
Kripke Semantics for

Dependent Type Theory

and Realizability Interpretations ∗

EXTENDED ABSTRACT
by

James Lipton
Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104

Abstract

Constructive reasoning has played an increasingly important role in the development of provably
correct software. Both typed and type-free frameworks stemming from ideas of Heyting, Kleene,
and Curry have been developed for extracting computations from constructive specifications. These
include Realizability, and Theories based on the Curry-Howard isomorphism. Realizability – in its
various typed and type-free formulations – brings out the algorithmic content of theories and proofs
and supplies models of the “recursive universe”. Formal systems based on the propositions-as-types
paradigm, such as Martin-Löf’s dependent type theories, incorporate term extraction into the logic
itself.

Another, major tradition in constructive semantics originated in the model theory developed by
Gödel, Herbrand and Tarski, resulting in the interpretations developed by Kripke and Beth, and
in subsequent categorical generalizations. They provide a complete semantics for constructive logic.
These models are a powerful tool for building counterexamples and establishing independence and
conservativity results, but they are often less constructive and less computationally oriented.

It is highly desirable to combine the power of these approaches to constructive semantics, and to
elucidate some connections between them. We define modified Kripke and Beth models for syntactic
Realizability and Dependent Type theory, in particular for the one-universe Intensional Martin-Löf
Theory MLi

0 . These models provide a new framework for reasoning about computational evidence
and the process of term-extraction. They are defined over a constructive type-free metatheory based
on the Feferman-Beeson theories of abstract applicative structure.

Our models have a feature which is shared by all published constructive completeness theorems
for intuitionistic logic, known in the literature as “fallibility”: there may be worlds in which some
sentences are both false and true, a phenomenon which corresponds to the presence of empty types in
various type disciplines. We also identify a natural lattice of truth values associated with type theory
and realizability: the degrees of inhabitation.

1 Introduction

Kripke models were developed in 1963 by Saul Kripke. Similar interpretations were implicit in earlier,
topological models of Tarski from the 1940’s and in Beth’s work in the 1950’s. They were subsequently
generalized by a number of researchers who strengthened some of the algebraic and topological features
of the semantics. These models have proven to be a powerful tool for studying the metamathematics of

∗from Constructivity in Computer Science, LNCS 613

1

intuitionistic formal systems. Much of this power lies precisely in the fact that they bring to bear on
the study of formal systems an exceptionally powerful and versatile arsenal of algebraic, topological and
categorical tools, yielding new consistency, conservativity and independence results. Perhaps the greatest
strength of the semantics as developed in Saul Kripke’s original paper, is that it supplies the means for
effective systematic construction of counterexamples forced by specific requirements, in the spirit of Cohen’s
independence results for set theory. Often a simple diagram suffices to give intuitionistic counterexamples.
These models have also been used in computer science to provide interpretations of computations in terms
of state transitions, or properties invariant under certain transformations ([27, 16, 28])

Our objective here is to develop a similar tool for type-theory, and other formal systems for carrying
out term extraction from constructive reasoning ([5]), extending the line of research initiated by Mitchell
and Moggi for simply typed λ-Calculus in [23], and for realizability-style interpretations ([3, 30, 13]). The
models developed in this paper present a number of characteristics of interest: they require the use of
covers, or delayed satisfaction of disjunctive and existential formulas, as well as the inhabitation of void
in the semantics: we allow inconsistent, or “fallible” nodes. This has proven to be a critical component
in all known intuitionistically valid completeness theorems (see [17, 18]). As with the realizability-Kripke
models to be discussed below, and in the Effective Topos (see Hyland’s [12]), the truth-value structure
imposed by type theory is that of the degrees of inhabitation of definable sets 1. That is to say, the Heyting
Algebra formed by taking, for all definable (almost-negative) sets in HA or some applicative theory like
APP , equivalence classes of their existential closures under provable equivalence, constitutes a natural
domain of truth values of type theory, in a sense that will be made precise below. 2

A Thumbnail Sketch of Kripke and Realizability semantics

The kind of Kripke model K we will be concerned with here is, in fact, a variant of the standard one in
the literature. Strictly speaking, it is a fallible Beth model , because

• (fallibility) nodes are allowed to be inconsistent, i.e. some p may force every φ, provided not every
node does so. We require p ∥− ⊥→ p ∥−φ, a node forcing an inconsistency must force everything.

• We relax the definition of forcing of disjunction and existential quantification. Our variant, an
instance of forcing with covers over a site (see Troelstra and van Dalen’s [30], or Grayson’s [10]), can
be thought of as an analogue of Beth’s forcing with bars. 3

Definition 1.1 A fallible Kripke/Beth structure B = ⟨B,≤B ,D, ∥−B , Cov⟩ over a language L (con-
taining e.g., relation symbols, Ri, and constant symbols ci 4) as follows:
⟨B,≤B⟩ is a pre-order. Members of B are called nodes. D assigns a domain of individuals to nodes in
a monotone way: p ≤ q → D(p) ⊆ D(q). ∥− is a monotone binary relation between nodes and atomic

1or, in some cases, just the almost-negative ones
2Our work is, in some respects, a syntactic analogue of Hyland’s Effective Topos. But the syntactic nature of the

realizability makes a cruicial difference here, as can be seen from the main arguments. Our model is not a Topos, but rather,
a locally cartesian category, with first order semantics. Our “object of truth values” is the set of formulas in one free variable
in APP , or, in one case a subquotient we have called the inhabitation degrees.

3As a first approximation, we can think of forcing with covers as relaxing the condition that a node p of a Kripke model
force a series of formulas by allowing instead that some set of nodes associated with p do the forcing. Such an associated set
could be interpreted as a set of future states after state p: in which case we are tolerating some delay in the confirmation
that p really does force something. See the references cited for other, more topological insights into this idea.

4since APP can be formulated relationally by taking App as a ternary predicate, this is all we need. Adding function
symbols to the formalism is easy: the n-ary function symbol f̄ is interpreted by the function f at node p if for every q above
p f : D(q) → D(q)n and the graph of f restricted to D(p) is contained in the graph of f at all higher nodes.

2

sentences over L:
p ≤ q & p ∥−R(a) ⇒ q ∥−R(a).

satisfying the covering property (if every member of a cover of p forces a sentence, then so does p):

Cov(p,S) & (∀q ∈ S)(q ∥−φ) ⇒ p ∥−φ

where: Cov is a binary relation between nodes p and sets of nodes S ⊆ B, satisfying a series of cover
axioms. Rather than give a general formulation of cover axioms here, we will limit ourselves to giving the
one required for our argument, at the beginning of section 2 below. 5

The forcing relation is extended to all sentences φ over the language L as follows:

1. p ∥−φ & ψ iff p ∥−φ and p ∥−ψ

2. p ∥−φ ∨ ψ iff (∃S)Cov(p,S) and (∀q ∈ S)q ∥−φ or q ∥−ψ

3. p ∥−φ→ ψ iff (∀ ≥ p)q ∥−φ⇒ q ∥−ψ

4. p ∥−∃xφ(x) iff (∃S)Cov(p,S) and (∀q ∈ S)(∃a ∈ D(q))q ∥−φ(a)

5. p ∥−∀xφ(x) iff (∀q ≥ p)(∀a ∈ D(q))q ∥−φ(a).

We give a formulation of realizability due originally to Feferman, which has been extensively used in
the literature, and modified by e.g. Troelstra, Van Dalen, Diller, Beeson and others (see [30]). It is defined
over an abstract applicative theory, APP, of partial application using the logic of existence or partial terms.
We refer the reader to [3] or [30] for details.

Abstract realizability and interpreting theories into APP In the presentation below, we may take
the approach described in detail in [18] to incorporate other theories into our formal system: interpret an
arbitrary first order theory S into APP by adding a universe or domain predicate U whose extension is
the target of the interpretation. Then we leave “up to the reader” how to define the atomic realizability
|A|(x) of formulas A from the object language L(S) by terms x from the realizing metalanguage APP .
We will only require that the atomic realizability be faithfully copied by the atomic forcing assignments.
The essential point is that we wish to consider almost any syntactic realizability over any theory. The role
of APP is only to supply abstract realizers. We will not explicitly develop this approach here, however,
since the notation is cumbersome and the details not especially enlightening.

Definition 1.2 Let A,B be sentences over the language of APP (APPC). Then we define inductively
the realizability formulas |A| in one free variable as follows:

If A is prime |A|(x) is A & x ↓

|A &B|(x) ≡ (A×B)(x)
def≡ A(π0x) &B(π1x) (1)

|A ∨B|(x) ≡ (A+B)(x)
def≡ N(π0x) & (π0x = 0 → |A|(π1x)) & (π0x ̸= 0 → |B|(π1x)) (2)

|A→ B|(x) ≡ (A⇒ B)(x)
def≡ ∀y[A(y) → xy ↓ & |B|(xy)] (3)

|∃yA(y)|(x) ≡ (
∑

xA)(z)
def≡ |A(π0z)|(π1z) (4)

|∀yA(y)|(x) ≡ (
∏

xA)(z)
def≡ ∀y[(zy) ↓ &A(y, zy)] (5)

5See Grayson’s [10] for a quite general formulation, or Troelstra and van Dalen, op.cit. for the original definition of forcing
over a site, due to Joyal, and based on earlier ideas of Grothendieck.

3

|A|(x) is usually written x r∼A. Note that if A is a formula in n variables over APP (or APPC) then
the above clauses defined an associated realizability formula in n+ 1 variables. Note that if A is prime, A
is logically equivalent to |A|(x) for any variable x.

2 A Kripke Model for abstract realizability

Let C = {ci|i ∈ ω} be a denumerable set of fresh constants. APPC is the theory APP, together with the
constants in C, the axioms c ↓ for each c ∈ C and all schemas extended to the new language in the way
specified in e.g. [3]. Let L be the language of APPC, and ∆ the set of all formal closed (variable-free)
terms of L.

We are now in a position to define the Kripke model Kwe want. The nodes of K are formulas of
APPC in one free variable, with ordering given by

A ≥ B iff (∃t ∈ ∆) APPC ⊢ ∀x[A(x) → tx ↓ &B(tx)]

(We will sometimes denote this state of affairs by A
t
≥ B, or t : A → B). The domain of the Kripke

Model is the constant domain ∆. Our notion of covers (see section 1) will be as follows: For any node A
and set of nodes S we have Cov(A,S) iff

1. ∀B ∈ S(∃t ∈ ∆) (t : B → A)

2. if whenever, for some object D ∀B ∈ S∃tB ∈ ∆ tB : B → D then (∃t ∈ ∆) t : A→ D,

i.e., A = inf(S) in ⟨| K |,≤⟩.
Finally, our atomic forcing assignment is given by:

A ∥−θ iff (∃t ∈ ∆)t : A→ |θ| (6)

for atomic 6 θ. In particular for θ ∈ L(APP) this means true ground θ are forced by every node, and
false ground θ only by provably uninhabited ones. Our main result is that the equivalence (6) holds for
all formulas, not just the atomic ones.

Theorem 2.1 For every node A and sentence φ

A ∥−φ iff (∃t ∈ ∆)t : A→ |φ|

(proof: omitted in this abstract)

Now, we immediately have the desired result, to wit, that the model just constructed is elementarily
equivalent to abstract realizability over APP.

Corollary 2.2 Let φ be a sentence in the language of APP, KAPP the Kripke model described above.
Then

KAPP |= φ iff APP ⊢ ∃x(x r∼ φ)

(where x r∼ φ is the traditional notation for |φ|(x)).

6As remarked above, this atomic assignment can be replaced with little modification of the main arguments, by any
formal interpreted realizability |(θ)∗|(t), where |(θ)∗| is the interpretation of a formula θ from any object language L′ into
the applicative metalanguage APP .

4

On the “Degrees of Inhabitation”

In the preceding section, we constructed a Kripke model elementarily equivalent to abstract realizability
over APP . In fact, via the modifications outlined in the remarks preceding definition (1.2) we have
defined a uniform class of Kripke models for a quite general notion of realizability, in which the coding of
the object theory and its atomic realizability are free to vary.

In particular, the model constructed above satisfies Church’s thesis and the strong computational
properties found in realizability semantics. But what is the structure of such models, and what light do
they shed on the truth-value structure implicit in realizability? In this section we will briefly address
this issue. To begin with, we note that the models have unusual properties. They are closed under finite
suprema and infima: The cartesian product is the supremum, and + the infimum, in fact they are weakly
cartesian closed (we omit the proof in this abstract).

Also, in these models, every set of nodes has an upper bound, since we have “fallible” or inconsistent
nodes at the top. Such fallible nodes were first discussed in the papers of Läuchli [16], Veldman [31]
and de Swart [29], and seem to play a fundamental role in Kripke models associated with realizability,
as well as in the intuitionistic completeness theorem of Friedman, Veldman, de Swart and Troelstra (see
the discussion in [30]). This suggests that one should think of Kripke models of the type studied here as
being developed in an intuitionistic metatheory, where consistency of nodes is not necessarily decidable.
Our proofs are fully constructive and can be seen as a kind of syntactic counterpart to a constructive
completeness theorem for Kripke semantics (this is brought out in more detail in [18]). These models are
perhaps best conceived as internal Kripke models, that is to say, as models developed within a Topos or
Kripke model. Another way of looking at the existence of inconsistent nodes is in terms of tableaux proofs
in the style of Nerode, Fitting or Odifreddi (see e.g., [24, 25, 8]) in which we are not always constructively
able to recognize when branches are infinite and consistent or finite and closed off.

One may regard the lattice-theoretic structure of these models as a syntactic analogue of reducibility
orderings in recursion theory. Nodes ordered by

A ≥ B ⇐⇒ ∃t APP ⊢ ∀x(A(x) → tx ↓ &B(tx))

constitute a structure we might call syntactic degrees of inhabitation, not unlike provable M-degrees (which
are a stronger ordering: functions must preserve complements). A slight modification of our Kripke
structures gives us a sharper picture, however. We will need a few definitions to make this precise.

Definition 2.3 A formula over a language L extending HA or APP is called negative if it contains no
disjunctions or existential quantifiers, and almost negative if it contains no disjunctions and existential
quantifiers are present only next to atomic subformulas.

Negative and almost negative formulas play a role in realizability interpretations similar to that of absolute
formulas in set theory: they are equivalent to their own realizability in a uniform way.

Definition 2.4 A formula A is called self-realizing if there is a term JA of APP such that, provably in
APP ,

(i) A(x) → JA(x) r∼A

(ii) (q r∼A) → A.

The following properties of negative and almost-negative formulas are well-known. See Beeson op.cit. and
[30] for proofs.

5

Lemma 2.5 Every negative formula is self-realizing. If A is almost negative then A is equivalent to some
negative formula B, provably in APP . Furthermore, every realizability formula |A|(x), or x r∼A is almost
negative.

Theorem 2.6 If B is negative and C is any formula in two free variables, then

APP ⊢ ∀x(B(x) → ∃zC(x, z))

implies that for some closed term f

APP ⊢ ∀x(B(x) → fx ↓ & C(x, fx)).

Inspection of the proofs of theorem 3.6, above, and, e.g., theorems 2.5 and 3.9 in [17] shows that the
Kripke modelK , K APP , (KHA in [17]) , are elementarily equivalent to their almost-negative reducts
K an, K an

AP P , K an
HA given by restricting the corresponding partial orders ⟨K,≤⟩ to

{A : A ≃ an almost-negative formula }.

What is the significance of cutting the models down to the a-n reducts? Theorem 2.6 provides the key.
For almost negative formulas, the partial order in K can be easily characterized: A ≥ B is equivalent to
the existence of a proof

APP ⊢ (∃xA(x)) → (∃yB(y)).

In short, our model is simply the Lindenbaum algebra of existential closures of almost negative formulas
with the order reversed, a structure we have dubbed the provable degrees of inhabitation. In fact, the
result is not entirely surprising. Realizability semantics means inhabiting statements with computational
evidence. Therefore a natural algebraic interpretation of realizability is obtained by taking as truth-
values the different degrees of consistency of provable inhabitation. To be realized is to be forced by the
provably inhabited formulas. Other models are obtained by relativizing to any degree that is consistent
and independent over HA or APP. This also points the way towards the sort of converse studied in
Läuchli’s [16] and the author’s [18]. If we are to construe arbitrary Kripke models as abstract realizability
interpretations we must arrange to imbed the Heyting algebra of truth-values generated by the Kripke
model into an algebra of degrees of inhabitation.

3 Interpreting Dependent Types

We now develop Kripke models for type theory in the same vein. We will take as our basic theory the
formulation MLi

0 of “one-universe” Martin-Löf type theory presented in [30]. A similar presentation can
be found in Beeson op.cit.. In order to harness the framework developed above to model type theories,
we need to add one twist to the definitions just given. Using a syntax close to that of conventional first-
order logic, we will be interpreting dependent type expressions of the form, e.g.,

∏
x : D · A(x). At first

sight, this might seem like a natural “correlate” to the first-order predicate (∀x ∈ D)(A(x)). However, in
the type-free first-order language of arithmetic (or of APP) the latter formula is usually understood to
be an abbreviation for (∀x)(D(x) → A(x)). This clearly violates the spirit of the Martin-Löf theory, in
identifying type membership x : D, with what –for want of a better word – we call parametricity , D(x). In
our type-free semantics we will remedy this by using realizability to distinguish between the two notions:
x : D will become |(D)r|(x) where the bars denote realizability, and the r- superscript denotes a translation
to be defined below. However, in the syntax we will require an extension of the definition of well-formed
formula to include formalized bounded quantification in order to model dependent Π and Σ types. We call
such new formulas special or extended formulas in this section.

6

Definition 3.1 If D is a formula and θ(x) is a formula with x free, then (∀x∈D)θ(x) and (∃x∈D)θ(x) are
formulas, with free variables FV (θ)∪FV (D) \ {x} . If D is a formula then τD is an atomic formula with
one more variable free than D. τD(a) is simply a formalization of a : D into our “extended first-order
syntax.” We also write a : D for τD(a).7

All schemas of first-order logic and the axioms of APP are to be extended to the new formulae. Their
meaning and role in our work should be made clear by the way they are treated in the semantics.

Definition 3.2 An extended Kripke model for APPC is a Kripke model which satisfies the usual
definition of covers and forcing for standard formulas of APPC , as well as the following conditions for
each node p:

p ∥−(∃x∈D)θ(x)
def≡ (∃S)(Cov(p,S))(∀q ∈ S)(∃a ∈ D(q))p ∥−a : D & θ(a)

p ∥−(∀x∈D)θ(x)
def≡ (∀q ≥ p)(∀a ∈ D(q)) q ∥−a : D → θ(a)

We must also define forcing of proofs as well as formulas. For a a constant in D(p),

p ∥−a : D (or p ∥−τD(a))

is defined as follows:

p ∥−a : C ∨D def≡ (∃S)(Cov(p,S))(∀q ∈ S)
(q ∥−p0a = 0 and q ∥−p1a : C) or (q ∥−p0a ̸= 0 and q ∥−p1a : D)

p ∥−a : (∃x∈D)θ(x)
def≡ p ∥−p0a : D and p ∥−p1a : θ(p0a)

p ∥−a : (∀x∈D)θ(x)
def≡ (∀q ≥ p)(∀a ∈ D(q))(q ∥−u : D ⇒ q ∥−au : θ(u))

For atomic D, the p ∥−a : D must also be specified by the atomic forcing assignment for the model
in question. Every occurrence of an application au above is strict : it is understood that au ↓. Also,
every occurrence of the disjunctive flag condition p0a = 0 or p0a ̸= 0 is preceded by a tacit N(p0a):
the condition is decidable for natural numbers. We now need only modify our definition of realizability
slightly, to take the new special formulas defined in (3.1) into account.

Now we define (extended) realizability for special formulas as follows:

Definition 3.3

|a : D|(x) def≡ |D|(a)

|∃y∈DA(y)| def≡ |D|(p0z) & |A(p0z)|(p1z)

|∀y∈DA(y)| def≡ ∀y[|D|(y) → zy ↓ & |A(y)|(zy)].

We now make use of a well-known result in the semantics of Martin-Löf type theory: there is a natural
translation of the theory into APP via abstract realizability, stemming from Martin-Löf’s own informal
semantics, and developed (in roughly similar ways) in the work of Troelstra and van Dalen, Allen, Beeson,
and Diller, amongst others (see [30, 2]). The details of the translation of contexts Γ and judgements θ
into formulas [[Γ]] and [[θ]] of APP are and omitted in this abstract. Troelstra and van Dalen obtain the
following soundness result for their translation. A similar result is to be found in Beeson, op.cit.

7The context will make it clear whether we are referring to the syntax of the type theory or the extended first-order
formulae.

7

Theorem 3.4 If MLi
0 ⊢ Γ ≫ θ, then APP ⊢ [[Γ]] → [[θ]]. In particular, suppose the type A is

provably inhabited in MLi
0, that is to say, there is a proof in MLi

0 ending with the sequent

≫ t : A

for some term t. Then APP ⊢ [[A]](t∗)

In order to mediate between type theory and the first-order language of partial application, we define
a “reverse” r-translation (A)r of MLi

0 types into extended APP formulae. The key property of the
translation is:

Lemma 3.5 (Reverse-Translation lemma) Let A be a type in MLi
0 . Then the following equivalence

is provable in APP :
[[A]](e) ≡ |(A)r|(e)

Now it is straightforward to define a Kripke model, K, for MLi
0 along the lines of the preceding section,

with adjustments for the special formulas defined above, which is sound in the sense that for any extended
formula A:

A is provably inhabited in MLi
0 ⇒ K |= (A)r

A straightforward modification of the definitions and arguments in section 2 (with some attention paid
to bounded quantification) provides is with a Kripke model K , for extended formulas, as defined in 3.2
which models extended realizability.

Theorem 3.6 Let φ be any (possibly nonatomic) extended (i.e. special) sentence over the language of
APPC . Then

A ∥−φ ⇐⇒ A ≥ |φ|.

From this we can immediately conclude:

Corollary 3.7 Special formulas φ are true in the Kripke/Beth model K ⇐⇒ they are provably realizable
in APP.

Finally, we have

Corollary 3.8 (Soundness of the interpretation) Let A be a type in MLi
0, provably inhabited in that

theory. In other words, for some term u, the sequent ≫ u : A is provable in MLi
0. Then K |= (A)r

3.1 Extensions, Constructive Completeness, Conclusion

Our construction provides a countable collection of non-equivalent models for MLi
0 since the model K A

taken by restricting attention to all nodes above a given node A is itself a Kripke model. It is not hard to
see that K has countably many nonequivalent nodes. Pick any node A, and let B be a sentence over the
language of APPC independent of APPC ∪ {∃xA(x)} We cannot have A ≥ B, since this means that
for some term f

APP ⊢ ∀x(A(x) → fx ↓ &B).

But then, by existential elimination and arrow introduction, we have

APP ⊢ (∃xA(x)) → B,

8

contradicting independence. (Similarly we cannot have A ≥ ¬B). We can, of course iterate this (tacitly
using Gödel’s incompleteness theorem to supply new sentences), obtaining a B1 not below A or B, and
then a B2, etc. In effect our Kripke model lifts independence results in APP to independence results in
MLi

0 . If the realizability of (θ)r is independent of APP then θ cannot be forced by the root node of K ,
nor can its negation, hence neither is provably inhabited in MLi

0 .
Fallible Kripke/Beth models first appeared (to the author’s knowledge) in a 1970 paper by Läuchli

([16]) of which this paper (as well as many others in the bibliography) is a descendant. These models
continued to appear in a seminal series of papers on constructive proofs of completeness due to Veldman,
Friedman and others (see [30] for history and references). Along lines almost identical to [18] we can adapt
the Veldman-Friedman-Troelstra-Van Dalen proof to establish, constructively, completeness of extended
fallible Kripke/Beth models for extended APP formulas and for “one-universe” dependent type theory.
The arguments are straightforward and are omitted in this abstract.

What are the main directions for continuing this work, what are the open problems? The results just
shown provide a framework for developing a tableau-based refutation method for type theory (similar to
Nuprl [4], but with Kripke counter-models) as well as for new conservativity and independence results.
A natural question here is: How do we extend these results to second and higher order theories. Two
directions suggest themselves: developing the second-order model theory of the subject (as initiated in
[30], and extended in [6]), or formalizing these arguments in Constructive Set Theory. We discuss both
approaches briefly. Many questions remain open here, along with the matter of subrecursive realizability
models, to be taken up in [19].

References

[1] Aczel, P. [1977] The Strength of Martin-Löf’s Type Theory with One Universe, in: Mietissen, S. and Väänänen,
J., (eds), The proceedings of the symposiums on Mathematical Logic Helsinki 1975 , University of Helsinki, 1977.

[2] Allen,S. [1988], Ph. D. Dissertation, Cornell University, Ithaca, N.Y.

[3] Beeson, M. J. [1985a], Foundations of Constructive Mathematics, Springer-Verlag, Berlin.

[4] Constable, R. L., et al [1986], Implementing Mathematics with the NUPRL Development System, Prentice-
Hall, N.J.

[5] Coquand, T. [1990], “On the analogy between propositions and types”, in: Logic Foundations of Functional
Programming, Huet, G. ed., Addison-Wesley, Reading, MA.

[6] Dragalin, A. G., [1988], “A Completeness Theorem for Higher Order Intuitionistic Logic: An Intuitionistic
Proof”, in Mathematical Logic and its Applications, D. Skordev, ed., Plenum.

[7] Feferman, S. [1975], “A language and axioms for explicit mathematics”, in: Algebra and Logic, Lecture Notes
in Mathematics No. 450, pp. 87-139, Springer, Berlin.

[8] Fitting, M. [1983], Proof Methods for Modal and Intuitionistic Logics, D. Reidel, Dordrecht, The Netherlands.

[9] Fourman, M. P. and D. S. Scott [1979], “Sheaves and logic”, in: Fourman, Mulvey and Scott, (eds.), Applica-
tions of Sheaves, Mathematical Lecture Notes 753, pp.302-401, Springer-Verlag, Berlin.

[10] Grayson, R. J. [1983], “Forcing in intuitionistic systems without power set”, Journal of Symbolic Logic 48,
670-682.

[11] Hyland, J. M. E., P. T. Johnstone and A. M. Pitts [1980], ”Tripos Theory”, Math. Proceedings of the
Cambridge Phil. Society 88, 205-252.

9

[12] Hyland, J. M. E. [1982], “The effective topos”. in: Troelstra, A. S. and D. S. van Dalen (eds.), L.E.J. Brouwer
Centenary Symposium, North-Holland, Amsterdam.

[13] Kleene, S. C. [1952], Introduction to Metamathematics, North-Holland (1971 edition), Amsterdam.

[14] Kripke, S. [1965], “Semantical analysis of intuitionistic logic I”, in: Crossley, J. N. and M. Dummett (eds.),
Formal Systems and Recursive Functions, Proceedings of the Eighth Logic Colloquium, Oxford, 1963, North-
Holland, Amsterdam, 92-130.

[15] Lambek, J. and P. J. Scott [1986], Introduction to higher order categorical logic, Cambridge Studies in Ad-
vanced Mathematics 7, Cambridge.

[16] Läuchli, H. [1970], “An abstract notion of realizability for which predicate calculus is complete”, in: Myhill,
J., A. Kino, and R. E. Vesley (eds.), Intuitionism and Proof Theory, North-Holland, Amsterdam, 227-234.

[17] Lipton, J. [1990], “Realizability and Kripke Forcing”, in the Annals of Mathematics and Artificial Intelli-
gence, Vol.4, North-Holland, Amsterdam. An expanded version appeared as technical report 90-1163, Dept.
of Computer Science, Cornell University, Ithaca, NY.

[18] Lipton, J. [1990], “Constructive Kripke Semantics and Realizability”, to appear in the proceedings of the
Logic for Computer Science conference held at the Math. Sci. Research Institute, Berkeley, Nov. 1989.

[19] Lipton, J], “Kripke Models for Subrecursive computation”, to appear.

[20] Martin-Löf, P. [1982], “Constructive Mathematics and Computer Programming”, in Logic, Methodology and
Philosophy of Science IV, North Holland, Amsterdam.

[21] Martin-Löf, P. [1984], Intuitionistic Type Theory, Studies in Proof Theory Lecture Notes, BIBLIOPOLIS,
Napoli, Italy.

[22] McCarty, D. C. [1986], “Realizability and recursive set theory”, Annals of Pure and Applied Logic 32, 11-194.

[23] Mitchell, J. and E. Moggi [1987], “Kripke-style models for typed lambda calculus”, Proceedings from Sympo-
sium on Logic in Computer Science, Cornell University, June 1987, IEEE, Washington, D.C..

[24] Nerode, A. [1989b], “Some lecures on Intuitionistic Logic I”, Proceedings on Summer School on Logical
Foundations of Computer Science, CIME, Montecatini, 1988, Lecture Notes in Mathematics, Springer-Verlag,
Berlin.

[25] Nerode, A., and P. Odifreddi, [1990], Lambda Calculi and Constructive Logics, MSI Tech. Report ’90-55

[26] Odifreddi, P. [1989], Classical Recursion Theory, North-Holland, Amsterdam.

[27] Plotkin, G., [1980], “Lambda definability in the full type hierarchy”, in : Seldin, J.P. and J. R. Hindley (eds.),
To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, Academic Press, New York.

[28] Statman, R., [1982],“Logical relations and the typed Lambda Calculus”, Information and Control.

[29] Swart, H. C. M. de [1976], “Another intuitionistic completeness proof”, Journal of Symbolic Logic 41, 644-662.

[30] Troelstra, A. S. and D. van Dalen [1988], Constructivism in Mathematics: An Introduction, Vol. II, Studies
in Logic and the Foundations of Mathematics, Vol. 123, North-Holland, Amsterdam.

[31] Veldman, W. [1976], “An intuitionistic completeness theorem for intuitionistic predicate logic”, Journal of
Symbolic Logic 41, 159-166.

10

