1 =
Li1(1). For any j ≤ n, we let Predi1(j) = Li1(L−1

i1
(j) − 1)

denote the predecessor of agent j in Li1 , that is, the lat-
est agent who chose an item from category i1 before agent j
chooses from category i1. If j = 1, then we let the last agent
in Li1 be her predecessor, that is, Predi1(1) = Li1(n).
Step 1: define bottom bundles. In order to match the
upper bounds shown in the proof of Proposition 1, the bun-
dles described in the proof of Proposition 1 must be the only
bundles that are ranked below (j, . . . , j) by agent j. This is
the part of the profile we will construct in the first step.

For all i and t, we first define D∗i,t to be the subset of
Di = {1, . . . , n} such that q ∈ D∗i,t if and only if agent q
has not chosen an item from Di before the t-th round. By
definition, if O(t) = (j, i) then j ∈ D∗i,t. Formally,

D∗i,t = {q ≤ n : O−1(q, i) ≥ t}

We note that D∗i,t is defined solely by i, t, and O, which
means that it does not depend on agents’ preferences and
behavior in previous rounds. Later in this proof we will
show that for our constructed profile, in each round (j, i)
the active agent j will choose j from Di, so that D∗i,t is the
remaining items for category i at the beginning of round t
of the sequential allocation.

For any 1 ≤ l ≤ p, we let t∗j,l = O−1(j,Oj(l)). That is,
t∗j,l is the round where agent j chooses an item from the l-th
category in Oj , which is not necessarily category l. For each
agent j we specify their bottom bundles as follows.

• If agent j is optimistic, then we let the following bundles
be ranked in the bottom of her preferences:

BottomBundlesOpt
j =

(jOj(1), . . . , jOj(Kj−1))×
p∏

l=Kj

D∗Oj(l),t
∗
j,l
,

(1)

where (j, . . . , j) is ranked on the top of these bundles, and
the order over the remaining bundles is defined arbitrarily.
It follows that (j, . . . , j) is ranked in the (

∏p
l=Kj

kj,Oj(l))-

th position from the bottom by agent j.

• If agent j is pessimistic, then we first define the following
bundles:

BottomBundlesPes
j =

p⋃
l=1

⋃
d∈D∗Oj(l),t

∗
j,l

{([d]Oj(l), [j]−Oj(l))},
(2)

where [j]−Oj(l) means that all components except the

Oj(l)-th component is j. Bundles in BottomBundlesPes
j

are (partially) ranked as follows: first, (j, . . . , j) is ranked



Optimistic agent Order

j 6= j1
case 1: Kj = 1 ([Predi1(j)]i1 , [j]−i1) � · · · � (j, . . . , j) � others in BottomBundlesOpt

j

case 2: Kj > 1
([Predi1(j)]i1 , [j]−i1) � ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj))

� · · · � (j, . . . , j) � others in BottomBundlesOpt
j

j = j1
case 1: Kj = 1 (j1, . . . , j1) � ([Li1(n)]i1 , [j1]−i1) � others

case 2: Kj > 1
([PredOj(Kj)(j1)]Oj(Kj), [j1]−Oj(Kj)) � ([Li1(n)]i1 , [j1]−i1)

� · · · � (j1, . . . , j1) � others in BottomBundlesOpt
j1

Table 3: Partial preferences for an optimistic agent j. BottomBundlesOpt
j is defined in (1). “Others in

BottomBundlesOpt
j ” refers to [BottomBundlesOpt

j \ {(j, . . . , j)}].

Pessimistic agent Order

j 6= j1 ([Predi1(j)]i1 , [j]−i1) � · · · � (j, . . . , j) � others in BottomBundlesPesj

j = j1
([Li1(n)]i1 , [j1]−i1) � · · · � (j1, . . . , j1) � others in BottomBundlesPesj1

� (Li1(n), . . . , Li1(n))

Table 4: Partial preferences for a pessimistic agent j. BottomBundlesPesj is defined in (2). For j 6= j1, “others in

BottomBundlesPesj ” refers to (BottomBundlesPesj1 \ {(j, . . . , j)}). For j = j1, “others in BottomBundlesPesj1
” refers to

(BottomBundlesPesj1 \ {(j1, . . . , j1), ([Li1(n)]i1 , [j1]−i1)}).

on the top; then, for any 1 ≤ l1 < l2 ≤ p and any
d1 ∈ D∗Oj(l1),t

∗
j,l1

and d2 ∈ D∗Oj(l2),t
∗
j,l2

with d1 6=
j and d2 6= j, we rank ([d1]Oj(l1), [j]−Oj(l1)) below

([d2]Oj(l2), [j]−Oj(l2)).

– If j 6= j1, then we simply let BottomBundlesPes
j (with

the partial orders specified above) be the bundles
ranked in the bottom position.

– If j = j1, then we move ([Predi1(j)]i1 , [j]−i1) =
([Li1(n)]i1 , [j1]−i1) to the bottom place and replace it
by (Predi1(j), . . . , P redi1(j)) = (Li1(n), . . . , Li1(n)),
and then let these be ranked in the bottom posi-
tions of agent j’s preferences. That is, the bottom
bundles are: (j1, . . . , j1) � (BottomBundlesPes

j \
{(j1, . . . , j1), ([Li1(n)]i1 , [j1]−i1)}) �
(Li1(n), . . . , Li1(n))

In both cases (j, . . . , j) is ranked at the (1 +∏p
l=Kj

(kj,Oj(l) − 1))-th position from the bottom.

Step 2: define top bundles. We now specify the top
two bundles (sometimes only the top bundle) for optimistic
agents, and show that they are compatible with our con-
structions in Step 1. For any optimistic agent j:

• When j 6= j1, there are following two cases:

– case 1: Kj = 1. We let ([Predi1(j)]i1 , [j]−i1) be the
top-ranked bundle of agent j.

– case 2: Kj > 1. We let ([Predi1(j)]i1 , [j]−i1)
be the top-ranked bundle of agent j. More-
over, if i1 6= Oj(Kj), then we rank
([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) at the second

position. We recall that PredOj(Kj)(j) is the pre-
decessor of j in LOj(Kj), the order for the agents to
choose items from DOj(Kj).

These do not conflict the preferences specified in Step 1
because item Predi1(j) in Di1 is not available for agent j
when she is about to choose an item in Di1 , and item
PredOj(Kj)(j) in DOj(Kj) is not available for agent j
when she is about to choose an item in DOj(Kj). Hence,

none of these bundles are in BottomBundlesOpt
j .

• When j = j1, there are following two cases:

– case 1: Kj = 1. Since (j1, i1) = O(1), for all i,
D∗i,O−1(j,i) = Di, which means that agent j is guar-

anteed to get her top-ranked bundle after the sequen-
tial allocation. In this case we let (j, . . . , j) be agent j’s
top-ranked bundle and let ([Li1(n)]i1 , [j]−i1) be ranked
in agent j’s second position. These do not conflict the
preferences specified in Step 1 because in this case Step
1 only specifies that (j, . . . , j) be ranked in the top po-
sition.

– case 2: Kj > 1. We rank
([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) at the top position.

We then rank ([Li1(n)]i1 , [j]−i1) at the second position.
Since i1 = Oj(1), we have Oj(Kj) 6= i1, otherwise
Kj = 1. Hence, ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) 6=
([Li1(n)]i1 , [j]−i1). These do not conflict the pref-
erences specified in Step 1 because category i1 is
agent j1’s first category in Oj1 , which means that

i1 < Kj , thus ([Li1(n)]i1 , [j]−i1) 6∈ BottomBundlesOpt
j1

;

also PredOj(Kj)(j) is not available when agent j1 is

about to choose an item for category Oj(Kj), which
means that ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) 6∈
BottomBundlesOpt

j1
.

For any pessimistic agent j, we simply let her top-
ranked bundle be ([Predi1(j)]i1 , [j]−i1) (we recall that



Predi1(j1) = Li1(n)). We claim that preferences specified
in the second step do not conflict preferences specified in
the first step for bottom bundles.

• If j 6= j1, then we need to show that
([Predi1(j)]i1 , [j]−i1) 6∈ BottomBundlesPes

j . When
agent j is about to choose her item from Di1 , agent
Predi1(j) has already chosen her item from Di1 , which
means that Predi1(j) is unavailable for agent j. This
means that ([Predi1(j)]i1 , j−i1) 6∈ BottomBundlesPes

j .

• If j = j1, then by definition (see Table 4)
([Li1(n)]i1 , [j1]−i1) is replaced by (Li1(n), . . . , Li1(n)) in
BottomBundlesPes

j1 , which means that it can be ranked in
the top.

Step 3: extend to full profile. For any j, let Rj be an
arbitrary linear order over D that satisfies all constraints
defined in the previous two steps (see Table 3 and 4). Let
P = (R1, . . . , Rn).

We now show by induction on the round in the sequential
allocation mechanism, denoted by t, that if we apply the
sequential allocation O to P , then for all j ≤ n, agent j gets
(j, . . . , j).

When t = 1, agent j1 chooses an item from Di1 . If j1 is
optimistic, then it is not hard to check that the i1-th compo-
nent of the top-ranked bundle of Rj1 is j1 (the top-ranked
bundles are (j, . . . , j) and ([j′]Oj(Kj), [j]−Oj(Kj)), for case

1 (Kj1 = 1) and case 2 (Kj1 > 1), respectively. If agent
j1 is pessimistic, then for any d ∈ Di1 with d 6= j1, there
exists a bundle whose i1th component is d and is ranked
below any bundle whose i1th component is j1. More pre-
cisely, if d 6= Predi1(j1) = Li1(n), then such a bundle is
([d]i1 , [j]−i1); if d = Predi1(j1) = Li1(n), then such an bun-
dle is (Li1(n), . . . , Li1(n)). In both cases a pessimistic agent
j1 will choose item j1 from Di1 .

Suppose in every round before round t, the active agent j
chose item j from the designated category. Let O(t) = (j, i).
If j is optimistic, then we show in the following four cases
that she will choose item j from Di in round t.

• j 6= j1, Kj = 1. In this case j is guaranteed to get her
top-ranked available bundle. It is not hard to check that
the available bundles are a subset of BottomBundlesOpt

j ,

where (j, . . . , j) is available and is ranked in the top.
Therefore agent j will choose item j.

• j 6= j1, Kj > 1. There are following cases:

1. Agent Predi1(j) has not chosen her item from Di1 . In
this case the top-ranked bundle ([Predi1(j)]i1 , [j]−i1)
is still available by the induction hypothesis.

2. Agent Predi1(j) has chosen an item from Di1 and
PredOj(Kj)(j) has not chosen her item from DOj(Kj).

By the induction hypothesis, agent Predi1(j) chose
item Predi1(j) from category Di1 , which means that
([Predi1(j)]i1 , [j]−i1) is unavailable. The bundle
([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) becomes the top-
ranked available bundle due to the induction hypothe-
sis, whose j-th component is j.

3. Predi1(j) has chosen item Predi1(j) from Di1 and
PredOj(Kj)(j) has chosen her item from DOj(Kj). In

this case, we first claim that O−1
j (i) ≥ Kj . For the

sake of contradiction suppose O−1
j (i) < Kj . Then, by

the definition of PredOj(Kj), no agent chooses an item

from DOj(Kj) between round O−1
j (i) and t∗j,Kj

. We re-

call that t∗j,Kj
is the round when agent j chooses an

item from DOj(Kj). However, this violates the min-
imality of Kj since no agent chooses an item from
DOj(Kj) between round t∗j,Kj−1 > O−1

j (i) and t∗j,Kj
.

Hence, we must have that O−1
j (i) ≥ Kj . By the induc-

tion hypothesis, the available bundles are a subset of
BottomBundlesOpt

j and (j, . . . , j) is still available and
is ranked at the top, which means that agent j will
choose item j from Di.

In all three cases above, the ith component of the top-
ranked available bundle is j, which means that agent j
will choose item j.

• j = j1, Kj = 1. By the induction hypothesis, the top-
ranked bundle (j, . . . , j) is still available, which means
that agent j will choose item j.

• j = j1, Kj > 1. If agent PredOj(Kj)(j) has not chosen
her item from DOj(Kj), then by the induction hypothesis

the top bundle ([PredOj(Kj)(j)]Oj(Kj), [j]−Oj(Kj)) is still

available and i 6= Oj(Kj). If agent PredOj(Kj)(j) has

chosen item PredOj(Kj)(j) from DOj(Kj), then by the
induction hypothesis the available bundles are a subset of
BottomBundlesOpt

j with (j, . . . , j) ranked at the top. In
both cases the ith component of the top-ranked available
bundle is j. Therefore agent j will choose item j.

If agent j is pessimistic, then by the induction hypothesis
the available items in Di are D∗i,t, and j ∈ D∗i,t. For any d ∈
D∗i,t with d 6= j, ([d]i, [j]−i) is still available and is ranked
lower than any available bundle whose i-th component is j
in BottomBundlesPes

j . Therefore, a pessimistic agent j will
choose item j in this round.

It follows that after the sequential allocation, for all j ≤ n,
agent j gets (j, . . . , j). It is not hard to verify that condition
1 and 2 hold.

To show that condition 3 holds, consider the allocation
where agent j gets ([Predi1(j)]i1 , [j]−i1). In this allocation,
all agents except j1 get their top-ranked bundle, and j1 gets
her top-ranked bundle (if j1 is pessimistic) or second-ranked
bundle (if j1 is optimistic). This proves the theorem. �

Proofs of Proposition 2, 3, 4

Proposition 2. Among all categorical sequential mecha-
nisms, serial dictatorships with all-optimistic agents have
the best (smallest) worst-case utilitarian rank and the worst
(largest) worst-case egalitarian rank.
Proof: The worst-case egalitarian rank of any serial dic-
tatorship is np when all agents have the same preferences.
To prove the optimality of worst-case utilitarian rank, given
fO, we consider the multiset composed of the numbers of
items in the designated category that the active agent can
choose in each step. That is, we consider the multiset RI =
{kj,l : ∀j ≤ n, l ≤ p}. Since in each step in the execution of
fO, only one item is allocated, RI is composed of p copies of
{1, . . . , n}. Since for each agent j, (1+

∑p
l=1(kj,Oj(l)−1)) ≤∏p

l=1 kj,Oj(l) (we note that in the right hand side, l starts

with 1 but not Kj), the best worst-case utilitarian rank is at
least n(np + 1)−

∑n
j=1

∏p
l=1 kj,Oj(l) ≥ n(np + 1)−

∑n
j=1 j

p.
It is not hard to verify that this lower bound is achieved by
any serial dictatorship with all-optimistic agents. �

Proposition 3. Any categorical sequential mechanisms
with all-optimistic agents has the worst (largest) worst-case
egalitarian rank, which is np.



Proof: By Theorem 2, the proposition is equivalent to the
existence of an agent j such that for all l ≥ Kj , kj,Oj(l) = 1.
For the sake of contradiction, let us assume the following
condition:

Condition (*): for every agent j, there exists l ≥ Kj

such that kj,Oj(l) > 1.

Let O(np) = (jn, ip). It follows that kjn,ip = 1 be-
cause there is only one item left. By condition (*), there
exists ip−1 with Kn ≤ O−1

jn
(ip−1) such that kjn,ip−1 > 1.

Let jn−1 denote the agent who is the last to chose an
item from category ip−1. We have jn−1 6= jn, because
agent n is not the last agent to choose an item from cat-
egory ip−1. By definition, we have kjn−1,ip−1 = 1. More-
over, (jn−1,Ojn−1(Kjn−1))BO (jn, ip−1)BO (jn,Ojn(Kjn)),
which simply states that jn−1 chooses an item from cate-
gory Ojn−1(Kjn−1) after jn chooses an item from category
ip−1 (the second half of the inequality is due to the way we
choose ip−1). This inequality holds because if agent jn−1

chooses an item from category Ojn−1(Kjn−1) before agent
jn chooses an item from category ip−1, then agent jn “in-
terrupts” agent jn−1 from choosing an item from category
ip−1, which contradicts the definition of Kjn−1 .

By condition (*), there exists ip−2 such that Kjn−1 ≤
O−1

jn−1
(ip−2) and kjn−1,ip−2 > 1. Similarly, we can define

jn−2, prove that jn−2 6= jn−1 and (jn−2,Ojn−2(Kjn−2))BO
(jn−1, ip−2)BO (jn−1,Ojn−1(Kjn−1)).

However, this process cannot continue forever,
since otherwise we will obtain an infinite sequence
in O: (jn,Ojn(Kjn)) CO (jn−1,Ojn−1(Kjn−1)) CO
(jn−2,Ojn−2(Kjn−2))CO · · · , but np is finite. This leads to
a contradiction. �

Proposition 4. For any even number p, the worst-
case egalitarian rank of any balanced CSAM with all-
pessimistic agents (see Example 2) is np − (n − 1)p/2.
These are the mechanisms with the best worst-case egali-
tarian rank among categorical sequential mechanisms with
all-pessimistic agents.
Proof: For any balanced CSAM, it is not hard to see that
for any agent j, Oj = 1 B · · · B p. For any l < p/2 and
any j ≤ n, we have kj,2l−1 + kj,2l = n + 1. Since all agents
are pessimistic, by part 2 of Theorem 2, their worst-case
ranks are all equal to np − (n − 1)p/2. The optimality of
balanced CSAMs come from the fact that for any categorical
sequential mechanisms

∑
j,l kj,l = (n + 1)np/2. Therefore,

there must exists an agent j∗ with
∑p

l=1 kj,l ≤ (n + 1)p/2.
�

Proposition 5. For any even number p with 2p > 1 +
(n − 1)p/2, there exists a categorical sequential mechanism
with both optimistic and pessimistic agents, whose worst-
case egalitarian rank is strictly better (smaller) than np −
(n− 1)p/2.
Proof: We prove the proposition by explicitly constructing
such a mechanism. The idea is, agents {1, . . . , n−1} choose
the items as in a balanced CSAM for n−1 agents, then we let
agent n “interrupt” them and choose all items in consecutive
p rounds right before their last iteration, i.e. the last (n−1)
round. Then, we let agents 1 through n − 1 be optimistic
and let agent n be pessimistic. For example, when n = 3
and p = 4, the order is (1, 1)B(2, 1)B(2, 2)B(1, 2)B(1, 3)B
(2, 3)B (3, 1)B (3, 2)B (3, 3)B (3, 4)B (2, 4)B (1, 4). Agent
1 and agent 2 are optimistic and agent 3 is pessimistic.

By part 2 of Theorem 2, for any agent j ≤ n−1, the worst-
case rank is np + 1 − (1 + np/2). By part 1 of Theorem 2,

the worst-case rank for agent n is np + 1− 2p. This proves
the proposition. �

Appendix B: Simulation Results
In this section, we use computer simulations to evaluate ex-
pected efficiency of categorical sequential mechanisms, when
agents’ preferences are generated i.i.d. from a well-known
statistical model called the Mallows model [20]. Similarly
to the worst-case analysis in the previous section, we eval-
uate two types of expected ranks: the expected utilitarian
rank and the expected egalitarian rank. We first recall the
definition of the Mallows model.

Definition 3 Let C denote a set of alternatives and let L(C)
denote the set of all linear orders over C. In a Mallows
model, each parameter consists of a ground truth linear or-
der W over C and a dispersion parameter 0 < ϕ ≤ 1. Given
(W,ϕ), the probability to generate a linear order V over C
is Pr(V |W,ϕ) = 1

Z
· ϕKendall(V,W ), where Kendall(V,W ) is

the Kendall-tau distance between V and W , defined to be
the number of different pairwise comparisons between alter-
natives. Z =

∑
V ∈L(C) ϕ

Kendall(V,W ) is the normalization

factor.

In the Mallows model, the dispersion parameter measures
the centrality of the generated linear orders. The smaller
ϕ is, the more centralized the randomly generated linear
orders are (around the ground truth linear order). When
ϕ = 1, the Mallows model degenerates to the uniform dis-
tribution for any ground truth linear order W .
Data generation. In our experiments, we fix p = 2, let
n range from 2 to 11, and let ϕ be 0.1, 0.5, and 1. For
each setting, we first randomly generate a linear order W
over D, and then use it as the ground truth linear order in
the Mallows model to generate n agents’ preferences. For
each setting we generate 2000 datasets and use them to
approximately compute the expected utilitarian rank and
the expected egalitarian rank, defined by replacing maxPn

by EPn in Definition 2.5 We evaluate serial dictatorships
and balanced CSAMs with two configurations of agents: all-
optimistic agents and all-pessimistic agents. All computa-
tions were done on a 1.8 GHz Intel Core i7 laptop with 4GB
memory.
Results. Our results are summarized in Figure 1, 2, and 3.
In each figure we also plot 95% confidence intervals. It can
be seen from the figures that in general, serial dictatorships
with all-optimistic agents have the best (smallest) expected
utilitarian rank, and balanced CSAMs with all-pessimistic
agents have the best (smallest) expected egalitarian rank.
All these comparisons are statistically significant at the 0.05
level, except for the case of expected egalitarian rank when
ϕ = 1 (namely, the uniform distribution), where the perfor-
mance of serial dictatorships with all-optimistic agents and
the performance of the balanced CSAMs with all-pessimistic
agents are too close to draw informative statistical conclu-
sions. These observations complement and are (inciden-
tally) consistent with the worst-case results obtained in the
previous section, which tell us that among the four types of
mechanisms, serial dictatorships with all-optimistic agents
have the best worst-case utilitarian rank, and the balanced

5The expected egalitarian rank should be distinguished
from the egalitarian expected rank, which first computes the
expected rank for every agent, then chooses the largest (ex-
pected) rank.
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Figure 1: The data are generated from the Mallows model with ϕ = 0.1.
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Figure 2: The data are generated from the Mallows model with ϕ = 0.5.
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Figure 3: The data are generated from the uniform distribution (the Mallows model with ϕ = 1).



CSAMs with all-pessimistic agents have the best worst-case
egalitarian rank.


