
Combining Application-Level and Database-Level Monitoring to

Analyze the Performance Impact of Database Lock Contention

Holger Knoche
Kiel University, Software Engineering Group

24118 Kiel, Germany
hkn@informatik.uni-kiel.de

Abstract

Database lock contention can severely impact applica-
tion performance and limit scalability. This can be of
particular importance when major modifications are
made to transactional software, such as large refactor-
ings or modernization projects.

In order to assess the criticality of such modifica-
tions, it is necessary to measure the current degree
of database lock contention, and attribute the effects
to the appropriate sections of the application. How-
ever, current monitoring tools do not provide both
application-level and database-level monitoring data
with sufficient detail at the same time.

In this paper, we present an approach to com-
bine application-level and database-level monitoring
to measure lock contention on a per-section basis, and
present first experimental results from a prototypical
implementation for PostgreSQL.

1 Introduction

Database transactions can be a limiting factor for
the runtime performance of a software application.
The exclusive access to data items guaranteed by the
well-known ACID properties limits the achievable de-
gree of concurrency of the application, since concur-
rent accesses contending for access to the same data
item – and thus the same lock – are serialized by the
database.

Lock contention is impedimental to performance
in several ways. It can severely limit scalability, and
modifications to transactional sections can cause locks
to be held for a longer time, thus increasing lock con-
tention and decreasing throughput. The latter effect
is of particular importance in modernization projects
towards distributed architectures such as Microser-
vices, where remote service invocations are inserted
into existing applications.

Due to its potential relevance to application per-
formance, the ability to quantify and locate database
lock contention in productive environments is crucial.
However, it is not sufficient to look at the database
alone. The lock contention inside the database has
rather to be attributed to the parts of the applica-
tions which cause or fall victim to it.

Unfortunately, current monitoring tools do not pro-
vide the required data for this task, as these tools ei-
ther work on the application level or on the database
level. Application-level monitoring tools such as Dy-
naTrace1 can, for instance, discover that a particular
database access takes a long time, but can not pro-
vide any information about the cause. Database-level
monitoring tools, on the other hand, commonly only
report aggregated statistics for database objects such
as tables.

In this paper, we propose an approach to enable
detailed analyses of lock contention by combining
application-level and database-level monitoring. We
show how this approach can be implemented for the
popular open-source RDBMS PostgreSQL, and show
first experimental results underlining its potential.

The remainder of this paper is structured as fol-
lows. In Section 2, we investigate the problem in fur-
ther detail, and sketch our prototypical implementa-
tion in Section 3. Results from our experiments are
presented in Section 4. Related work is discussend in
Section 5, and conclusions are drawn in Section 6.

2 Problem Statement

As described in the introduction, our goal is to gather
detailed data about lock contention, and attribute it
to the appropriate sections inside the application. For
this purpose, we need to monitor the following events:
On the application level, we need to know when a
transaction is started or terminated, and associate the
transaction with the appropriate code section. On the
database level, in addition to the start and end of a
transaction, we also need to monitor when a transac-
tion blocks due to a lock conflict or resumes once the
lock is available. For the latter, we furthermore wish
to know the lock object (i.e., the locked table or row).

To correlate the data from both levels, we require
an identifier that is available from both the applica-
tion and the database. Most databases assign trans-
action IDs for internal management, which may be
accessible from the application. For instance, Post-
greSQL provides the function txid current() to re-
trieve the current transaction ID via SQL.

1https://www.dynatrace.com

https://www.dynatrace.com


3 Prototypical Implementation

To instrument an application, we manually inserted
a piece of monitoring code at locations where trans-
actions were started, committed or rolled back. This
code determined the current transaction ID using the
aforementioned function, and wrote appropriate mo-
nitoring events to a file.

For gathering the required data from the database,
we employed and extended PostgreSQL’s existing dy-
namic monitoring infrastructure (see [9], section 27.4).
The PostgreSQL source code contains trace hooks, to
which probes can be attached with DTrace (under So-
laris) or SystemTap (under Linux). However, these
hooks are deactivated by default and need to be acti-
vated at compile time.

The existing trace hooks cover a plethora of events,
including transaction start, commit, and rollback as
well as the begin and end of a lock wait. However,
these events did not provide the necessary context
data for our needs. In particular, the lock-wait events
did not provide any information about the transaction
in which they occurred. In addition, the transaction
start and end events only provided the local transac-
tion ID, which is different from the global, permanent
ID returned by txid current() and only unique per
backend thread.

We therefore extended the transaction start hook
to include the global transaction ID and added the
backend thread ID and the local transaction ID to
all hooks. This approach was chosen because the two
IDs were either already available or could easily be
retrieved from the process context.

4 Experimental Results

In order to evaluate and validate our approach, we
conducted four experiments, which are described be-
low. All experiments were conducted using Post-
greSQL 9.5.3 on an Intel Core i7-3770K at 3.50 GHz
with 16 GB RAM, a 2 TB SSHD and Gigabit Ether-
net, running Ubuntu Server 16.04 LTS (Kernel 4.4)
and SystemTap 3.0. The default isolation level (read
committed) was used for all experiments.

For load generation, a Raspberry Pi 2 at 900 MHz
with 1 GB RAM and 100 MBit Ethernet running
Raspbian 8 (Kernel 4.4), Oracle JDK 1.8.0 101, and
JDBC driver 9.4.1209 was used. The two machines
were connected to the same Gigabit Ethernet switch.

Experiment 1: Measurement Validation

In order to validate our measurement infrastructure,
we constructed the following experiment to intention-
ally and selectively cause lock contention. On the
client, two worker threads were created, each having
its own database connection. In a third thread, pairs
of tasks performing database updates were simultane-
ously submitted to the worker threads. With a given
probability, the dispatcher thread would configure the

two tasks to update the same rows, thus provoking a
lock conflict. Otherwise, disjoint row sets were chosen.

The transaction pairs were written to a client log
together with the information whether a lock conflict
was expected or not. This client log was then checked
against the events produced by our implementation.

We conducted this experiment with several conflict
probabilities and 10000 transaction pairs each. The
implementation registered lock events precisely when
expected in all cases.

Experiment 2: Transaction Duration and
Lock Contention

As discussed in the introduction, an increase in trans-
action duration can lead to an increase in lock con-
tention and thus in response time. In order to quan-
tify this effect, we created a table with 100 rows in
the database. The table was deliberately chosen to be
small as to avoid disk I/O as much as possible. Then,
we started a total of nt update tasks with a submis-
sion frequency of λ transactions per second. Each of
these tasks updated a number nr rows in the table,
which were chosen at random for each transaction. To
avoid deadlocks, the updates were performed strictly
in ascending order of their primary keys.

In order to analyze the effect of an increase in trans-
action duration, a variable delay between performing
the updates and committing the transaction was in-
serted. A sufficient number of worker threads and
database connections was chosen to prevent distortion
due to clogging on the client side.

Results from a run with 64 worker threads, 10000
tasks, 5 update rows per task, and a submission fre-
quency of 40 transactions per second are depicted in
Figure 1. The left panel shows the blocking probabil-
ity of a transaction, i.e. the probability that a transac-
tion has to wait at least for one lock, depending on the
duration of the variable delay. The right panel shows
the mean client-observable transaction duration, to-
gether with the standard deviation, depending on the
delay.

A notable observation from this experiment is that
the blocking probability saturates already at about
70%. We are further investigating this observation as
part of our future work.

Experiment 3: Lock Contention in the
TPC-C Benchmark

To prove the general applicability of our approach in
a more realistic setting, we monitored the well-known
TPC-C benchmark [4] provided by HammerDB2 with
it. Since HammerDB is not available for ARM proces-
sors, it was run on an Intel Core i7-4500U notebook
running Debian 8.5.0.

Using our approach, we were able to analyze the
locking behaviour for each of the benchmark’s client
transactions (e.g., payment, new order, delivery).

2Version 2.2.0, http://www.hammerdb.com

http://www.hammerdb.com


● ● ● ●

●

●
●

● ●

●

●
●

●
●

●

●
●

●
● ● ● ●

● ● ● ● ● ● ● ● ●

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

delay in ms

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

0 25 50 75 100 125 150 0 50 100 150

0
10

0
20

0
30

0
40

0

delay in ms

cl
ie

nt
 r

es
po

ns
e 

tim
e 

in
 m

s

0 25 50 75 100 125 150

mean
mean +/− std. dev.

Figure 1: Delay vs. measured blocking probability and client response time for nr = 5, nt = 10000, and λ = 40

However, due to the specifics of PostgreSQL’s locking
procedure [5], lock conflicts on a row may be reported
either on the transaction holding the lock or on the
row itself. Therefore, for instance, we measured that
payment transactions spent 69% of their wait time
waiting for other payment transactions, 4% waiting
for new-order transactions, and 19% waiting for rows
from the warehouse table.

Nevertheless, this analysis provided a valuable in-
sight into the causes and victims of lock contention.

Experiment 4: Monitoring Overhead

In order to roughly quantify the monitoring overhead
of our approach, we ran Experiment 2 with a high sub-
mission frequency (λ = 500) against an instrumented
and a non-instrumented database. We did not detect
significant differences in response time, from which we
conjecture that the overhead is not very large, but fur-
ther research such as [7] is required to make a sound
conclusion.

5 Related Work

A plethora of work and several tools are available
for application-level monitoring, such as the Kieker
framework [6]. Jenq et al. [1] use database moni-
toring to calibrate an analytic model, but consider
only physical resource consumption (such as CPU
and disk I/O). Elnikety et al. [2] measure client-
observable transaction throughput during the TPC-
W benchmark. Lock contention in shared memory is
investigated in [3]. A visualization for synchronization
conflicts in applications is described in [8].

6 Conclusions and Future Work

In this paper, we have presented an approach to com-
bine application-level and database-level monitoring
to analyze the performance impact of database lock
contention on applications, and shown the usefulness
of this approach using selected experiments.

In our future work, we intend to automate the in-
strumentation process and investigate the applicabil-

ity of this approach to other databases. Furthermore,
we intend to further investigate the dynamics of lock
contention in practice and perform a detailed analysis
of the performance overhead of our approach.

References
[1] B. C. Jenq, W. H. Kohler, and D. Towsley. “A

queueing network model for a distributed
database testbed system”. In: IEEE Trans. on
Software Engineering 14.7 (1988).

[2] S. Elnikety et al. “Predicting Replicated
Database Scalability from Standalone Database
Profiling”. In: Proc. 4th ECCS. 2009.

[3] N. R. Tallent, J. M. Mellor-Crummey, and
A. Porterfield. “Analyzing Lock Contention in
Multithreaded Applications”. In: Proc. 15th
PPoPP. 2010.

[4] Transaction Processing Performance Council.
TPC Benchmark C – Standard Specification.
Feb. 2010. url: http://www.tpc.org.

[5] R. Haas. Deadlocks. Oct. 2011. url:
http://rhaas.blogspot.de/2011/10/

deadlocks.html.

[6] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application
Performance Monitoring and Dynamic Software
Analysis”. In: Proc. 3rd ICPE. 2012.

[7] J. Waller and W. Hasselbring. “A Comparison
of the Influence of Different Multi-Core
Processors on the Runtime Overhead for
Application-Level Monitoring”. In: LNCS 7303.
Springer, 2012.

[8] J. Waller et al. “SynchroVis: 3D Visualization
of Monitoring Traces in the City Metaphor for
Analyzing Concurrency”. In: Proc. 1st
VISSOFT. 2013.

[9] PostgreSQL Global Development Group.
PostgreSQL 9.5.3 Documentation. 2016. url:
https://www.postgresql.org.

http://www.tpc.org
http://rhaas.blogspot.de/2011/10/deadlocks.html
http://rhaas.blogspot.de/2011/10/deadlocks.html
https://www.postgresql.org

	Introduction
	Problem Statement
	Prototypical Implementation
	Experimental Results
	Related Work
	Conclusions and Future Work

