
ers
and
s.

-
ted
s
the
s
s of

ve
 in
ter-

-
 of

me.
n-

, but
m-

iler

o-
n’t

e,
m-

int
ge
ct
 or

any
ng
rac-
res
tur-
ca-

 is a

System-Level Hardware/Software Trade-offs
Samuel P. Harbison

Texas Instruments
300 Oxford Drive

Monroeville, PA 15146
+1 (412) 380-1547

s-harbison@ti.com
1. ABSTRACT
Operating systems and development tools can
impose overly general requirements that pre-
vent an embedded system from achieving its
hardware performance entitlement. It is time
for embedded processor designers to become
more involved with system software and tools.

1.1 Keywords
Digital signal processors, instruction set architecture, com-
piler, real-time operating system, software configuration.

2. INTRODUCTION
Embedded processors are typically evaluated on instruction
execution speed, I/O bandwidth, and power consumption.
The actual performance of an embedded system depends on
many other factors, including how well the instruction set
architecture (ISA) can be exploited by software.

Efficiency is particularly important in specialized real-time
computers such as digital signal processors, where all avail-
able performance is needed for new applications such as AC-
3 audio decoding or DSL data communications. Efficiency
directly impacts total system cost when, for example, ven-
dors compete on how many V.90 modems can be supported
by a single DSP. This level of efficiency is less important on
general-purpose processors such as PCs, where program-
mers are less exposed to the hardware.

There are several obstacles to realizing the available perfor-
mance. First, as system software is increasingly supplied by
independent vendors, hardware designers and software
designers rarely work together, and their technologies
develop independently rather than synergistically. Second,
there are many embedded processors and few common soft-
ware design frameworks, so system software vendors must
support many designs and processor families with general
solutions. Finally, product designers worry more about large
software building blocks; there is little mind-share and few
royalty dollars left for system software.

This paper looks at some ways in which hardware design
can improve system performance using system software
tools. This is not an exhaustive list, but may stimulate idea

3. INSTRUCTION SET ISSUES
With software being written mostly in high-level program
ming languages, instruction set design must be coordina
with optimizing compiler technology. New ISA technologie
may in fact be gated by compiler research. For example,
market acceptance of TI’s VLIW architecture in it
TMS320C6000 series of DSPs is due in part to the succes
software pipelining optimizations in TI’s compilers.

Compilers can also enable ISA features that would ha
been unacceptable when software was written entirely
assembly language. For example, computers with non-in
locked pipelines are extremely difficult to program in assem
bly language, because the programmer must keep track
the execution progress of many instructions at the same ti
TI addressed this issue by providing a “linear assembly la
guage” that presents the same instructions as the C6000
hides pipeline parallelism from the programmer. The asse
bler optimizes linear code for the actual ISA.

Specialized instructions on DSPs also present comp
issues. There are several cases:

• Instructions used only in a few algorithms should be is
lated in specialized assembly code libraries. They do
affect software tools.

• Optimized instructions, such as multiply-accumulat
should be generated by an enhanced compiler from co
mon programming idioms such as array indexing.

• ISA features such as circular addressing or fixed-po
arithmetic may be best accommodated with langua
extensions. Alternatively, the compiler can provide dire
access to the instructions through assembly inserts
intrinsic functions.

4. OPERATING SYSTEM ISSUES
With so many embedded processor families and so m
ways of designing real-time software, a real-time operati
system (RTOS) must mediate between two sets of abst
tions. On the hardware side, it must match the architectu
of embedded processors from several different manufac
ers. On the software side, it must support real-time appli
tions with wildly differing requirements and software
architectures. The result is often a generalized RTOS that
poor fit to either side.

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00
_

he
or-
how
to

 get
g-
lt,

nce
ly,
ose,
d
d
w.)
vid-
32
od

on
ata
es
re

too
ig-
p-

al-
 to

e
till
te-
th

ped
. I
ob
e.

/

/

4.1 Software Configuration
Most general-purpose operating systems are designed to
support dynamic work loads, but embedded processors tra-
ditionally run a fixed application. Placing one-time RTOS
initialization code on the processor uses memory and cycles
without purpose. What is needed is a “resource editor”—a
tool that supports the static configuration of software
objects when the application is built. These tools are com-
monly available in PC software development to support
fixed graphical objects.

For DSPs, TI’s DSP/BIOS(tm) software is designed to be
statically configured as part of the application development
process. A configuration editor is used to define and config-
ure the tasks, device drivers, and communication channels
needed. Pre-allocated data structures are linked with the tar-
get application, and a corresponding collection of debug and
analysis information remains on the host to help in debug-
ging or monitoring the application.

4.2 Addressing and Protection
Despite what was just said about fixed applications, design-
ers are planning more ambitious embedded computer prod-
ucts. Customers will be able to customize their video centers
and cellular phones by adding new software applications.
The success of this approach depends in part on making it
easy for independent software vendors to write such added-
value applications, while protecting the products’ basic
functionality from bugs in those applications.

The traditional hardware solution is to provide protected
virtual memory on the embedded processor, simplifying
programming and isolating applications from each other.
Microsoft WinCE(tm) and other general-purpose operating
systems being adapted for embedded use depend on such
hardware support.

The performance cost of additional logic for hardware-
assisted virtual memory is unacceptable in digital signal
processors. TI’s approach has been to combine a DSP with a
general-purpose processor on a single chip. The general pro-
cessor provides a protected environment for software appli-
cations and the larger OS. The DSP handles the hard real-
time tasks with higher performance and lower total power
consumption than the general processor could achieve
alone. Supporting such a system requires a careful hardware
system architecture, plus investments in tooling and system
software for I/O and communication. The hardware vendor
is in the best position to provide this support.

4.3 Devices and Drivers
Peripheral devices are another area in which hardware
opportunities and application requirements are negotiated
by an independent RTOS vendor. Hardware designers often
include advanced features in their peripheral devices to get
higher throughput. These features will be useless if the oper-
ating system’s device drivers will not take advantage of
them, either because the driver model is too simple or
because the device design is incompatible with higher-level
operating system abstractions (e.g., multiprocessing).

Designing the drivers and devices together, including t
application interfaces to the drivers, yields the best perf
mance. Properly designed drivers can also demonstrate
a device ought to be used—something normally relegated
application notes.

5. REAL-TIME ANALYSIS AND DEBUG
Hardware designers can also help application developers
their products to market more quickly. Integration, debu
ging, and analysis of real-time systems can be very difficu
especially in the final product stages.

The simplest hardware tool needed to support performa
analysis is an instruction or cycle counter. Unfortunate
many embedded processors supply only a general-purp
periodic timer, which is often too narrow (e.g., 16 bits) an
too difficult to share with other applications. (Stopping an
starting the timer can degrade applications with clock ske
Hardware designers could support measurements by pro
ing a simple, nonstop, read-only cycle counter at least
bits wide. Using this device, programmers can collect go
performance data with minimal overhead.

More extensive monitoring of real-time system depends
the ability of a development host to send and receive d
from the target system unobtrusively. Software techniqu
using low-priority tasks to transfer data over serial ports a
not useful in high-performance DSP systems; they are
intrusive at the data rates needed to monitor real-time s
nals. TI’s approach is to provide RTDX(tm), hardware-su
ported data transfers using the JTAG debug port.

Finally, hardware-assisted, stop-mode debugging of re
time systems is not useful when the target cannot fail
respond to interrupts controlling external actions. Real-tim
debug facilities are needed that can halt the DSP while s
allowing designated interrupts to be processed. TI is in
grating this capability into its DSPs and is supporting it wi
extensions to the debugging and analysis tools.

6. ACKNOWLEDGEMENTS
Many of the techniques in this paper have been develo
by my colleagues in TI’s Software Development Systems
especially want to thank Bob Frankel, Ed Kuzemchak, B
McGowan, Dave Russo, Lee Szewerenko, and Reid Tatg

7. REFERENCES
[1] DSP/BIOS General Overview. URL http://www.ti.com

sc/docs/dsps/tools/dspbios/index.htm.

[2] TMS320C600 product information. URL http://
www.ti.com/sc/docs/dsps/products/c6000/index.htm.

[3] RTDX. URL http://www.ti.com/sc/docs/dsps/tools/
c5000/c54x/rtdx.htm.

[4] “Emulation Fundamentals for TI’s DSP Solutions.”
URL http://www.ti.com/sc/docs/psheets/abstract/apps
spra439.htm.

