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ABSTRACT

This paper presents a new approach to nonlinear loudspeaker
characterization using the Hilbert-Huang transform (HHT). Based
upon the empirical mode decomposition (EMD) and the Hilbert
transform, the HHT decomposes nonlinear signals into adaptive
bases which reveal nonlinear effects in greater and more reliable
detail than current approaches. Conventional signal decomposition
techniques such as Fourier and Wavelet techniques analyse non-
linear distortion using linear transform theory. This restricts the
nonlinear distortion to harmonic distortion. This work shows that
real nonlinear loudspeaker distortion is more complex. HHT of-
fers an alternate view through the cumulative effects of harmon-
ics and intra-wave amplitude-and-frequency modulation. The work
calls into question the interpretation of nonlinear distortion through
harmonics and points towards a link between physical sources of
nonlinearity and amplitude-and-frequency modulation. The work
furthermore questions the suitability of traditional signal analysis
approaches while giving weight to the use HHT analysis in future
work.

Index Terms— HHT, EMD, intra-wave frequency modulation,
loudspeaker nonlinearities.

1. INTRODUCTION

Nonlinear acoustic echo cancellation (NAEC) has attracted growing
attention over recent years [1, 2, 3, 4, 5, 6]. Miniature loudspeakers,
often used for mobile devices, are generally nonlinear systems asso-
ciated with several nonlinear effects including electronic, magnetic,
mechanical and sound. Approaches to NAEC depend fundamen-
tally upon a proper understanding and estimation of these nonlinear
effects. Data analysis plays an integral role in scientific research
and the understanding any system and/or signals.

Traditional Fourier-based data analysis methods such as the dis-
crete Fourier transform (DFT) and the short-time Fourier transform
(STFT) dominate the signal analysis field. These methods all as-
sume linear, (short-term) stationary signals. Wavelet analysis de-
signed to handle non-stationary data still assumes linearity. Accord-
ingly, Fourier and wavelet methods may not be the most suitable
approaches for the analysis of miniature loudspeakers.

Since they rely on a priori defined bases for data representation,
Fourier-based approaches are ill-suited to the analysis of nonlin-
ear signals; they assume the linear superposition of different signal
components. As a consequence, the energy of a nonlinear signal is
spread across a number of harmonics. Nonlinear distortion is then

represented as harmonic distortion, even if the link to a physical
source is questionable.

Huang et al. proposed a new approach to signal analysis re-
ferred to as the Hilbert-Huang Transform (HHT) [7]. Based on em-
pirical mode decomposition (EMD), the approach is well-suited to
the analysis of nonlinear, nonstationary signals. Unlike traditional
approaches, EMD adapts the bases to the signal itself and can there-
fore yield more physically relevant results. HHT analysis leads to a
new physical interpretation of nonlinear distortion. Huang et al. ar-
gue that a priori defined bases impose harmonics and that these are
nothing more than a mathematical artifact, with no link to a physi-
cal source [7, 8]. In place of harmonic distortion is the concept of
amplitude and frequency modulation. A brief description of HHT
analysis is presented in 2. More detailed presentations can be found
in [7, 8, 9].

Among other applications of HHT and/or EMD analysis is work
in speech enhancement [10, 11], source separation [12], oceanogra-
phy [13], vibration analysis [14], EEG/ECG enhancement [15, 16]
and climate analysis [17]. Our own work investigated an EMD-
based approach to NAEC [1]. This paper reports our first attempt
to apply HHT to the analysis of nonlinear distortion produced by
miniature loudspeakers. The work aims to provide an alternative
approach to signal analysis which goes beyond Fourier-based ap-
proaches while avoiding the limitations to harmonic distortion. The
work is our first steps to align the analysis of nonlinear distortion
to its physical origins. The paper reports the application of HHT to
the analysis of real mobile phone loudspeaker signals.

2. THE HILBERT-HUANG TRANSFORM

The Hilbert-Huang Transform (HHT) is a signal analysis approach
which is well-suited to nonlinear, nonstationary signals [7, 8]. The
application of HHT involves two steps. The first decomposes a
discrete time-domain signal y (n) into a set of M intrinsic mode
functions (IMFs), yj (n) ; j = 1, · · · ,M , using empirical mode
decomposition (EMD) such that:

y (n) =

M∑
j=1

yj (n) + r (n) (1)

where r (n) is the residue. The second step determines the instan-
taneous frequency (IF) and instantaneous amplitude (IA) of each
IMF yj using the Hilbert Transform. From these, one can construct
straightforwardly the time-frequency-energy distribution referred to
as the Hilbert spectrum [7, 8].
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2.1. The Hilbert transform

Reverting temporarily to continuous notation, for any arbitrary time
series, X(t), the Hilbert Transform (HT), Y (t), is obtained as fol-
lows [18]:

Y (t) =
1

π
P

+∞∫
−∞

X(τ)

t− τ
dτ (2)

where P denotes the Cauchy principal value. With this definition,
X(t) and Y (t) form a complex conjugate pair leading to an analyt-
ical signal:

Z(t) = X(t) + jY (t) = a(t)ejθ(t) (3)

in which

a(t) =
√

(X2(t) + Y 2(t))

θ(t) = arctan
Y (t)

X(t)
(4)

Here, a(t) is the instantaneous amplitude (IA) and θ(t) is the instan-
taneous phase. The instantaneous frequency (IF) can be computed
as:

ω(t) =
dθ(t)

dt
(5)

This classical wave theory-styled definition of IF is computed
through differentiation rather than integration. The IF is local,
not global, and reflects intra-wave frequency modulation [7]. Co-
hen [19] showed that the HT produces meaningful IF only for
monocomponent signals while the Bedrosian and Nuttall theo-
rems [20, 21] impose further constraints, e.g. non-overlapping spec-
tra of a(t) and cos(θ(t)).

These limitations are avoided through the use of IMFs which
satisfy the following two requirements [7, 8]:

• the number of extrema in an IMF (the sum of the maxima and
the minima) and the number of zero-crossings must either be
equal or differ at most by one, and

• at any point, the mean value of the envelop defined by the local
maxima and the envelop defined by the local minima shall be
zero.

Unfortunately, most practical data do not meet these require-
ments. As a result, the full potential of the HT had to wait for the
development of empirical mode decomposition (EMD).

2.2. Empirical Mode Decomposition

EMD is an approach to the analysis of non-linear, non-stationary
signals [7, 9]. EMD decomposes any signal into a finite number of
IMFs. IMFs are essentially basis functions, but are not predefined
as is the case in Fourier and wavelet analysis. Instead, they are
extracted adaptively from the input data.

The EMD algorithm examines the input signal between two
consecutive extrema and iteratively extracts the highest frequency
components between these two points [9]. The remaining local,
lower frequency components can then be extracted through consec-
utive iterations.

As described in [7, 10], a signal y (n) is decomposed into a set
of M IMFs according to the following procedure known as sifting:

1. Identify all extrema (local maxima and minima) of the sig-
nal, y (n).

2. Obtain the upper envelope emax (n) and the lower envelope
emin (n) by interpolating the local maxima and minima, re-
spectively.

3. Compute the local mean m (n) = emin(n)+emax(n)
2

.
4. Extract the detail signal d (n) = y (n)−m (n).
5. d (n) is an IMF if it has zero mean and all its local maxima

and minima are positive and negative respectively. If not,
steps 1–4 are repeated with d (n) in place of y (n).

6. For the next IMF, the entire process is applied to the residual
r1 (n) = y (n)− d (n).

7. Iterate on the residual until the number of extrema in the
residual is smaller than 2 or until a maximum number of it-
erations is reached. Assign the last residual as r (n).

The above sifting process decomposes any signal y(n) into a
set of successively lower frequency IMF components yj (n) ; j =
1, · · · ,M . Together they represent y(n) according to Eq. 1. A full
description of EMD is available in [7].

2.3. Hilbert-Huang Spectrum

The HT is readily applied to each IMF in order to determine the IA
(aj(n); j = 1, · · · ,M ) and IF (ωj(n); j = 1, · · · ,M ) according
to Eqs. 4 and 5 respectively. The analytic representation of the input
signal may then be expressed as:

y′(n) =

M∑
j=1

aj(n)e
i
∫
ωj(n)dn (6)

where, since it is constant, the residue r (n) is omitted. The original
input signal, y (n), is the real part of the analytic signal. The IAs
(aj(n); j = 1, · · · ,M ) and IFs (ωj(n); j = 1, · · · ,M ) then give
a time-frequency-amplitude representation of the signal, termed the
Hilbert-Huang Spectrum [7, 8]. A plot of the time-frequency distri-
bution of IA2 (square the amplitude) illustrates the energy density
in similar fashion to a conventional spectrogram.

2.4. Relation to Fourier techniques

Expressed as a sum of sinusoids, the input signal is given by:

y′(n) =

∞∑
j=1

aje
iωjn (7)

where aj and ωj are constant amplitude and frequency terms re-
spectively. Because the frequency of each sinusoidal function is
time-independent, Fourier analysis is able to construct stationary
data only. Also, since the sine waves used to describe a signal are
infinite in extent, Fourier analysis is considered a global analysis
tool. The accuracy thus depends critically on data length and sta-
tionarity, yet practical data is generally short in existence and of
arbitrary duration.

The comparison of Eqs. 6 and 7 show that the HHT is a gener-
alised Fourier expansion but with time-varying amplitude and fre-
quency which accommodate nonlinear, nonstationary data. The
Fourier representation implies constant energy at a given frequency,
i.e. a regular harmonic wave which persists unchanged throughout
the full data record. HHT analysis, in contrast, reflects the local
likelihood of energy at a given frequency.
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Figure 1: Experimental setup in an anechoic chamber to measure
loudspeaker outputs.

3. LOUDSPEAKER DISTORTION ANALYSIS

This section reports the application of HHT to the analysis of non-
linear loudspeaker distortion. This work was performed using real
mobile phone loudspeaker recordings. Before that, the physical
sources of nonlinear distortion in a typical loudspeaker enclosure
microphone system (LEMS) and recording set-up are described.

3.1. Sources of nonlinearity

It is widely accepted that the LEMS down-link path is the most sig-
nificant contributor to nonlinear distortion [4, 6, 22]. It encompasses
a digital-to-analog converter (DAC), an analog power amplifier and
the loudspeaker. Principle sources of nonlinear distortion include:

• high-resolution DACs: fabrication variabilities cause ampli-
tude, pulse shape and timing errors in the DAC output which
amount to nonlinear distortion;

• power amplifiers operating close to saturation in order to pro-
duce high output signal levels from low electrical power: the
result is nonlinear clipping distortion;

• the miniature loudspeaker itself is a major source of nonlinear-
ities.

As described in [23], the latter is highly complex with multiple
causes:

• When the loudspeaker is driven with a constant current, the
force on the voice coil Fv = Bl(xpo) varies and depends on
its position xpo. If the voice coil moves toward the air gap
then the magnetic flux density B increases. If it moves away
from the air gap, then B decreases. The non-uniform magnetic
flux density affects the driving force on the voice coil, hence
causing non-linear distortion. Since the length of the voice coil
l is constant, the non-linear function betweenB and Fv is static
and can hence be modeled as a power series expansion.

• The self-inductance of the voice coil Le also depends on its
position causing non-linear distortion.

• Loudspeakers use a suspension system, comprising a spider
and a surround to center the voice coil in the air gap. The sus-
pension behaves like a normal spring and may be characterized
by the force-displacement curve, which often exhibits hystere-
sis. This is due to the non-linear stiffness of the spider which
is not constant but a function of voice coil displacement (xpo).

3.2. Experimental set-up

The nonlinear response of a loudspeaker is observed from its output
to a single sinusoidal excitation signal. This approach was used to
characterize a real mobile phone loudspeaker placed before a head
and torso mannequin at a distance of 30cm in an anechoic cham-
ber. The experimental set-up used is illustrated in Fig. 1. The de-
vice is configured to operate in hands-free mode and at maximum
volume at which nonlinear distortion is greatest. Input signals sam-
pled at 48kHz are pure sinusoids with frequencies between 100Hz
and 3800Hz in 100Hz intervals. They are stored in mobile phone
memory and played back using a pre-installed VLC player. Loud-
speaker outputs are recorded with a high-quality (linear) micro-
phone mounted in the mannequin ear. Recorded signals are stored
on a PC at the same 48kHz sampling frequency.

3.3. HHT Analysis

As an example we consider a real mobile phone loudspeaker sub-
jected to a single sinusoidal excitation of frequency 1kHz. Fig. 3(a)
shows the results of STFT analysis. Several high-order harmonics
are visible, representing the traditional view of nonlinear distortion.

Fig. 3(b) illustrates the four (out of eight) IMFs which re-
sult from decomposition of the loudspeaker signal using EMD and
the routines available in [24]. Since EMD extracts the highest-
frequency IMF first, IMF-1 is the distorted harmonic caused by
loudspeaker nonlinearities. IMF-2 is the distorted natural frequency
at 1kHz whereas the other IMFs have negligible energy.

Fig. 3(c) illustrates the IA profiles of the four IMF components
which exhibit intra-wave amplitude modulation, namely variation
in amplitude across time. Fig. 3(d) illustrates the corresponding
IF profiles which exhibit intra-wave frequency modulation. This is
due to the displacement of the loudspeaker diaphragm which is no
longer a pure sinusoidal function on account of nonlinear distortion.
A relatively strong third-order harmonic is also generated as a result
of asymmetrical loudspeaker nonlinearities.

The wave-profile deformation caused by the nonlinear distor-
tion is the result of accumulated harmonic content and intra-wave
amplitude-and-frequency modulation. This cumulative effect is ob-
served in the time domain response of the loudspeaker shown in
Fig. 2. The waveform deformation is not constant, but varies from
high to low and vice versa in accordance with the IA profile in
Fig. 3(c). The extent of the deformation depends on the magni-
tude of the additional harmonics and the strength of the intra-wave
amplitude-and-frequency modulation. Close observation of IA and
IF profiles in Figs. 3(c) & (d) respectively shows that the frequency
variation of the IMF components increases when their amplitude
decreases and vice versa. This is indicative of softening nonlinear-
ity [25].

The effects described above are not reflected in the traditional
STFT spectrogram which instead shows spurious harmonics. HHT-
derived estimates may thus reflect more reliably nonlinear behav-
ior than STFT-derived estimates. The real question, however,
is whether the frequency and amplitude modulation illustrated in
Fig. 3 have a real, physical source or whether they are simply an
artifact of the HHT.

Despite perfect reconstruction, HHT still suffers from so-called
end effect artifact’s [7]. The cubic spline fitting to local extrema in
the EMD process is error prone, especially due to discontinuities
at signal extremities. As a result, Gibbs phenomenon is induced
upon the application of the HT to each IMF [7, 8]. This effect is
observed in Figs. 3 and 4. Some solutions to avoid these artifacts
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Figure 2: A real mobile phone loudspeaker response to 1kHz pure
sine tone. The wave-profile deformation caused by the nonlinear
distortion is not constant throughout the time.
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Figure 3: (a) STFT spectrogram of a mobile phone loudspeaker
response to a pure sinusoidal input at 1kHz, sampled at 48kHz;
(b) Loudspeaker response to 1kHz sine tone is decomposed by the
EMD, resulting in the 8 IMFs, first 4 IMFs are listed above and oth-
ers are not displayed since they are almost zero; (c) IA profiles of
the IMFs obtained by HHT; (d) IF profiles of the IMFs obtained by
HHT

are proposed in the literature, e.g. [26], but are beyond the scope of
the present paper.

4. VALIDATION OF HHT

The HHT is thoroughly validated in [7] with analytical examples.
This section aims to validate the HHT technique as a means of
characterizing nonlinear loudspeaker behavior. Figs. 4(a) and 4(b)
illustrate the spectrogram and IF profiles of a mobile phone loud-
speaker response to a pure sinusoidal input at 500Hz. The IF pro-
files show cumulative harmonic and modulation nonlinear distor-
tion. There is only a weak third-order harmonic and significant
intra-wave amplitude-and-frequency modulation, whereas the spec-
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Figure 4: Time-frequency-energy distributions: (a) STFT spectro-
gram of a mobile phone loudspeaker response to a pure sinusoidal
input at 500Hz, sampled at 48kHz; (b) the IF profiles obtained by
HHT; (c) IF profiles for a high-quality loudspeaker response to the
same input; (d) the IF profiles of the same loudspeaker subject to an
input excitation comprised of pure sinusoidal at 500Hz and its third
harmonic.

trogram shows a strong third order harmonic and several, weak har-
monics. Fig. 4(c) shows the corresponding IF profiles when the
mobile phone loudspeaker is replaced with a high-quality (linear)
loudspeaker and shows a total absence of amplitude-and-frequency
modulation. Fig. 4(d) shows the IF profiles of the (high-quality)
loudspeaker output when a simulated, 3rd order harmonic distor-
tion is added to the input. Once again, there is no amplitude and
frequency modulation indicating that the distortion observed in (b)
has physical origins and is not simply an artifact of HHT processing.

5. CONCLUSIONS

This paper investigates the application of the Hilbert-Huang Trans-
form (HHT) to the characterization of nonlinear loudspeakers. This
approach gives an alternative view of loudspeaker nonlinear behav-
ior. The waveform deformation caused by the nonlinear distortion is
the result of a cumulative effect, namely that of harmonics and intra-
wave amplitude-and-frequency modulation, instead of the pure har-
monic interpretation which results from Fourier treatments.

The application of this technique to analyse loudspeaker non-
linearities provides an alternative view which supports the explo-
ration of different nonlinear phenomena: quadratic, cubic or higher-
order, softening and hardening effects, intra-wave amplitude-and-
frequency modulation and distorted harmonic responses etc. How-
ever, this work is in its infancy and hence the associated proper-
ties of the HHT technique and their impact on the analysis requires
further exploration. Also, the discontinuity-induced Gibbs phe-
nomenon at data extremities needs further study in order to fully
understand the new approach. This is the subject of ongoing work.
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