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ABSTRACT
Many damage detection methods that are applied to com-

posite structures rely on nonlinear features in the dynamic
response of the structure to identify the presence of defects.
Presently, there is not a complete understanding of the physi-
cal mechanisms that cause the nonlinear behavior of a damaged
composite structure. Correlating specific types of damage mech-
anisms to the resulting nonlinear response characteristics they
cause would allow the detection methods to classify the type of
damage that is present in the structure. In this work, a drop tower
was used to impact an aluminum honeycomb sandwich panel in
order to induce core-crushing. The response of the damaged
panel to sinusoidal excitations of various amplitudes at resonant,
super-, and sub-harmonic frequencies was then measured. The
amplitudes of these measured responses and the corresponding
restoring force curves were then compared to a predictive model
to identify the type of theoretical nonlinearity (i.e. quadratic
or cubic stiffness, quadratic or cubic damping, etc.) that was
present. The predictive model is based on a nonlinear, single
degree-of-freedom system. Nonlinear features in the response
of the system were identified for different types of stiffness and
damping nonlinearities. The experimentally measured response
was analyzed to see which of these features were present. Based
on this analysis, the response of the panel of damage due to core-
crushing indicated a quadratic spring-type stiffness.

∗Address all correspondence to this author.

INTRODUCTION

Composite materials are being used more frequently in en-
gineering applications due to their high strength-to-weight ra-
tios, corrosion resistance, and other favorable material proper-
ties. Unlike standard metals, composite materials can experience
complex damage mechanisms, including facesheet disbonds, de-
lamination between bonded layers, and core-crushing, which are
difficult to detect using traditional damage detection methods.
Much research has been conducted to develop methods which
identify the presence of damage in composite materials, and
many of these methods are based on nonlinear techniques [1–3].
These methods are typically based on the assumption that non-
damaged (healthy) materials exhibit nearly linear response char-
acteristics while the response of damaged materials contain non-
linear features that can be quantified to indicate the presence of
damage. In many cases, these methods are successful even when
the physics of the damage mechanism are not well understood.
Furthermore, although these methods can detect the presence of
damage, most are unable to identify the type of damage that is
present without a prioi knowledge. A better understanding of the
correlation between the type of damage present in a composite
material and the nonlinear features present in its response spec-
trum could allow damage detection methods to not only identify
the presence of damage, but also to classify its type.

Previously [4, 5], a method was presented for studying the
nonlinear effects of different damage mechanisms using a single
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degree-of-freedom model. In that work, the equation of motion
for a single degree-of-freedom system with second- and third-
order stiffness and damping nonlinearities was solved for the
system response due to an excitation at the natural frequency
and sub-resonant frequencies. Trends in the force-deflection
curve were noted for each type of nonlinearity and at each fre-
quency of excitation. Corresponding experimental data was ac-
quired from an aluminum honeycomb panel with disbond dam-
age. The response characteristics in the experimental data were
compared to the results from the analytical model to determine
which type of theoretical nonlinearity (i.e. quadratic or cubic
stiffness, quadratic or cubic damping, etc.) best described the
disbond damage. In this work, a similar approach will be taken to
identify the nonlinear behavior in a honeycomb sandwich panel
with core-crushing damage. In the following sections, the ana-
lytical analysis presented in [5] will be summarized. Then, the
setup and procedure for acquiring experiential data from alu-
minum honeycomb composite panels with core-crushing dam-
age will be described. Finally, a comparison between the results
from the analytical model and the experimental results will be
made in order to identify the type of theoretical nonlinearity that
best describes the core-crush damage.

Analytical Model and Nonlinear Analysis
In [5], an approach similar to that used in [6] was applied

to the single degree-of-freedom system with second- and third-
order nonlinearities described by

ü+2µ u̇+ω2
ou+ f (u, u̇) = Fcos(Ωt)
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, for cubic damping

κ u̇2
, for pure quadratic damping

κ u̇|u̇|, for rectified quadratic damping
(1)

whereu is the displacement of the system,µ is the linear damp-
ing coefficient,ωo is the natural frequency of the system, and
κ is a coefficient of nonlinearity. Using the method of multiple
time scales or the method of averaging [7], the response,u in
Equation 1 was determined for each case of nonlinearity for two
different frequencies of excitation. For the cases of quadratic
nonlinearities, the response at excitation frequencies ofΩ = ωo

and 1
2ωo were estimated. For cubic nonlinearities, the response

at excitation frequencies ofΩ = ωo and 1
3ωo were estimated.

For each excitation frequency, the solution was obtained for a
range of forcing amplitudes (F) so that force-deflection curves

FIGURE 1: Experimental setup.

could be plotted. For quadratic nonlinearities, trends in the force-
deflection curve were determined using the response atωo and
the response at 2ωo. For cubic nonlinearities, trends in the force-
deflection curve were determined using the response atωo and
the response at 3ωo. Table 1 summarizes these trends.

Experimental Setup and Procedure
Composite aluminum panels (22.5 x 29.5 x 1 cm) each com-

prised of an aluminum honeycomb core sandwiched between two
aluminum facesheets were used for the experimental analysis.
The experimental setup and fixture was devised in order to ex-
ploit the single degree-of-freedom analysis described above. The
setup is shown in Figure 1. A vacuum chuck was chosen to se-
cure the bottom facesheet of the panel for two reasons. First,
the vacuum chuck eliminated the need for any external clamping
which could introduce unwanted nonlinearity into the system.
Second, by securing the bottom facesheet, the sandwich panel
can be thought of as a single degree-of-freedom system in which
the top face sheet acts as the mass and the honeycomb core acts as
the stiffness and damping mechanisms. This assumption that the
panel will behave as a single degree-of-freedom system allows
the results from the single degree-of-freedom analytical model
to be relevant.

Core-crush damage was imposed on the panels using im-
pacts from an Instron Dynatup drop tower with 5 cm tup in-
stalled. Three levels of damage were introduced by making im-
pacts three different energy levels: 2, 4, and 8 J. The energy
calculations were done internally as a part of the drop tower soft-
ware. Figure 2 shows the anticipated levels of core-crush on a
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TABLE 1: Summary of nonlinear trends observed in the analytical data.

Excitation with amplitudeF atωo Excitation with amplitudeF at 1
2ωo or 1

3ωo

Nonlinearity Type
Response atωo with

respect toF
Response at 2ωo or
3ωo with respect to

F

Response atωo with
respect toF

Response at 2ωo or
3ωo with respect to

F

Quadratic Stiffness 1-to-1 Quadratic Quadratic Quartic

Quadratic Damping 1-to-1 To the 1.2 power Quadratic Zero

Cubic Stiffness 1-to-1 on backbone
curve

Undetermined Cubic on the
backbone curve

Undetermined

Cubic Damping To the 0.8 power Undetermined To the 2.75 power Undetermined

(a) 2 J (b) 4 J (c) 8 J

FIGURE 2: Core-crushing damage created by impacts with the
indicated energy level.

surrogate panel. Visible damage was apparent on the facesheet
that was impacted, especially for the 8 J impact. When mounting
the damaged panels into the experimental fixture, the facesheet
that was impacted was placed face down.

To measure the force and response of each panel, a
PCB 288D01 impedance head, which measures both force and
acceleration, was mounted to the center of the panel. A TMS
Mini-SmartShaker with nylon stinger and a standard function
generator was used to excite the panel. A National Instruments
9234 four-channel data acquisition card was used with MATLAB
software to acquire the sensor time histories, and data analysis
was performed using MATLAB.

Impact and sine-sweep tests were conducted to identify the
primary natural frequency,ωo, to be used for each panel. The
response of each panel to a harmonic excitation atωo, 1

2ωo,
and 1

3ωo was then measured. Excitation at these three frequen-
cies were repeated at multiple force amplitudes. Finally, slow,
narrow-band sine sweeps in the vicinity of each excitation fre-
quency were conducted in order to identify potential backbone
trends. The frequencies and force levels used for each panel are
shown in Table 2. For each amplitude and frequency of input

TABLE 2

Damage Excitation Force

Frequency (Hz) Range (N)

2 J

ωo 693.4 1.1-20.3

1
2ωo 346.7 0.1-4.4

1
3ωo 231.1 0.1-5.2

4 J

ωo 589.6 1.0-19.3

1
2ωo 294.8 0.1-7.3

1
3ωo 196.5 0.1-5.7

8 J

ωo 587.8 1.2-18.3

1
2ωo 293.9 0.1-4.7

1
3ωo 195.9 0.1-5.7

excitation, response amplitudes were recorded at the forcing fre-
quency (ωo, 1

2ωo, or 1
3ωo), at 2ωo, and at 3ωo. When exciting at

1
2ωo and1

3ωo, the amplitude of response atωo was also recorded.
These amplitudes were then plotted as a function of forcing am-
plitude.

Results
For each force level and frequency listed in Table 2, the

response spectrum of the acceleration response was calculated.
Figure 3 shows the spectrum for the 8 J damage case panel when
forced at 587.8 Hz. In addition to the response at the excita-
tion frequency, clear peaks at twice- and three-times the excita-
tion frequency are evident. As described in the previous section,
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FIGURE 3: Response spectrum of the aluminum panel (8 J dam-
age case) to an excitation force of 10 N at 587.8 Hz.

the amplitudes of response at each frequency of interest were
recorded for each test. Results from the slow sine sweeps per-
formed in the vicinity each excitation frequency of interest did
not show any backbone trends, which would have been one in-
dicator of cubic nonlinearities. Therefore, those results are not
included here.

Figure 4 shows the force-response curves and the normal-
ized response-force curves for each damage case for responses
measured at the frequency of excitation. The force-response
curves show that there is a linear relationship between the am-
plitude of the applied force and the amplitude of response. As
expected, as the damage level increases, the stiffness, indicated
by the slope of the line, decreases. The expected one-to-one re-
lationship between the amplitude of the force and the amplitude
of response is shown in the normalized response-force curves.

Figure 5 shows that relationship between the forcing atωo

and the amplitude of response at 2ωo and 3ωo. The nearly
quadratic trend present for the response at 2ωo suggests the pres-
ence of a quadratic stiffness nonlinearity, according to Table 1.
The trend in the response at 3ωo is less conclusive. A cubic trend
would have been expected if a cubic stiffness-type nonlinearity
was present, but this trend is not evident. The data is more closely
approximated by a quadratic curve, indicated by the black line in
the plot.

To further explore the possibility of the presence of a
quadratic nonlinearity, trends in the response amplitudes atωo

and 2ωo to a force at12ωo were considered. Figure 6 shows the
corresponding plots. The response amplitudes atωo appear to
grow quadratically with the forcing amplitude, further supporting
the presence of a quadratic stiffness-type nonlinearity. (See Ta-
ble 1.) In theory, the response at 2ωo should grow quartically in
the presence of a quadratic stiffness. Figure 6 b indicates that the
response at 2ωo is growing at a lesser rate, especially as damage
increases. This decrease in growth rate may indicate an increas-

ing effect of damping as the amplitude of response increases.
Finally, the response amplitudes atωo and 3ωo to a force

at 1
3ωo were considered. Up to this point in the analysis, no

trends have been observed that support the presence of a cubic
nonlinearity based on the indicators listed in Table 1. Figure 7 a
provides further evidence that the data does not follow the theo-
retical trend for a cubic stiffness or damping nonlinearity.

Discussion
Based on the above analysis, there is strong evidence to sup-

port the presence of a quadratic stiffness-type nonlinearity in the
damaged panels. The practical use of this conclusion would be
that a lumped-parameter model of the composite panel should
include quadratic spring stiffnesses. Physically, this conclusion
implies that the panel has amplitude-dependent stiffness proper-
ties. In a healthy panel, it is expected that the stiffness of the
honeycomb core is nearly linear. However, when the core has
been crushed, some or all of the cell walls of the core have been
buckled. This buckling effect means that the ability of the core
to resist motion is dependent on the amplitude of excitation, pro-
ducing the nonlinear effects discussed above.

The nature of the cubic nonlinearity is more difficult to as-
sess. Based on the single degree-of-freedom metrics presented
in Table 1, there is no indication that a cubic nonlinearity is
present. However, a distinct response was observed in the pan-
els at three-times the excitation frequency, which is indicative
of a cubic nonlinearity. There are several possible explanations
for this contradiction. First, the single degree-of-freedom model
may not be capable of capturing the dynamics that are causing
the cubic response in the panel. Although the experimental setup
was devised to approximate a single degree-of-freedom system,
the panel is a continuous system capable of multi-dimensional
motions. Second, it is likely that when two types of (theoretical)
nonlinearities are present in a system, complex interactions be-
tween the response caused by each individual nonlinearity take
place. In other words, the superposition of the effects of two dif-
ferent nonlinearities may not accurately predict the total effect
that both nonlinearities have on the system response. One pos-
sible means for exploring this idea is to extend the results pre-
sented in Table 1 to include the trends observed in the presence
of combinations of different types of nonlinearities.

Conclusions
Previously, a nonlinear single degree-of-freedom model was

developed and used to correlate nonlinear features in the re-
sponse of the system with the type of nonlinearity present. In this
work, damaged composite panels were tested in order to identify
the types of theoretical nonlinearities present, as predicted by
the single degree-of-freedom model. Three composite aluminum
honeycomb sandwich panels with varying levels of core-crushing
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(d) Normalized magnitude of response atωo versus
normalized magnitude of force atωo.
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3ωo versus
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FIGURE 4: Force-response curves (a-c) and normalized response-force curves (d-f) for responses measured at the frequency of excitation
for the 2 J (×), 4 J (×), and 8 J (×) damage cases.
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(a) Normalized magnitude of response at 2ωo versus
normalized magnitude of force atωo.
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(b) Normalized magnitude of response at 3ωo versus
normalized magnitude of force atωo.

FIGURE 5: Normalized response-force curves for forcing atωo for the 2 J (×), 4 J (×), and 8 J (×) damage cases. () indicates a
quadratic curve.
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normalized magnitude of force at1
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FIGURE 6: Normalized response-force curves for forcing at1
2ωo for the 2 J (×), 4 J (×), and 8 J (×) damage cases. In (a), () indicates

a quadratic curve. In (b), ( ) indicates a quartic curve.
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(a) Normalized magnitude of response atωo versus
normalized magnitude of force at1

3ωo.
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(b) Normalized magnitude of response at 3ωo versus
normalized magnitude of force at1

3ωo.

FIGURE 7: Normalized response-force curves for forcing at1
3ωo for the 2 J (×), 4 J (×), and 8 J (×) damage cases. In (a), () indicates

a 2.75 power law curve.

damage were tested in a fixture designed to approximate a single
degree-of-freedom system. The relationship between the ampli-
tude of response of the panel and the amplitude of the applied
force was considered at multiples of the excitation frequencies.
A nearly quadratic relationship was observed between the re-
sponse amplitudes at twice the excitation frequency and the am-
plitude of the force when exciting at the natural frequency and
at half of the the natural frequency of the system. Although the
response spectra included a strong response at three-times the ex-
citation frequencies, the trends in the response-force curves did
not match those predicted by the single degree-of-freedommodel
for cubic nonlinearities. The most likely explanation for this con-
tradiction is that the effects of the presence of two types of non-
linearities are not described by superimposing the effects of each
individual nonlinearity. Future work will extend the analysis of
the single degree-of-freedom model to include trends observed

in the presence of multiple nonlinearities.

REFERENCES
[1] Van Den Abeele, K.-A., Carmeliet, J., Ten Cate, J. A.,

and Johnson, P. A., 2000. “Nonlinear elastic wave spec-
troscopy (news) techniques to discern material damage, part
ii: Single-mode nonlinear resonance acoustic spectroscopy”.
Journal of Research in Nondestructive Evaluation,12(1),
pp. 31–42.

[2] Farrar, C. R., Worden, K., Todd, M. D., Park, G., Nichols,
J., Adams, D. E., Bement, M. T., and Farinholt, K., 2007.
Nonlinear system identification for damage detection. Tech.
rep., Los Alamos National Laboratory (LANL), Los Alamos,
NM.

[3] Polimeno, U., Meo, M., Almond, D., and Angioni, S.,

6 Copyright © 2014 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



2010. “Detecting low velocity impact damage in composite
plate using nonlinear acoustic/ultrasound methods”.Applied
Composite Materials,17(5), pp. 481–488.

[4] Dittman, E., and Adams, D., 2013. “Detection and quan-
tification of a disbonded aluminum honeycomb panel using
nonlinear superhamonic frequencies”. In Proceedings of the
9th International Workshop on Structural Health Monitoring
at Stanford, 2013.

[5] Dittman, E., 2013. “Identification and quantification of non-
linear behavior in a disbonded aluminum honeycomb panel
using single degree-of-freedom models”. PhD thesis, Purdue
University.

[6] Andreaus, U., Casini, P., and Vestroni, F., 2007. “Non-linear
dynamics of a cracked cantilever beam under harmonic ex-
citation”. International Journal of Non-Linear Mechanics,
42(3), pp. 566 – 575.

[7] Nayfeh, A., and Mook, D., 1995.Nonlinear Oscillations.
Wiley-VCH.

7 Copyright © 2014 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




