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Abstract 
The insider threat has assumed increasing 

importance as our dependence on critical cyber 
information infrastructure has increased.  In this paper 
we describe an approach for thwarting and attributing 
insider attacks.  The Sense, Prepare, Detect, and React 
(SPDR) approach utilizes both a highly intelligent 
software reasoning system to anticipate, recognize, 
respond to, and attribute attacks as well as a widely 
distributed set of hardware-based sensor-effectors to 
provide alerts used by the reasoning system and to 
implement responses as directed by it.  Using 
hardware sensor-effectors greatly reduces the risk that 
a savvy malicious insider can bypass or cripple the 
system’s monitoring and control capabilities.  In this 
paper we describe the prototype SPDR system and the 
results of its successful evaluation by an independent, 
DARPA-sponsored Red Team.  We conclude with 
thoughts on possible SPDR enhancements and further 
research.  
1. Introduction  

Unlike an outsider, the malicious insider begins 
with a launch point within the organization�s boundary, 
thus eliminating the effort and risk associated with 
defeating boundary protection mechanisms. Also, in 
many cases the insider can mount a successful attack 
using only his authorized access to the system. 
According to the Webster Report, most of Robert 
Hanssen�s exploits involved the use of authorized 
access for unauthorized purposes [1].  In the one attack 
where Mr. Hanssen used unauthorized access, hacking 
into his supervisor�s workstation, his job was made 
simpler because of his knowledge of the organization, 
its personnel and its network. He knew which 
workstation to target. He had a good idea of how it was 
configured, and he had personal knowledge of the 
authorized user. More recent reports [2] confirm that 
ready access to knowledge about the system and 
acquaintance with other authorized users is the third 
advantage an inside adversary has. 

A compensating difference between an outsider and 
a malicious insider is that the insider�s connection to 
the organization is generally known, through use of 
identification and authentication mechanisms. This 
makes it easier to associate insiders with their actions 

and hold them accountable. As a result, attribution is 
an important aspect of defense against malicious 
insiders. Even when the defenders cannot thwart an 
initial attack, post facto attribution provides the 
opportunity to prevent the malicious insider from 
conducting further attacks. The risk of attribution, even 
after the fact, can serve as a strong deterrent to 
insiders, who have more to lose, and who can be held 
more accountable, than typical outside adversaries. 

To counter the malicious insider, defenders need 
tools that detect patterns of suspicious behavior and 
then implement responses that will prevent or delay the 
suspicious behavior sufficiently to ensure successful 
completion of critical network operations.  Moreover, 
these responses must not themselves interfere with 
successful completion of critical operations.  

Defenders can also use tools that support the 
attribution of an attack to a specific individual. If it is 
not possible to unequivocally attribute the attack to a 
particular individual, then it can be quite useful to 
reduce the space of possible perpetrators so that 
investigators know whom to target.  

The goal of the DARPA-sponsored Sense, Prepare, 
Detect, and React (SPDR) project was to develop a 
system that enables individuals to accomplish their 
authorized tasks, but severely limits a malicious 
insider�s potential to do harm, both by thwarting 
attacks as they progress and by supporting the 
attribution of attacks to particular individuals within 
the organization.  

The SPDR system uses an approach for detecting, 
attributing, and thwarting attacks by malicious insiders 
which combines intelligent software for anticipating, 
recognizing, responding to, and attributing attacks with 
a powerful, hardware-based sensor-effector to monitor 
and control the traffic between hosts on the protected 
network.  In May of 2008, it performed well during a 
rigorous three day evaluation during which SPDR 
defended a mock aircraft carrier-based air mission 
planning system against an independent Red Team.  
The SPDR prototype successfully thwarted 75% of the 
attacks and correctly attributed over 80% of the 
significant attacks.  SPDR also generated relatively 
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few false responses (10% of test caes) or attributions 
(5%).  

SPDR appears to be different from previous 
published research on the insider threat.  There have 
been prior studies of organizational factors or personal 
psychological factors related to the insider threat [3], 
[4].  Other researchers have used anomaly analysis and 
detection techniques to support detection of insider 
attacks.  These have been either user/role based [5] or 
application based [6], coupled with refined access 
control policies.  Some authors have combined several 
of these techniques [7].  SPDR�s use of anomaly 
detection, enhanced by predictive reasoning to identify 
attacks, coupled with dynamic access controls 
implemented on a highly trustworthy hardware base, 
integrates and extends several of these approaches to 
the problem.. 

Before presenting an overview of the SPDR system 
and describing the results of the assessment, we 
describe the testbed used for the assessment.  We 
conclude with a discussion of approaches for 
addressing deficiencies of the current SPDR prototype. 

 
2. The SPDR Testbed  
  

The goal of the SPDR prototype was to defend a 
simple version of an aircraft carrier Air Operations 
Center (AOC) that plans air sorties, implemented using 
a Services Oriented Architecture (SOA).  The AOC is 
part of a larger network wholly within the carrier's 
internal network, and we assumed the insider was 
somewhere on the carrier.  As is typically the case, 
there are different classes of insiders, depending on 
their degree of system access.  

Figure 1 illustrates three types of insider. Some 
insiders have authorized access to the AOC, composed 
of the four workstations at the top of the figure.  Others 
only have authorized access to non-mission 
workstations outside the AOC but are authorized to 
chat with users in the AOC.  This provides a broader 
attack surface for the Red Team to exploit.  They can 
launch malware from the non-AOC workstation or use 
it as a bounce point for exfiltration.  Finally, some 
insiders only have physical access to the carrier 
network.  They can connect their own rogue 
workstations to the network, but they cannot 
authenticate to any DRED-protected host.  Local 
system administrators, who have access to all the hosts, 
were a fourth class of insider.  They can install 
malware on any host and then log out before the 
malware activated. 

The AOC hosts the Combat Direction Center 
application and the associated SOA services: 

 Intelligence Operations Service 
 Strike Operations Service 
 Air Operations Service 

 
We discuss the DREDs and the ISM in the next 

section.  The firewall router represents the boundary 
between the carrier and the of the world, and the 
Scorebot is a test artifact used to start, stop, and assist 
in scoring the Red Team tests. 
 

 
 

Figure 1.  The SPDR testbed is a prototype 
SOA-based air operations planning center on an 
aircraft carrier  
 

A typical mission planning loop might be the 
following.  U.S. Intelligence identifies a surface threat 
in the area of a carrier group's engagement and enters it 
into a national Global Information Grid (GIG) threat 
database to which the carrier's Intelligence Operations 
Service is subscribed. The threat might be hostile 
destroyers with medium-range surface-to-air missiles. 
Information obtained from the GIG threat database 
indicates detection and engagement ranges for the 
threats, images of the class of vessel, and possibly 
other information. 

The Intelligence Operations Service fuses this data 
with any information the carrier has obtained from 
monitoring surface tracks in its vicinity. If Intelligence 
Operations confirms it is a potential threat to the carrier 
group's presence, it sends the fused information to the 
Combat Direction Center.   

Acting on the threat message, the Combat Direction 
Center plans the mission and requests a mission flight 
plan from the Strike Operations service. This request 
includes data such as the threat and its location, the 
goal of the mission, a mission timeline, and details 
about the threats to the mission.  

The Strike Operations service queries Air 
Operations about available assets to support the 
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mission and in return receives a list of assets that have 
the proper capabilities and availability. Strike 
Operations then crafts a flight plan that satisfies the 
goals of the mission. For instance, the flight plan might 
involve sending F/A-18s to strike the destroyers. The 
flight plan may include other assets, such as Airborne 
Early Warning.  

Strike Operations then reserves the assets and sends 
the flight plan back to the Combat Direction Center. If 
the flight plan is acceptable, the Combat Direction 
Center then forwards it to Intelligence Operations in 
order to brief the crew that will fly the mission.  Once 
everything is ready, the Combat Direction Center gives 
the okay to start the mission. 

 
3. SPDR Overview  
 

As shown in Figure 2, the SPDR approach 
incorporates both off-line and on-line reasoning 
elements. Off-line, the SPDR Plan Generation Module 
uses automated planning techniques developed on the 
BAMS and SCOAP projects [8] to reason about the 
potential threats faced by the defended network based 
on models of potential attacker goals and capabilities. 
The result of this reasoning is an attack plan library, 
consisting of a complete (with respect to the network 
and adversary models and a pre-determined depth) set 
of possible attacker courses of action.   

 

 

Figure 2.  The SPDR system utilizes both off-
line and online reasoning as well as a Detection and 

Response Embedded Device (DRED) on every 
protected host. 

The online SPDR components include a set of 
centrally located intelligent components, known 
collectively as the Intelligent Security Manager (ISM), 
that detect and respond to ongoing attacks and that 

attribute those attacks to specific hosts and users, based 
on alerts from sensors distributed throughout the 
network.   

SPDR also strengthens critical elements of the 
system to prevent a knowledgeable adversary with 
insider access from disabling or bypassing defenses. In 
particular, critical detection and response capabilities 
of SPDR are placed off limits to the insider within a 
cost-effective tamper-resistant Detection and Response 
Embedded Device (DRED). This paper describes the 
DRED and the ISM.  For further information on the 
off-line SPDR components the reader is directed to [8]. 

 
3.1 The DRED 

 
Any viable solution to the insider threat problem 

must address the concern that a user might circumvent 
the system by modifying, disabling, or bypassing the 
sensing and response mechanisms. SPDR addresses 
this concern by placing critical sensing and response 
mechanisms in the DRED, a hardware sensor-effector 
platform that protects a single host, yet is not under the 
control of the host processor or the user currently 
logged into the host.  

The DRED only accepts configuration information 
over encrypted connections with a central policy 
manager and the SPDR Response Module on the ISM. 
Thus, the DRED is highly resistant to attacks. The 
associated host has no interface it can use to modify or 
disable the DRED.  Any other network device would 
have to acquire the appropriate keying material to 
masquerade as the ISM.   

Moreover, the DRED encrypts communications to 
the network, and only it possess the cryptographic keys 
required for network access to and from its host. Thus 
the DRED cannot be bypassed; all network access is 
consistent with the user-based network authorization 
policy enforced by the DRED, and the DRED can 
examine all traffic for malicious content and intent.  
However, SPDR would not prevent a malicious insider 
from connecting to some other network if it were 
physically possible to do so.  For example, the DRED 
would not prevent connection to a nearby wireless 
network.      

As its name implies, the intended form factor for 
the DRED is as an embedded device on the host 
computer. As powerful network processing hardware 
trends downwards in price, this is an increasingly 
attractive approach. However, for the SPDR prototype 
each DRED was implemented as an inline, bump-in-
the-wire single board computer running a specially 
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configured SELinux operating system.  There are other 
possible form factors for operational use, possibly as a 
separate virtual machine on the host, or in a switch 
protecting many hosts.  Each alternative has its 
strengths and drawbacks. 

 

Figure 3.  The DRED defenses operate at multiple 
layers of the network stack. 

 
Because each DRED has ample storage and a 

powerful CPU running a full-featured operating 
system, it can support more sophisticated prevention, 
detection and response capabilities than previous 
generations of COTS hardware-based, distributed 
firewalls [9].  Figure 3 illustrates the defenses on the 
prototype SPDR DRED. The DRED performs MAC 
address filtering and stateful, deep-packet inspection 
on both its internal interface to the host and its external 
interface to the network.  It also runs the Snort NIDS 
on its internal interface to detect attacks launched from 
a malicious insider on the host.  On the external 
interface the DRED provides IPsec encryption, thus 
ensuring that any rogue connection to the network is 
blinded.  This applies to rogue connections from 
authorized hosts as well as all connections from 
unauthorized hosts.    

Finally, the DRED proxies all SOA traffic 
associated with the testbed applications.  The vProxy 
detects and blocks malformed traffic and alerts the 

ISM of each message that is sent and the message�s 
content. vProxy is a highly modified version of the 
TinyProxy http proxy [10] that uses Xerces-C for real-
time XML validation.  Each vProxy loads XML 
Schema for all of the legitimate SOAP mission traffic 
that the given DRED should see to and from its host. 
Messages that fall outside these fairly strict bounds 
will never leave the DRED. Thus, vProxy policy and 
configuration is specific to the applications and 
services provided by the associated host.   

Coordinating policies for multiple defensives 
across many hosts is a non-trivial task [11]. To address 
this, DRED policies are generated automatically using 
Adventium's Conversations policy management tool, 
which separates the concerns of authorization and 
enforcement to guarantee policy consistency, both 
across defenses and between hosts, and to reduce the 
management burden by an order of magnitude. This 
makes it simple for SPDR to incorporate otherwise 
tedious protections such as static Address Resolution 
Protocol (ARP) tables into the deployed network. 

The operational model for the DRED is 
conceptually simple. Until a user logs in directly to the 
DRED using a standard smart card, there is no network 
connectivity.  This could be modified to provide 
limited connectivity to support necessary house-
keeping functions, such as back-up and patch 
management, as long as proper remote administrator 
authentication and auditing are enforced. Following 
user login the DRED activates a user specific policy 
configuration that includes cryptographic keys, 
network monitoring and authorization rules and 
sensors and the appropriate proxy configuration.  

The prototype DRED policies embody a strict 
concept of Least Privilege, authorizing only the 
network accesses required by the user�s role. The 
sensors report all detected observables to the ISM, 
where they are distributed to the appropriate ISM 
components, as shown in Figure 4.   The DRED also 
implements responses as instructed by the Response 
Module on the ISM. When the user logs out, the 
DRED policy returns to its default state.   

The Least Privilege network authorization policies 
play a key role on SPDR. The ISM reasons about 
suspicious observed events and the extent to which 
those events may indicate malicious intent by a user. 
What is considered malicious varies from user to user 
according to the role of the user.  Certainly 
unauthorized actions should be identified as suspicious, 
but it is also possible for a user to perform authorized 
actions with malicious intent.  By constraining users to 
engage only in authorized behaviors, the DRED 
effectively reduces the potential search space that the 
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ISM must explore for malicious intent. Without this 
restriction the ISM would have to consider plans 
containing both authorized and unauthorized 
behaviors, which would be a much larger search space. 

SPDR relies on DRED devices to protect all hosts 
in the system, including servers that do not have 
traditional users. In these cases, the DRED device's 
default policy specifies the authorizations that are 
appropriate for the server.  It is also necessary to 
decrypt DRED-encrypted IPsec traffic before it leaves 
the SPDR-protected enclave. 

 
3.2 The ISM 

The ISM contains the online intelligent components 
used to identify, respond to, and attribute attacks based 
on sensor information provided by the DREDs and any 
network or host-based sensors that might be 
incorporated in the future.  For the SPDR prototype the 
ISM only uses sensors on the DREDs.  As shown in 
Figure 4, the ISM includes: 

• A pair of application layer sensors, the Mission 
Monitor and the Provenance Monitor, 

• The Plan Recognition Module, 
• The Response Module, and 
• The Attribution Module.  

 
The Mission Monitor tracks the progress of the mission 
planning workflow. Events are supposed to follow in a 
particular (partial) order and stay within temporal 
bounds. The Mission Monitor detects when any task 
fails to register completion by its deadline (or is started 
out of order) and emits an alert indicating the sort of 
failure detected.  The SPDR Response Module may 
choose to take corrective action when the mission is 
failing to make progress, e.g. restart the mission from a 
point at which it was making progress. This could 
involve replacing the individual, host, or service 
responsible for the lack of progress.  For the mission 
planning application on our testbed, the workflow was 
linear with a limited ability for a user to modify the 
flow by aborting a planning loop.  There is nothing to 
preclude the Mission Monitor from enforcing more 
complex workflows with branches and loops.  
However, this would require tighter coordination with 
the Provenance Monitor to understand how a specific 
instance of the workflow should branch or loop.  

The Provenance Monitor is responsible for 
checking message integrity and for preserving message 
metadata used to help identify the cause of a mission 
failure and the user, host, or service responsible for the 
failure.  A mission can fail because information in the 
mission plan was compromised or corrupted or because 

of delay in planning the mission. The vProxy on the 
DRED inspects each mission planning message and 
sends the Provenance Monitor metadata about the 
message.  The Provenance Monitor performs an 
analysis of the message content to determine if any 
semantic invariants have been violated, and alerts the 
Plan Recognition Module of these integrity violations.  
The Provenance Monitor also stores the meta-data for 
use by the Attribution Module. 
 

 
Figure 4.  The ISM provides the intelligence to 

identify, respond to, and attribute attacks.  Light 
(red) lines indicate DRED sensor alerts. 

 
The Plan Recognition Module uses an efficient 

precompiled plan recognition engine that matches 
sequences of observations with plans in the library of 
possible attack plans generated by the offline planning 
engine [12].  The observations are selected alerts from 
the sensors deployed on each DRED and the Mission 
and Provenance Monitors. As new observations arrive 
the Plan Recognition Model updates its likelihood 
estimates for the possible attack plans underway. 

 The SPDR Response Module generates responses 
in a manner that balances the uncertainty of the true 
situation with the potential effects of the response.  The 
prototype Response Module implements a fairly simple 
set of responses.  It can direct the DREDs to ban a user 
from a specific host or from all hosts, or block network 
access from a specific host or from a specific service 
running on a host. In cases where the actual situation is 
suspicious but uncertain, it generates alerts that allow a 
system administrator or a duty officer to investigate the 
cause of suspicion, thus bringing a human into the 
response loop when appropriate.  It is easy to conceive 
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of richer response policies, such as isolating a host and 
restarting its services somewhere else whenever a host 
or service has been corrupted, so that the mission 
planning loop can continue.  

The Attribution Module, performs both online and 
post mortem attribution of attacks. It identifies the user 
or users most likely to be guilty parties, as well as to 
indicate potentially compromised hosts. This is done in 
a probabilistic fashion via a Bayesian belief network 
derived from the mission planning workflow [13]. The 
Attribution Module determines the steps in the 
planning workflow where the malicious insider might 
have acted.  DRED authentication records inform the 
Attribution Module which users were apparently 
present on which hosts before or during the mission 
planning loop.  Then observable attack effects, as 
evidenced by metadata from the Provenance Monitor 
and alerts from other SPDR components, are used to 
reason backwards to potential hostile causes and 
agents. For example, an attempt to transmit a 
maliciously crafted XML SOAP message from one 
service to another is detected by the vProxy and is 
attributed to the service and host that caused the 
inconsistency. Attempts to probe the network are 
detected by Snort on the DRED where the scans 
originate and are attributed to the related host. 
Inconsistencies introduced in the mission data is 
detected by provenance monitor, and attributed to the 
service and host that caused the inconsistency. 

The Attribution Module also includes consequences 
of an attack in its ex post facto reasoning.  If a planning 
loop fails to complete or completes with a corrupted 
result, or if post-mission analysis indicates the mission 
plan may have been compromised, the Attribution 
Module considers the nature of failure.  It does so by 
using non-monotonic reasoning to attribute failure to 
one or more parties that may have had the opportunity 
to compromise, delay or tamper with the mission in a 
way that is consistent with the failure mode.  

The output of the Attribution Module is a posterior 
probability distribution over the users (including 
�nobody�) and another distribution over the hosts 
(including an unknown �rogue� host). The Attribution 
Module identifies the user logged on at the time of 
detection as well as any user previously logged in as 
suspicious�these users may have left trojan horse or 
remote control software meant to deflect blame.  The 
granularity of attribution would be improved by 
including alerts from host-based sensors. 

 

4. Results of the Red Team Assessment  
 

The final test for SPDR was a rigorous three day 
assessment by the independent DARPA-sponsored Red 
Team.  The assessment followed a seven month period 
during which the SPDR Blue Team worked with the 
Red Team to familiarize them with the SPDR testbed, 
design and implementation.  The Blue Team provided 
the Red Team with the SPDR software and helped 
them with their analysis of the code.  Until three weeks 
prior to the assessment, the teams worked 
collaboratively, discussing different lines of attack and 
the anticipated SPDR responses to those attacks.  
These interchanges took place via teleconferences as 
well as face-to-face meetings.  They proved quite 
useful for improving the SPDR defenses.   

Most notably, one week before the SPDR code 
freeze date the Red Team sketched a set of MAC layer 
attacks that they intended to use.  During the next week 
the Blue Team managed to install a set of MAC layer 
defenses that thwarted all but one of the Red Team�s 
attacks, an ARP flood denial of service from a rogue 
workstation.  The natural way to thwart this attack 
would be to disconnect the rogue from the network at 
the switch port, but the testbed switch had not been 
defined as part of the SPDR system, so this response 
was off-limits during the assessment.   

The Red Team developed forty-nine test cases, 
counting variations.  Most of the test cases involved 
attacks against confidentiality, integrity, or availability.   
Some cases tested the extent to which SPDR would 
interfere with benign system activities.  Such 
interference could take the form of responses to 
perceived attacks that prevented completion of a 
correct mission planning loop.  It could also take the 
form of a false attribution of an attack when no attack 
was underway.   

To mount a successful confidentiality attack the 
Red Team had to transmit all or part of a mission plan 
through the router representing the boundary between 
the carrier network and the rest of the world.  For an 
integrity attack to succeed, the Red Team had to 
corrupt some part of the mission plan that was briefed.  
For both confidentiality and integrity attacks if SPDR 
detected the compromise or corruption prior to the 
command to briefing the flight plan, SPDR would 
cancel the mission, and the Red Team had failed to 
achieve its objective of compromising or corrupting a 
mission that was actually launched.  To succeed with 
an availability attack, the Red Team had to delay the 
mission planning loop long enough so that the mission 

Proceedings of the 42nd Hawaii International Conference on System Sciences - 2009

6



could not be briefed within a pre-determined time 
window set to ten minutes for the assessment. 

The teams spent the first day of the assessment 
white-boarding the test cases.  In some cases the teams 
agreed on the expected results of the test and chose to 
score it based on that agreement rather than actually 
run the test.  In other cases the teams determined that 
there would be value in running the tests and assessing 
the results.  During this white-boarding session the 
teams dropped eighteen of the test cases as duplicates, 
outside the negotiated Rules of Engagement, or 
irrelevant to assessing SPDR�s capabilities.  Twenty-
eight of the remaining cases were attacks; three were 
tests of whether or not SPDR would interfere with 
mission planning or accuse an insider when there was 
no attack.  

In the following two days the teams ran all but a 
very small number of the remaining cases.   They used 
a follow-up phone call to white-board the cases they 
did not have time to run.  The tests included DoS and 
integrity attacks using floods at several layers of the 
network stack, ARP poisoning attacks, and spoofed or 
replayed messages, responses, and heartbeats,.  Other 
attacks included attempts to delay, corrupt, or 
compromise a mission plan using malware or via direct 
human action.  The Red Team used general tools and  
specially crafted tools to inject malware remotely and 
to inject spoofed messages or packets or to capture and 
replay them.  The Red Team did not develop tools for 
exfiltrating information using covert or steganographic 
channels.  By direction of the customer�s Independent 
Evaluation Team, prevention of this sort of exfiltration 
was outside the scope of the project.   

SPDR failed to thwart seven attacks. However two 
of these attacks were thwarted after very simple bug 
fixes, one to the Mission Monitor and one to the 
ordering of IP filter rules.  The Red and Blue teams 
agreed that two more would have been thwarted if 
SPDR had included fairly obvious host-based sensors 
to detect the attacks.  Another attack would have been 
thwarted if the SPDR response set had been extended 
to include actions at the network switch.  Thus, these 
attacks identified limitations in the prototype 
implementation, not limitations to the SPDR approach.   

Only two attacks exposed inherent limitations in 
SPDR's ability to thwart attacks.  These were cases 
where the insider used legitimate accesses to either 
steal information or to corrupt information in 
semantically correct ways. In both these cases SPDR 
correctly attributed the attacks after the fact.  In fact, 
SPDR correctly attributed all but one of the successful 
attacks, and after a simple two line bug fix, SPDR 
correctly attributed them all. 

SPDR failed to attribute nine attacks. Five of these 
attacks were network and MAC layer DoS attacks that 
were thwarted trivially by the initial DRED defenses.  
No detection or response was required.  SPDR could 
have correctly attributed four of these attacks by 
including known ARP sensors and snort detection rules 
in the SPDR sensor set.  Attribution of the fifth would 
require sensing at the IPsec layer.  We are investigating 
the feasibility of such sensing.  After the same two line 
bug fix to the Mission Monitor identified above, SPDR 
attributed two more of these attacks, and another could 
be detected by including appropriate host-based 
sensors. 

In summary, it appears that after two bug fixes, the 
addition of further low level network sensors and a 
small number of host-based integrity sensors, SPDR 
could attribute almost 100% of attacks and could 
thwart all but a small, albeit significant, class of attacks 
involving the insider�s abuse of authorized access.  It is 
not surprising that SPDR cannot thwart these attacks.  
After all, if the system supports a strong notion of 
Least Privilege access control, then the insider is using 
precisely the accesses required to perform critical 
functions on the network.  However, it is very 
significant that SPDR can attribute this class of attacks 
after the fact because this means that eventually the 
malicious insider will be identified and apprehended 
and the organization can apply appropriate legal and 
policy-based penalties for the behavior. 

It is worth noting that SPDR did very well with 
regard to avoiding incorrect attribution of attacks and 
interfering with legitimate network activities.  There 
was only one case of incorrect attribution, and there 
were only three cases where SPDR interfered with 
legitimate activities.  We suspect these low false 
positive rates are an artifact of the testbed and/or the 
test cases identified by the Red Team.  It would be 
interesting to retest SPDR with a more complex 
network and a larger set of services. 
 
5. Future SPDR Directions 
 

A successful research project should identify new 
avenues of investigation, and the SPDR project has 
done this.  The assessment validated the power and 
flexibility of the DRED as both a policy enforcement 
device and a tamper resistant sensor-effector for traffic 
between a host and a network.   The Red Team did not 
identify any attacks that penetrated the DRED or 
bypassed its defenses, and the experience adding ARP 
defenses illustrates how easily new defensive 
mechanisms can be added to the DRED.   
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A logical next step would be to move toward the 
vision of an embedded device.  Since the beginning of 
the SPDR project, several attractive commercial 
options have appeared [14], [15]. It would also be 
possible to virtualize the DRED by running it in its 
own partition on a virtual machine monitor and forcing 
all network access through the DRED partition [16], 
[17].  A virtual DRED would have more visibility into 
the host it is controlling, thus providing a relatively 
tamper-resistant location for host-based sensors as well 
as some more intrusive effectors than could be located 
on a separate device.  On the other hand, there would 
be a greater risk that a savvy insider would be able to 
disable or bypass the virtual device. 

As noted in the previous section on the Red Team 
assessment, the extension of SPDR to include a 
broader set of sensors, particularly host-based sensors, 
would increase its effectiveness considerably, pushing 
SPDR�s attribution rate close to 100% and also 
increasing its ability to thwart attacks sooner.  We 
conjecture that the inclusion of a relatively small 
number of ARP alert and snort sensor rules and 
information readily available in host and applications 
logs would suffice.  The best way to test this conjecture 
would be to deploy SPDR on a larger network with a 
richer set of applications.  The Attribution Module and 
the Plan Recognition Module would have to be 
extended to include reasoning about the resulting larger 
set of sensor alerts.  This is not an immediate 
scalability concern since both of these modules 
performed very quickly during the assessment. 

Once the validity of the conjecture is established, 
the next step would be to explore methods for 
maximizing the trustworthiness of host-based sensor 
reports.  Certainly sensors implemented directly on 
operating systems under the control of the end-user 
would be highly suspect.  However, there are better 
approaches.  As noted earlier, virtualization would 
strengthen the defenses around the sensors.  It is also 
likely that for more realistic architectures where the 
SOA services are hosted on servers in protected server 
rooms and users interact with the servers via relatively 
thin clients, many of the host-based sensors could 
reside in the server room, thus offering greater 
protection from most malicious insiders.  This 
approach could work quite well for integrity attacks, 
but it will be inadequate for dealing with 
confidentiality attacks.  Those are likely to require new 
classes of sensors that can detect and attribute 
sophisticated attempts at exfiltration.  These sensors 
can be incorporated into SPDR when they are 
developed. 

Besides being somewhat sensor poor, the current 
SPDR system has a relatively limited set of responses.  
Just as the way to increase the breadth of sensing is to 
use sensors that are already available, a good way to 
increase the breadth of responses is to take advantage 
of existing response mechanisms.  As noted above, 
smart switches can provide reliable, effective responses 
to many classes of network DoS attacks.  Redundancy 
and high availability solutions are also useful.  Quite 
often an attack requires the corruption of integrity for 
the host or service under attack.  Once SPDR detects 
such corruption, the most effective response is to 
restart the service, either on the same host or on a 
different, uncorrupted host, and to rollback to the last 
known good messages.  The SPDR Provenance 
Monitor provides information for such a rollback.  It 
would be interesting to see what else might be 
necessary to accomplish these relocate and rollback 
responses. 

An underlying concern with scalability for the 
SPDR approach is the strong reliance of the ISM on a 
set of detailed network and adversary models for attack 
plan generation, and application models for use by the 
Attribution Module and the Mission and Provenance 
Monitors, and possibly for generation of specific 
instances of the vProxy.  For the prototype these 
models were built by hand, but for the SPDR approach 
to generalize, this modeling process must include a 
fairly high degree of automation.  On the SCOAP 
project we developed methods for automating the 
creation of network models, and we are investigating 
approaches for incorporating information from 
vulnerability and exploit databases into the adversary 
models.  

To address the application modeling problem, it 
may be fruitful to investigate approaches for using an 
existing workflow modeling language [18] and 
approaches to provenance monitoring [19] to create a 
model that could be used to derive an initial version of 
the four SPDR components and then display the 
derivations for human review and editing.  Then it 
would be useful to examine the feasibility of deriving 
the workflow model automatically from generally 
available development artifacts and to understand the 
limitations of scope associated with such derivations.  
We conjecture that it would be possible to extract such 
a workflow model from java source for a wide range of 
SOA application systems.  

 
6. Conclusion  

 
On the SPDR project we developed what we 

believe is a unique two-pronged approach to thwarting 
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and attributing attacks of malicious insiders.  The first 
prong is to place critical sensing and response 
mechanisms in the DRED, a hardware sensor-effector 
platform that protects a single host, yet is not under the 
control of the host processor or the user currently 
logged into the host.  The second prong is to apply 
powerful reasoning tools and application aware 
intelligent sensors to identify attacks based on inputs 
from the distributed sensors, to plan and implement 
responses, and to attribute the attacks to specific 
insiders.   

In an assessment by a skilled independent Red 
Team, SPDR proved its worth.  After fixing two small 
bugs, SPDR thwarted over 80% of the Red Team�s 
attacks, and it correctly attributed all the attacks it 
failed to thwart.  Ignoring several low level DoS 
attacks that SPDR easily preventted, SPDR attributed 
almost 90% of the attacks. Both percentages would 
have been higher if SPDR had used inputs from host-
based sensors to complement sensors on the DREDs.  
The related false positive rates for incorrectly 
thwarting a perceived attack and falsely attributing a 
perceived or actual attack were quite low. 

The only Red Team attacks SPDR could not have 
thwarted were attacks where the malicious insider used 
authorized access to either compromise sensitive 
information or to corrupt critical information in a 
semantically consistent manner.  It is not surprising 
that SPDR fails to thwart these attacks, since thwarting 
them would require SPDR to either read the attacker�s 
mind or to interfere with benign operations, thus 
preventing network users from doing their jobs.  SPDR 
did correctly attribute these attacks after the fact, thus 
making such attacks highly unattractive to most would-
be malicious insiders. 

During the assessment the DRED proved to be a 
very strong policy enforcement and sensor-effector 
device.  Many attacks simply bounced off the DRED 
with no impact whatsoever on the network.  This 
included low-level network DoS attacks as well as 
user-level attempts to circumvent the DRED policies.  
These all failed, and the Red Team was unable to 
corrupt or bypass the DRED.  It would be reasonable to 
begin efforts to deploy DREDs in limited operational 
environments.  This could be done in one of several 
form factors, ranging from bump-in-the wire single 
board computers as was done for the prototype, to 
embedded physical or virtual devices.   

SPDR is not a complete insider threat solution in 
itself.  It will work most effectively when it is part of 
the larger network defenses, relying on alerts from 
existing sensors to complement the DRED alerts, and 
on other security and survivability mechanisms to 

complement DRED-based responses to attacks.  
Moreover, research on the prototype indicated the need 
for tools to automate the processes used to build the 
models used by SPDR�s intelligent sensors and its 
reasoning components.  

 
Further research should be performed on the 

investigation of approaches for automating these 
model-building processes and for integrating SPDR 
with the larger set of defenses available on an 
operational network.  This should include the use of 
non-DRED sensors and effectors, and the exploitation 
of architectural features to provide a richer, more 
durable set of responses to attacks.  The best way to do 
this would be to apply SPDR to a larger, more complex 
network. 
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