
JOURNAL OF CHEMOMETRICS
J. Chemometrics 2005; 19: 625–647
Published online in Wiley InterScience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
(www.interscience.wiley.com) DOI: 10.1002/cem.968
Representative process sampling for reliable data
analysis—a tutorial

Lars Petersen* and Kim H. Esbensen
Applied Chemometrics, Analytical Chemistry, Applied Biotechnology, Bioenergy & Sampling research group (ACABS),
Aalborg University Esbjerg, Niels Bohrs Vej 8, DK-6700 Esbjerg, Denmark

Received 18 January 2005; Revised 29 March 2006; Accepted 24 April 2006
*Correspo
Esbjerg, N
E-mail: La
Process sampling of moving streams of particulate matter, fluids and slurries (over time or space) or

stationary one-dimensional (1-D) lots is often carried out according to existing tradition or protocol

not taking the theory of sampling (TOS) into account. In many situations, sampling errors (sampling

variances) can be reduced greatly however, and sampling biases can be eliminated completely, by

respecting a simple set of rules and guidelines provided by TOS. A systematic approach for

description of process heterogeneity furnishes in-depth knowledge about the specific variability

of any 1-D lot. The variogram and its derived auxiliary functions together with a set of error

generating functions provide critical information on:—process variation over time or space,—the

number of extracted increments to composite into a final, optimal sample,—the frequency with

which to extract increments—and which sampling scheme will be optimal (random, stratified

random or systematic selection). In addition variography will delineate cyclic behaviors as well

as long-term trends thereby ensuring that future sampling will not accidentally be performed with a

sampling rate coincident with the frequency of any hidden cycle, eliminating the risk of under-

estimating process variation. A brief description of selected hardware for extraction of samples from

1-D lots is provided in order to illustrate the key issues to consider when installing new, or

optimizing existing sampling devices and procedures. A number of practical examples illustrate

the use of TOS and variography to design optimal sampling protocols for a variety of typical process

situations. Copyright # 2006 John Wiley & Sons, Ltd.
KEYWORDS: representative sampling; process sampling; flowing streams; 1-D lots; theory of sampling (TOS);

variogram; variography
1. INTRODUCTION

In a previous paper [1] an introduction to sampling of zero-

dimensional (0-D) material lots and the theory of sampling

(TOS) by Pierre Gy [2–4] was given, which also underlies all

of process sampling. 0-D lots are collections of material

consisting of separate ‘free’ units or fragments, without any

mutual, ordered correlation (fully independent fragments);

0-D lots can be (or have been) mixed mechanically. The

previous paper summarized TOS in a number of practical

sampling unit operations (SUO’s).

A one-dimensional (1-D) object is simply a lot where two

dimensions are negligible in size compared to the third, and

where there is a distinct spatial or temporal correlation along

this defining dimension. This may appear either as an
ndence to: L. Petersen, ACABS, Aalborg University
iels Bohrs Vej 8, DK-6700 Esbjerg, Denmark.
pe@aaue.dk
ordered series of discrete units (time or space) or as a

moving/flowing material stream. Any such elongated or

moving material body is, strictly speaking, a three-dimen-

sional object, but for all practical purposes it can be regarded

as a 1-D object since the singular dominating dimension is

overwhelmingly much larger than the other two. For

instance, a lot consisting of powder, traveling on a conveyor

belt at 1m/s during an 8 h shift can be regarded as, say, a

0.5� 0.2� 28 800m lot. From TOS’ point of view the strict

definition of a 1-D lot is any lot from which a sample, or an

increment, forms a complete ‘slice’ covering two of its three

physical dimensions.

This paper deals exclusively with proper sampling of such

elongated streams, process streams or ordered series of

discrete units while focusing both on the theoretical

principles and the practical aspects involved.

The specific sample volume from a 1-D lot, termed

‘increments’ or ‘units’, have the possibility of being more-or-

less similar to neighboring increments—i.e. being corre-

lated—and this feature may apparently, at first, make
Copyright # 2006 John Wiley & Sons, Ltd.
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sampling a bit more tricky, although a full understanding of

this feature will soon be seen to make 1-D sampling much

easier in practice.

To sample 1-D lots correctly [1,5] calls for one of three

possible sampling schemes (random, stratified random or

systematic), and a number of rules and guidelines

regarding the physical extraction of material as given in

TOS. These rules and guidelines ensure that sampling will

be unbiased (‘correct’) and that the sampling error

(variance) is minimized. TOS describes the use of a feature

called the variogram to characterize the auto-correlation

(and hence the heterogeneity) of all 1-D lots as a function of

inter-increment (unit) distance and this will be shown to

greatly help the design of optimal sampling procedures

and strategies.

Furthermore, many production and other industrial

processesmay vary periodically with amore-or-less distinct

cycle or according to a somewhat distinct increasing or

decreasing trend. This can, for example be due to: 8 h shifts,

different shipments of raw material, change of operators,

automated process control etc. In such cases, the possibility

of committing serious sampling mistakes dramatically

increases when not based upon the rich information

potential of an initial variographic analysis. The variogram

will reveal all, often hidden, cyclic periods or trends, and

hence will help avoiding the danger of extracting samples at

a frequency coincident with the period of a cycle, for

example.

This paper provides an introduction to the concept of

material heterogeneity in its 1-D form—heterogeneity is the

ultimate source of all sampling errors. A brief description of

the different errors that contribute to the overall sampling

error in the 1-D regimen follows. This tutorial gives a

thorough introduction to variography, together with a brief

description of selected, typical process sampling hardware.

Finally, three practical examples of variography for

sampling optimization in distinctly different contexts are

presented.
2. BASIC DEFINITIONS AND TERMS

The lot is defined as the total volume/mass of material to be

sampled. This could typically be in the form of a huge

stockpile, a railroad car, a barrel, a small laboratory bag—the

rules of correct sampling apply regardless of the physical size

of the lot, whereas the difficulty of the actual sampling

process depends on the physical size of the lot. In process

sampling the lot is an elongated stockpile (extended in

space), a material stream (extended in time), but may as well

be an ordered series of, for instance, railroad cars, production

batch units (sacks, barrels etc.) or similar.

Fragments are defined as the smallest inseparable physical

parts of the lot (fragments can only be altered by crushing/

comminution). This is most often a single particle, for

instance a grain of sand (or a fragment of a grain), a granule

or a mineral (in a rock) etc.

Increments are defined as a spatially coherent group of

fragments, characterized as being extracted simultaneously

(i.e. in a single sampling operation) by the sampling tool. This
Copyright # 2006 John Wiley & Sons, Ltd.
may, for instance, be a scoop of extracted material. If several

(less than the final sample size) increments are combined, a

composite sample is in the making.

A sub-sample is a sample reduced by a representative mass

reduction process [6].

The critical component (A) is the component of interest; this

component can be physical, for example a grain-size bin, or

chemical, for example the analyte. The critical component is

often described by its grade, a, either in the whole lot, aL, or in

the individual fragments/units of the lot, ai. It may also be

expressed as a concentration, a percentage etc. The objective

of all sampling processes is to be able estimate the sample

grade, aS, without bias and with minimum sampling

variance—aS will then be representative of aL.

Autocorrelation is a measure of the degree of spatial (or

time) correlation between increments or samples along the

defining dimension, expressed as a function of the distance

(or time) between the units in question. TOS expresses this

feature in a slightly different fashion than, for example

regarding time series (and similar) analyses, where the auto-

correlation coefficient (or the cross-correlation coefficient

between two or more time-series) is the measure. TOS

instead focuses on the variogram, which includes a measure

of auto-correlation as well.
3. LOT DIMENSIONALITIES

To be able to select an optimal sampling scheme in a given

sampling situation it is important to recognize the lot type, or

the intrinsic sampling dimensionality. Four different lot

types exist: 0-, 1-, 2- and 3-D. The major difference is between

0-D and the other three, since 0-D describes lots with no

internal correlation between the individual (virtual or real)

increments or fragments (see Section 2). A 0-D lot is, in other

words, a lot where the fragments or increments are

considered random; whereas, in the 1-D, 2-D or 3-D cases,

the individual increments (possible sampling volumes) or

fragments are fixed (and spatially correlated) along the

defining dimension(s), either in space or time. TOS deals

primarily with 0- and 1-D lots; these are the only kinds which

can be sampled correctly in total accord with TOS rules and

guidelines. There is, however, a very interesting challenge to

apply as much of TOS as possible also in the 2-D and 3-D

scenarios and, hence, to achieve the most reliable and

representative sampling possible. If the depth-of-interest is

fixed and well related to the overall sampling purpose, 2-D

sampling can be carried out with complete coverage in the

plane.

There are principally three different kinds of 1-D lots [2,3]:
� A
 moving or stationary, stream of particulate material.

Examples: conveyor belts transporting fragmental materials

or powders, slurries in ducts etc.
� A
moving or stationary string of fluids (i.e. gasses, liquids).

Examples: rivers or produced/manufactured fluids in

pipelines.
� A
moving or stationary stream made of discrete chronological

units. Examples: railroad cars, truck loads, ‘units’ (bags,

drums, packages . . .) from a production or a manufacturing

line.
J. Chemometrics 2005; 19: 625–647
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4. INTRODUCTION
TO HETEROGENEITY

Heterogeneity is fundamentally divided in two parts:

constitutional heterogeneity (CH) and distributional hetero-

geneity (DH). The CHdescribes the heterogeneity dependent

on the physical or chemical differences between the individual

fragments. CH can only be reduced by altering the material

(for instance by comminution). The DH describes the aspect

of heterogeneity dependent upon the spatial distribution (and

on CH) of the individual fragments or groups-of-fragments

in the lot (stratification or segregation and the formation of

local groups of fragments with a significant high/low

concentration of the critical element). DH can be reduced

by using ‘correct’ sampling methods (more on this later). DH

can never be larger than CH. CH is never zero. Dependent on

the purpose and scale of observation CH may be close to

negligible, but it is never nil. Homogeneity is defined as the

theoretical limit case of zero heterogeneity. Indeed if such a

thing as a homogeneous material exists sampling would not

be needed (as all sampling errors would be zero). However

the concept of homogeneity is only relevant in theory, since

true homogeneity never exists in practice for any naturally

occurring material. Even in extreme cases one can argue that

there are principal differences at molecular or nuclear levels

in the form of isomers or isotopes, but it is very rare that TOS

is invoked at such ultimate small scales.

4.1. Constitutional heterogeneity, CH
Normally interest is only on the heterogeneity between the

individual fragments (the lowest practical level of obser-

vation) and not so much within the fragments. This is where

one of the major theoretical achievements of TOS comes to

the fore: defining the contribution to the total heterogeneity

by an individual fragment. In doing this, TOS characterizes

the individual fragments according to the component of

interest (the analyte), A, described by the proportion (or

grade), ai, and the fragment mass, Mi. If a lot consists of NF

individual fragments, Fi, with individual masses,Mi, with an

average fragment mass, Mi and the lot has a grade, aL, of

component A, and a mass, ML, then the heterogeneity

contribution from each individual fragment, hi, can be

calculated according to Reference [3]:

hi ¼
ðai � aLÞ

aL
� Mi

Mi

¼ NF
ðai � aLÞ

aL
� Mi

ML

This definition of heterogeneity contribution is dimension-

less and hence any intensive unit can be used in

characterizing the material, for example concentration, size.

It furthermore compensates for variation in the fragment

masses; larger fragments result in a larger influence on the

total heterogeneity than smaller ones. This viewpoint

constitutes a major distinction from ‘classical statistics’

where all units contribute equally.

CH is simply defined as the variance of the heterogeneity

contributions resulting from the distribution of all individual

fragments [3]:

CHL ¼ s2ðhiÞ ¼
1

NF

X

i

h2i ¼ NF

X

i

ðai � aLÞ2

a2L
� M

2
i

M2
L

Copyright # 2006 John Wiley & Sons, Ltd.
The above formula is applicable only if dealing with the

whole of a finite and isolated population of units. If only a

subset of a much larger population is utilized, (NF�1) is used

instead of NF.

Calculation of CHL involves knowing the total number of

fragments in the lot, NF; but, this is of course never a known

quantity in practical situations. Instead, at the cost of some

approximations, the constant factor of the constitution hetero-

geneity, IHL, which is independent of the size of the lot, can be

used. IHL is defined [3]:

IHL ¼ CHL �Mi ¼
CHL �ML

NF
¼

X

i

ðai � aLÞ2

a2L
� M

2
i

ML

IHL has the unit dimension of mass and can be calculated via

an approximate material’s parameter approach, according to

the equation below—the so-called ‘Gy’s formula’ or

estimated experimentally. The individual descriptions and

guidelines for the estimation of the parameters involved can

be found in References [1–3,7].

IHL ¼ c f g l d3

0Gy0s formula0 ðc; f; g and l are material characteristicsÞ
Gy’s formula is always able to provide an estimate of IHL (N.B.

only when dealing with particulate materials). The reliability

of the estimate depends heavily on the quality of the

estimates for the material parameters, of which the

composition factor (also called the mineralogical factor), c,

and the top particle size (d) is the most influential since c can

vary between one and infinity (but is constant for anymaterial

in a specific state) and the particle size (d) is to the third

exponent. The remaining factorsmay often be used at default

values, or estimated more precisely for higher overall

estimate quality. It is noteworthy that this famous formula

generates an estimate to an order-of-magnitude only, which is

most often all that is needed in practice [2,3].

4.2. Distributional heterogeneity
When considering more than one fragment, a move into the

realm of DHof the lot, DHL ismade. If the lot is divided into a

number of smaller volumes (groups-of-fragments), NG,

coinciding with the volume of the sampling tool and

consider the differences in concentration of the critical

components between these volumes (index n), an, DHL can be

calculated. In a strict analog to the above definition of

heterogeneity carried by a single fragment, a group-of-

fragments (index n), Gn, similarly carries an amount of

heterogeneity, hn, which can be calculated from the mass of

the individual groups, Mn, the average group mass, Mn, and

the average grade of the groups, an:

hn ¼ ðan � aLÞ
aL

�Mn

Mn

¼ NG
ðan � aLÞ

aL
�Mn

ML

The distribution heterogeneity can now be calculated as the

variance of these group heterogeneity contributions:

DHL ¼ s2ðhnÞ ¼
1

NG

X

n

h2n ¼ NG

X

n

ðan � aLÞ2

a2L
�M

2
n

M2
L

Unlike for CHL, which only is a function of the material

properties, DHL can actively be altered, for example by
J. Chemometrics 2005; 19: 625–647
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choosing a smaller volume of observation (a smaller

sampling tool volume) and in this way reduce it, or the lot

can be mixed. More on this can be found in Reference [1].

It is critically important to notice that DHL can in fact easily

be estimated in practice by extracting and analyzing a

number of groups ‘covering the lot’ and calculating the

resulting empirical variance. Often a relatively small number

of groups will suffice.

In order establish a first link between CH and DH, the

following relationship also involves the average constitution

heterogeneity of the groups, CHn:

CHL ¼ CHn þDHL

The average constitution heterogeneity of the groups, CHn, is

equivalent to the compositional heterogeneity of the material

whichwas extracted as a coherent increment by the sampling

tool; that is the material in the sampling tool volume, for

which CH of course can never be strictly zero. From this

follows that CHL is always larger than or equal to DHL, and

that both of these are always larger than or equal to zero

(equal to zero only in extreme and theoretical cases). Thus for

natural materials, DHL is never strictly zero, due to the

heterogeneous nature of all materials:

ðDHLÞnat > 0

No matter how much work and effort is put into

homogenizing a material, DHL can never be reduced below a

certain minimum:

ðDHLÞmin > 0

A universal ranking of these relationships results in the

following:

CHL � ðDHLÞnat > ðDHLÞmin > 0

In Reference [3] was also shown the following relationship

between CHL and (DHL)min:

ðDHLÞmin ¼ NG � 1

NF � 1
CHL

fromwhich it can be appreciated that the ‘reduction factor’ of

CHL is related to the ratio between the number of groups,NG

(inversely proportional to the number of fragments in a
Figure 1. Compositionally identical material in tw

shown a state of very high segregation (j close to 1

characterized by a low value of j. This figure is av

wiley.com/journal/cem

Copyright # 2006 John Wiley & Sons, Ltd.
group) and the lot size, represented by the total number of

fragments, NF.

In order to understand heterogeneity in full conceptual

detail, Gy further defines two conceptual factors describing

the two principal phenomenological aspects of heterogen-

eity: the grouping factor, g, and the segregation factor, j. The

grouping factor is a measure of the ratio of the number of

fragments to the number of groups, that is a measure of

group size:

g ¼ NF �NG

NG � 1
which re-arranges into :

1

1þ g
¼ NG � 1

NF � 1

Hence, the above expression of minimum distribution

heterogeneity becomes:

ðDHLÞmin ¼ 1

1þ g
CHL

If NF is equal to NG (representing an ideal sampling

procedure of taking only one fragment at the time—ideal but

rarely realizable in practice of course), then g¼ 0 and, hence,

(DHL)min¼CHL. If, on the other hand, groups are large,

ultimately taking the whole lot (NG¼ 1), the grouping factor

goes towards infinity, and the minimum DH becomes zero.

In the case where interest is no longer only on the

minimum DH (which is brought about by ‘correct’ sampling

practices), but instead on the natural DH, it will be necessary

to include the segregation factor in the analysis. This factor

represents the added heterogeneity brought about by the

spatial distribution of fragments, groups or increments due

to segregation (and/or other forms of stratification) to the

overall DH:

ðDHLÞnat ¼
1þ gj

1þ g
CHL where 0 � j � 1

If the lot material is completely mixed (the ideal case of a

homogenous state), j would be zero, while, if the lot is

completely segregated (stratified or otherwise), j would be

one (see Figure 1).

Ultimately the above relationships can be combined to

form [3]:

DHL ¼ ð1þ jgÞ � ðNG � 1Þ NF

NF � 1

X

i

ðai � aLÞ2

a2L
� M

2
i

M2
L

o different segregation states: to the left is

.0); to the right is shown the opposite situation

ailable in colour online at www.interscience.
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In the case of a very large number of fragments, this

reduces to:

DHL ¼ ð1þ jgÞ � ðNG � 1Þ
X

i

ðai � aLÞ2

a2L
� M

2
i

M2
L

or

DHL ¼ ð1þ jgÞ � ðNG � 1Þ
NF

CHL

4.3. Interpretation of TOS
These formulas, and the analysis above, signify that basically

only three factors are responsible for the magnitude of the

DH:
� C
Co
HL (constant for a given material in a given grain size

distribution state)
� g
 (depends on the size of the extracted increments/

observation module)
� h
 (depends on the spatial distribution of fragments in

the lot)

In order to extract samples with the lowest variation

(sampling error) it is necessary to minimize DHL. For a given

material state, first considering the easiest case of reducing the

two phenomenological factors, this can principally be

achieved in only two ways:
� D
ecreasing the size of the extracted increments (reduces g);

that is increasing the number of increments that are com-

bined to form a given sample mass, MS.
� M
ixing/homogenizing the lot (reduces j).

If these measures are insufficient for a given sampling

error specification, it is necessary to reduce the CH itself,

which necessitates active, physical reduction of the fragment

sizes, comminution (grinding or crushing) or increasing the

total sample mass, MS.

All the above relate to understanding the origins of

heterogeneity within one increment, selected as a complete

cross section of the 1-D lot. Extraction of any one (‘full-slice’)

increment is covered in full by the principles of correct,

representative 0-D sampling, all aspects of which were

reviewed above and treated in full detail in References [1–4].

4.4. Heterogeneity of 1-dimensional lots
In the special case of 1-D sampling, consideration of still

further aspects to characterize heterogeneity is necessary.

This especially involves understanding the nature of the non-

random heterogeneity fluctuations along elongated or

moving lots. Interest is now no longer in the heterogeneity

within the units of observation (as treated above) but

specifically in the heterogeneity related to the differences

between them.

Focus will now be on a new set of NU discrete units, Um,

making up the 1-D lot. The units are discrete (complete cross-

stream) collections/materializations of material or similar;

for instance: railroad cars, drums, bags or scoopfuls of

material, chronologically (or linearly) ordered (with m¼ 1, 2,

3,. . ., NU).

The heterogeneity contribution, hm, of unit Um, is defined

(strictly analogous to the definitions for fragment and group
pyright # 2006 John Wiley & Sons, Ltd.
contributions above):

hm ¼ ðam � aLÞ
aL

�Mm

Mm

¼ NU
ðam � aLÞ

aL
�Mm

ML

where Mm is the unit mass, Mmthe average unit mass, am is

the grade of the unit and NU the number of units in the lot.

The heterogeneity contribution, hm, from a unit is composed

of three (four if including the total analytical error (TAE); see

below) parts when dealing with 1-D processes:
� A
 random, discontinuous, short range fluctuation term, h1m.

This term describes the natural randomness of the CH
� A
 non-random, continuous, long range fluctuation term, h2m,

that describes trends in the process/lot (between units)

over time/distance
� A
 non-random, continuous, cyclic term, h3m, describing

cyclic or periodic behavior of the process/lot

Thus:

hm ¼ h1m þ h2m þ h3m

It may be argued—at least in practical situations—that

one needs to include the errors associated with the physical

handling and assaying (analysis) of samples. This is done by

a fourth part:
� A
 random fluctuation term, h4m, taking into account all

measurement errors stemming from weighing, sample

processing and analysis. This is also named the TAE.

Thus:

hm ¼ h1m þ h2m þ h3m þ h4m

Characterization of the heterogeneity of a 1-D lot must

include information on the chronological order of the units. If

this information is disregarded, one is restricted to employ-

ing only techniques from the previous 0-D section, calculat-

ing the DH, DHL, as of any static population of units, Um, or

the constant factor of the constitution heterogeneity, IHL can

be calculated. If it is specifically sought to include the

correlation information, the so-called variogram (technically

known as a semi-variogram) is utilized. The variogram is

explained further in the following sections.
5. INTRODUCTION TO VARIOGRAPHY

In order to characterize the autocorrelation between units of

the process/lot or the 1-D heterogeneity of the population,

the semi-variogram (for the remainder of this work referred to

simply as the ‘variogram’) is derived. This describes the

variation observed between units as a function of the distance

between them (in time or space). In addition, the variogram

also yields information in the forms of the ‘nugget effect’, the

‘sill’ and the ‘range’, which will all be explained in more

detail below.

5.1. Calculation of the variogram
To calculate a variogram a sufficient number of units

extracted equidistantly, spanning the process interval of

interest is needed. An example could be a production process

over a 24-h period, sampled every 20 min to characterize the

variation, including three 8 h shifts. Often also much shorter
J. Chemometrics 2005; 19: 625–647
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time-spans are investigated, for instance, during the filling of

a number of bags from a batch (blending) process, or

something much longer, like daily or season of variation, for

periods up to an entire year or even more.

In order to calculate a variogram, a dimensionless and

relative lag parameter, j, describing the distances between two

extracted units is defined:

j ¼ u

umin

where u is an inter-sample interval (measured in units of:

minutes, hours, meters, kilometers, product number, depen-

dent on the given situation) and umin is the smallest interval

sampled. Figure 2 explains the sizes and calculations of all

intervals of interest.

If NU units are extracted and analyzed, NU�1 unit pairs

with space u, NU�2 unit pairs with space 2u are available. In

practice, it is not necessary to go higher than half the

measurement series, NU/2 from the different unit pairs are

illustrated in Figure 2.

The interesting measure in the variogram, is the average of

the squared difference in heterogeneity, D, between the

NU�pairs of units for all lags (j):

D ¼ 1

NU � j

X

m

ðhmþj � hmÞ2

D is thus a function of j, D(j). D represents the heterogeneity

variability along the extended dimension of principal
Figure 2. Example of unit pairs in a var

example, only eight units are extracted a

pairs exist that are spaced by 2 min (A),

five unit pairs spaced by 6 min (C) and th

spaced by 14 min (D) exist. The units

physically extracted samples in A, B,

intervals is different.

Copyright # 2006 John Wiley & Sons, Ltd.
interest, which is exactly the new, additional heterogeneity

contribution sought. Thismeasuremust be comparable to the

standard statistical variance (where all values are compared

to the mean and not to another value in the population), so it

is necessary to insert 2 in the denominator of the above

formula and hereby get the defining variogram master

equation:

VðjÞ ¼ 1

2ðNU � jÞ
X

m

ðhmþj � hmÞ2

The variogram is only calculated for values of j¼NU/2

(rounded down), since calculation for higher values result in

some of the central experimental values not being included in

the calculations—see Figure 3. An empirical rule-of-thumb

states that preferentially the variogram should not be

calculated for any j with less than 20–25 pairs, indicating

that a variographic experiment should always consist of

extracting a minimum of some 40–50 increments or units

[2,3].

The variogram can equally well be calculated based on

units-of-measurement such as grade, mass, concentration,

total content of critical component etc. In these cases it is

often needed to make the variogram dimensionless and

relative, in order to make comparison easier and more

meaningful (independent of measurement units). A relative

variogram can easily be calculated by inserting a squared

‘lot value’ into the master equation, for instance the grade
iographic experiment. In this small

t 2 min intervals. Then seven unit

six unit pairs spaced by 4 min (B),

is continues until finally 1 unit pair

shown in the figure are the same

C and D, only the calculation of

J. Chemometrics 2005; 19: 625–647
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Figure 3. Lags of j higher than NU/2 is not used, as this will result in some of

the experimental values not being included in the calculations—In the

illustrated example the two central values are not included in the calculations

if j is 5 (out of a total of eight units).

Representative process sampling for reliable data analysis 631
of the lot, aL:

VðjÞ ¼ 1

2ðNU � jÞa2L

X

m

½amþj � am�2

The variogram can alternatively be based on heterogeneity

contributions. Calculation of the relative variogram in not

necessary in this case as the heterogeneity contributions are

already relative and dimensionless (the mean of these

contributions m(hm) is always zero).

Whether to use an absolute or a relative variogram is a

matter of the specific subsequent use hereof.

5.2. Interpretation of variograms
The shape of the variogram provides a wealth of information

on the variation of the process (or elongated stationary lot) at
Figure 4. The four basic shapes of the variogram. Top-left: The i

left: The cyclic variogram and bottom-right: A decreasing vari

parameter j.

Copyright # 2006 John Wiley & Sons, Ltd.
hand. In practice, often one of four primary types of

variograms is encountered:
1. T
ncr

ogr
he increasing variogram
2. T
he flat variogram
3. T
he cyclic variogram
4. T
he decreasing variogram

The four basic types of variograms are outlined in

Figure 4—but deviations from, or combinations between,

these forms are often observed in practice.

The increasing variogram is a reflection of units which are

autocorrelated when the inter-sample distance(s) is within a

specific range, meaning that D becomes larger as the lag

distance j increases, until beyond a certain distance (the

‘range’) where the differences level out. The flat variogram is
easing variogram. Top-right: The flat variogram. Bottom-

am. All examples depict V( j ) as a function of the lag

J. Chemometrics 2005; 19: 625–647
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observed when no autocorrelation exists between the units

even at the lowest j’s (or if units are extracted at either too

large or too small intervals compared to the existing

autocorrelation). The cyclic variogram is observed when the

variability of the process is influenced by a factor causing a

cyclic behavior. This could be an automatic controller

regulating a process between some upper and lower control

limits, or a systematic change of raw-material, or similar. In

the above example (Figure 4), a minimum at approximately

j¼ 9, 18 and 27 is observed, and thus, deduce a cycle with a

period of nine times u. The cyclic variogram in the figure

additionally shows an increasing trend. The decreasing

variogram is extremely rare and could for example be caused

by the variographic experiment being too short to capture the

periodic variation of a process.

After determining the principal type of variogram,

information pertaining to the process or the lot can be

extracted. To illustrate this, the increasing variogram is used

as an example, since this is most often met with for

production processes and for very many natural processes

(geostatistics). When the first five points are extrapolated

backwards to intercept the ordinate axis, the result is a

measure for the so-called ‘nugget effect’ (a term stemming

from geostatistics), which is an indication of the minimum

practical error (MPE). This in turn is an indication of the

minimum sampling variance expected in practice. MPE

includes the fundamental sampling error (FSE), the grouping

and segregation error (GSE), the TAE and the incorrect

sampling errors (ISE)—if present. These errors are all

explained in detail in the literature [1–4,7,8].

When the variogram becomes flat (for increasing lags), the

‘sill’ of the variogram (a term originally from geology

meaning a ‘flat-lying slab’) has been reached; the sill can also

be calculated as the variance of all of the individual
Figure 5. A generic variogram with illustrations

‘‘range’ which indicates the lag ( j ) above which

The ‘sill’, which indicates the maximum varia

normally—for long measurement series—be pr

part after the range has been reached. If calcula

would be positioned slightly below this flat sect

Copyright # 2006 John Wiley & Sons, Ltd.
heterogeneity contributions in the set, NU, which character-

izes the global heterogeneity of the lot disregarding auto-

correlation. Lastly the ‘range’ of the variogram which is the

lag distance beyond which there is no further auto-

correlation observable, can be found. This can be converted

directly into an interval (minutes, meters etc.) as the casemay

be. The above terms are shown in Figure 5 below.

From these derived variogram features the following

critical new information can be incorporated into a sampling

scheme with great benefits:
� A
o

a

nc

ac

ted

ion
void extraction of increments/units with the same fre-

quency (or a multiple hereof) as the period of the vario-

gram cycle (if present), since this will provide a serious

underestimation of the real process variation. It is recom-

mended always to extract samples with a higher frequency

than two per period (this is also known as the Nyqvist

frequency).
� T
he overall sampling variation can be reduced signifi-

cantly by extracting increments/units at a suitably high

frequency, that is by sampling below the range.
� E
xtracting increments/units at a frequency above the range

will only provide statistically independent samples (not a

desirable feature in process sampling).
� A
 reliable estimate of the MPE (the total variation of

samples) comes from the ‘nugget effect’, which is a very

rich information source.

5.2.1. A note on estimating the ‘nugget effect’
Oftentimes estimating the nugget effect with a high enough

degree of certainty is difficult. This can be due to units

extracted at a too low frequency, and it is always

recommended to perform a small additional ‘short-range’

experimental series to obtain data for a more reliable
f the ‘nugget effect’, or the MPE and the

utocorrelation is no longer discernable.

e difference between the units, would

tically coincident with the flat variogram

only for the points shown in the graph it

.
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estimation of the nugget effect. This experiment is performed

by extracting, for example 30–50 samples with the highest

possible (equidistant) frequency, followed by calculating a new

(short-range) variogram, used specifically only to estimate the

nugget effect at a much higher degree of certainty.
Figure 6. Point-by-point integration of a variogram (or any

other function). The hatched area is approximately equal to

the area between the curve and the abscissa axis, which is

approximately equal to the area under an algebraically fitted,

integrated mathematical model through the points. The value

of V(0) is estimated by backward extrapolation, since it is not

experimentally known—see text.
5.3. Auxiliary functions and their use in
variography
The variogram only provides a set of limited integer values of

the lag parameter j. To remedy this, and in order to estimate

the continuous selection error (CE), see further below, a set of

so-called auxiliary functions and error generating functions is

needed [2]. The generation of these functions can be

performed in two ways: a simple point-by-point calculation

based directly on the individual points of the variogram

(recommended by Gy and Pitard [2,3]) or by an algebraic

modeling, which demands higher computational power and

programming skills; this latter approach is chosen by

geostatistics.
The variogram can be broken down into four component

parts—corresponding to the description of the four

heterogeneity components above:

VðjÞ ¼ V1ðjÞ þ V2ðjÞ þ V3ðjÞ þ V4ðjÞ
C

where:
V1(j) is the discontinuous random part of V(j) or the vario-

gram of the random, discontinuous short range fluctu-

ation term, h1m. V1(j) describes the random fluctuations of

the constitutional and distributional heterogeneitieswithin

each unit of the total set of units. Since these fluctuations

are random, the mean would normally be approximately

zero and their variance s2(h1m) is a constant.
V2(j) is the non-random continuous part of V(j) or the

variogram of the continuous long range fluctuation term,

h2m. This part of the variogram describes trends in the

process/lot.
V3(j) is the non-random, continuous, cyclic part of V(j) or the

variogram of the cyclic term h3m.
V4(j) is the residual part of V(j) not described by any of

the above. Most often this term is equal to zero or is very

small and the variance of the fluctuations, s2(h4m), is a

constant. It is the part of the total physical-chemical error

associated with estimation—for example sample weigh-

ing, analysis etc., but excluding the specific sampling

errors already delineated.

The ‘nugget effect’, equal to the intercept of the variogram

with the ordinate axis, termed V(0), actually involves two of

the above four parts: V(0)¼V1(0)þV4(0).

After calculation and interpretation of the variogram a set

of so-called ‘auxiliary functions’, that are helpful in

expressing the sampling variance, can be calculated or

derived. Four of these auxiliary functions exist:
� T
o

he integral S(j) of the variogram V(j)
� T
he average integral w(j) of S(j)
� T
he double integral S0(j) of the variogram V(j)
� T
he average double integral w0(j) of S0(j)
pyright # 2006 John Wiley & Sons, Ltd.
In common for the above is their ability to smoothen the

variogram, dampening the influence of random, periodic

and residual terms.

5.4. Point-by-point calculation of the
auxiliary functions
Before going into details, it is necessary to elaborate on the

preferred method of variogram integration: the point-by-

point method. This is performed as indicated in Figure 6, and

completely substitutes—as recommended by Gy and Pitard

[2,3]—the mathematical modeling favored in geostatistics.

This is based on the fact that oftentimes the (simple)

mathematical models are unable to capture and satisfactory

describe, especially periodic, phenomena; they also provide

greater demands to the computer and programming. It may

also be argued that such smooth, continuous mathematical

functions need not necessarily be corresponding to anything

physical in nature, or with regard to a specific production

process.

The point-by-point calculations can be done according to

the following procedure [2,3]:
� E
stimation of V(0), either by backward extrapolation or an

added experiment of very closely spaced increment extrac-

tions (distributed within the j-interval [0,1])
� C
alculation of the integral of the variogram according to:

SðjÞ ¼ Sðj� 1Þ þ 1=2Vðj� 1Þ þ 1=2VðjÞ for j � 1
Sð0Þ ¼ 0 for j ¼ 0
� C
alculation of the average integral according to:

wðjÞ ¼ SðjÞ
j for j � 1

wð0Þ ¼ Vð0Þ for j ¼ 0
� C
alculation of the double integral according to:

S0ðjÞ ¼ S0ðj� 1Þ þ 1=2Vðj� 1Þ þ 1=2VðjÞ for j > 1
S0ð0Þ ¼ 0 for j ¼ 0
� C
alculation of the average double integral according to:

w0ðjÞ ¼ 2S0ðjÞ
j2

for j > 0

w0ð0Þ ¼ 0 for j ¼ 0
J. Chemometrics 2005; 19: 625–647
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The auxiliary functions are used to estimate the so-called

continuous selection error (CE). CE is comprised of three

error parts, CE1 stemming from the short-range random

(stochastic) variation of the process, CE2 stemming from the

long-range trend development of the process and CE3

stemming from cyclic variations of the process. More on the

estimation of CE in the section on error generating functions

is described below.

5.5. The error generating functions and
calculation of the continuous selection error
(CE)
In a practical situation typically a sample, S, made up by a

number,NU, of increments, describing a lot, L, is needed. The

objective of the sample is to characterize the lot with regard

to the average of the critical component (the analyte). This is

not the same scenario if the goal is, for example to map the

1-D variance or map the internal heterogeneity variance of the

lot—in which case the increments are analyzed individually.

For typical process sampling purposes increments can be

extracted according to basically three different sampling schemes:
� S
Co
ystematic sampling, denoted ‘sy’, where increments are

extracted equidistant over the runtime of the process (lot)—

perhaps with a random starting point
� S
tratified random sampling, denoted ‘st’, where the run-

time of the process is divided into a number of equally

sized intervals, and an increment is extracted at random

within each of these intervals
� T
otally random selection, denoted ‘ra’, of the increments

over the runtime of the process.

The variogram and its auxiliary functions provide a lot of

information on the sampling error as a function of the

distance between selected increments. This information can

be used at a great advantage, and this can be seen directly

from the so-called error generating functions. The sampling

variance—or the sampling error—is a function of the

number of increments making up the sample and the

sampling scheme chosen. The error generating functions,

denoted W, are listed below:

WðjÞsy ¼ 2wðj=2Þ � w0ðjÞ and s2ðCEÞsy ¼ WðjÞsy
NU

WðjÞst ¼ w0ðjÞ and s2ðCEÞst ¼
WðjÞst
NU

WðjÞra ¼ s2ðhmÞ ¼ CHL ¼ const: and s2ðCEÞra ¼
WðjÞra
NU

In order to calculate the variances of the continuous

integration error, a few more calculations is needed in

addition to the above-described auxiliary functions (see

previous section):
� T
he value 2w(j/2) is estimated according to:

j0 is an integer

if j is even; then : j ¼ 2j0 and 2wðj=2Þ ¼ 2wðj0Þ

if j is odd; then : j ¼ 2j0 þ 1 and 2wðj=2Þ ¼ 2Sðj0þ1=2Þ
ðj0þ1=2Þ

where

Sðj0 þ 1=2Þ ¼ Sðj0Þ þ 1=4Vðj0Þ þ 1=4Vðj0 þ 1=2Þ

Vðj0 þ 1=2Þ is estimated by linear interpolation
pyright # 2006 John Wiley & Sons, Ltd.
This completes the theoretical introduction to the specific

process sampling features in TOS. While the above may

perhaps at first appear slightly complicated, it is in practice

very easy to use the variogram and its attendant error

generating functions to estimate the sampling error incurred

with a particular sampling scheme contemplated. Examples

of interpretation of the information present in a variogram is

presented below.
5.6. Recommended procedure for
performing a variographic experiment
In all practical situations the following procedure is

recommended in order to achieve the most reliable

information on the process/lot at hand [2]:
� E
xtract 60–100 units (increments) at a constant interval

covering the expected autocorrelation or cyclic behaviors of

the process or lot. The rules and guidelines of correct

sampling described in TOS should be followed throughout

to avoid biased results. The interval chosen should be

based on all available information as to the process’ varia-

bility, and should include the currently favored sampling

interval (even if not based on TOS). Deviating results will

always lead to identification of an improved sampling rate.
� P
repare and analyze all of these units according to the

existing sample preparation and analysis method. Especi-

ally when performing secondary sub-sampling (mass

reduction), it is always recommend to pay close attention

to the choice of method or device, as this greatly can

minimize the variance of the results. Please see Reference

[6] for a thorough analysis of existing techniques and

hardware for representative mass reduction.
� C
alculate the individual heterogeneity contributions, hm,

for all units.
� C
alculate a variogram V(j) of lag (j) up to 30 or 50 of the

heterogeneity contributions (dependent on the number of

original units).
� E
xtract another 30–50 units at constant intervals as quickly

after one-another as possible (the short-range variogram

basis), prepare/analyze and calculate another variogram

of lag up to 15 or 25 (dependent on the number of units).

This will result in the best possible estimate of the ‘nugget

effect’ and hence of the MPE.
� C
alculate the auxiliary functions according to the point-by-

point method.
� F
inally calculate the error generating functions.

A theoretical and several practical examples of calculation

of variograms, auxiliary functions and error generating

functions follow below.

5.7. An exemplar variographic experiment
First consider a showcase example with simulated, but

realistic data:

A factory is producing a three-component powdermixture

product in a continuously fed mixing process. Normally one

unit (of approximately 1 kg) is extracted at random within

every hour by a correctly designed cross-stream sampling

device. The device does the sampling automatically and it is

installed immediately before the packing machine. The
J. Chemometrics 2005; 19: 625–647
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Figure 7. Analytical results, am, and mass,Mm, of 60 units extracted at 1 min

intervals over 1 h. The mass of the individual increments (lower graph) is

reasonably constant. The average content of ‘A’ is 5.14%; also note that an

increasing trend is present. This figure is available in colour online at

www.interscience.wiley.com/journal/cem
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engineer in charge has for some time been wondering if the

composition of the final product is constant and she wants to

know if the sampling scheme used is optimal for this quality

assurance (QA) purposes, so she orders a variographic

experiment performed. In this experiment 60 units are

extracted over 1 h (exactly every minute), and the units are

prepared and analyzed individually according to the normal

procedure (everything to be in complete accord with TOS

principles), to arrive at an estimate for the content of

component ‘A’, considered themost important of the three in

the mixture. According to the specifications and the settings

of the production machinery, component ‘A’ should be

present in 5.14% by weight.

Figure 7 shows the analytical results of these 60 units

(average 5.14%) together with the weight of the individual

units:

The heterogeneity contributions of the individual units are

now calculated according to the formula above and are

displayed in Figure 8:
Figure 8. Individual heterogeneity contr

Copyright # 2006 John Wiley & Sons, Ltd.
From the heterogeneity contributions the variogram is

calculated and V(0) is estimated to be 0.007 by backward

linear extrapolating the first five points to intercept the

ordinate axis. The variogram V(j) and the auxiliary functions

w(j) and w0(j) are shown in Figure 9.

From Figure 9 a local minimum at j¼ 13 can be observed

and a tentative repetition at j¼ 25–27 (this can only be

observed for V(j), since the auxiliary functions already are

smoothed out and thus did not displaying this cycle). This

indicates the existence of some periodic phenomenon with a

period of approximately 13 min. If the raw data (Figure 7) is

inspected the cycle is very hard to spot, if at all, and this

underlines one of the major features of a variographic

experiment.

Now the corresponding error generating functions can be

calculated to get information on which sampling strategy that

will provide the best results (lowest sampling variance) in a

prospective sampling situation. This can be seen in Figures 10

and 11; some of the calculated values can be seen in Table I.
ibutions, hm, of the 60 units.
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Figure 9. Plot of the variogram, V( j ), the average first order integral, w( j )

and the second order integral, w0( j ). The value of V(0)¼w(0)¼w0(0) is

estimated as the interception of the ordinate axis by an extrapolated line from

the first five values of V( j ) to be 0.007. Observe how it is alwaysmore reliable

to base this extrapolation on w or w 0. Only values up to j¼ 30 (half the total

number of units) are shown. Note that the variogram both displays a trend-like

feature as well as a periodicity. This figure is available in colour online at

www.interscience.wiley.com/journal/cem

Figure 10. Plot of the error generating functions of the three sampling

modes: systematic sampling (sy), stratified random sampling (st) and com-

pletely random sampling (ra), for the data series in Figure 7. The abscissa

axis is reversed, here showing the number of units going into the final sample

(composite sampling), NU, instead of the lag parameter, j. This figure is

available in colour online at www.interscience.wiley.com/journal/cem
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From Figures 10 and 11 it can be observed that the higher

the number of units (increments), NU, that are combined to

form the final sample (i.e. composite sampling) the lower the

sampling variance (CE). It is also observed that systematic

sampling seems to provide the lowest variation in this case

and that completely random sampling provides the high-

est—by far. Further it is noted that increasing from one unit

to using just two (Figure 10) provides a reduction in variance

of approximately 50% using random selection, an approxi-

mately 70% reduction using stratified random selection, and

an approximately 80% reduction using systematic sampling.

If 10 units are included in the final sample instead, a 90%
Copyright # 2006 John Wiley & Sons, Ltd.
reduction for random selection, a 97% reduction for stratified

selection and a 98% reduction using systematic selection is

the result. If need be, the sampling variation can be reduced

by as much as 99.7% by using all 60 units and systematic or

stratified sampling compared to the existing procedure of

extracting randomly one sample per hour.

The standard deviation can be calculated instead of the

variance (as the square root). The standard deviation is

relative, and in order to make for easy comparison, it can be

made absolute by multiplying by the average grade of ‘A’

(5.14% in this case). In Figure 12, all standard deviations (of

the three selection modes) are calculated and multiplied by
J. Chemometrics 2005; 19: 625–647
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Figure 11. Close-up of the section of 60 to 10 units in the final sample

seen in Figure 10 above. This figure is available in colour online at www.

interscience.wiley.com/journal/cem

Table I. Calculated values by the point-by-point method

j V(j) S(j) w(j) S0(j) w0(j) 2w(j/2) Wsy Wst Wra NU S2sy s2st s2ra

0 0.007 0.000 0.007 0.000 0.009 0.016 0.007 0.009 0.039 — 0.00012 0.00014 0.00065
1 0.010 0.009 0.009 0.004 0.009 0.017 0.008 0.009 0.039 60 0.00027 0.00030 0.00131
2 0.011 0.019 0.010 0.018 0.010 0.018 0.009 0.010 0.039 30 0.00043 0.00049 0.00196
3 0.015 0.032 0.011 0.044 0.011 0.019 0.009 0.011 0.039 20 0.00058 0.00070 0.00261
4 0.016 0.048 0.012 0.084 0.011 0.020 0.009 0.011 0.039 15 0.00075 0.00094 0.00327
5 0.020 0.065 0.013 0.141 0.012 0.022 0.010 0.012 0.039 12 0.00096 0.00120 0.00392
6 0.020 0.086 0.014 0.216 0.009 0.016 0.007 0.009 0.039 10 0.00012 0.00014 0.00065

— — — — — — — — — — — — —
30 0.051 0.809 0.027 9.477 0.021 0.036 0.015 0.021 0.039 2 0.00756 0.01053 0.01960
— — — — — — — — — — — — — —

Results are calculated up to j¼ 60, but not all are shown here.

Representative process sampling for reliable data analysis 637
three and the average content to get an approximate measure

of the expected sampling variation in absolute units:

Expected variation¼ 3�
ffiffiffiffi
s2

p
�am

From the above variogram analysis it may be concluded

that it is possible to reduce the absolute sampling variation

from over 3% to 0.5% simply by combining 10 units into a

composite sample, if the units are extracted systematically or

stratified randomly. It is of course imperative to apply all of

the correct 0-D TOS principles when reducing the mass of

this 10-increment composite sample to obtain the final

sample [1–3] (and Section 6 below).

What to suggest to a process engineer about to design a

new sampling scheme based on the above variographic

analysis? Well, it is known that every cut by the automated

(correct) sampling device provides approximately 1 kg of

material. It is also known that handling very large amounts of

material is troublesome and laborious, since this increases

the amount of work necessary to handle the material and

perform the correct representative mass reduction [6], so, it is

needed to stay within reasonable masses of our final

(composite) sample. The plot of the error generating

functions suggests using either the systematic or the

stratified random sampling approach (systematic is slightly
Copyright # 2006 John Wiley & Sons, Ltd.
better). It is further observed from the variogram that the

process is cyclic with a period of approximately 13 min, and

one must therefore be aware of the danger of sampling

systematically in the presence of cycles. Considering this, it is

recommended to use stratified random sampling, as this

always overcomes the danger of picking increments/units

coincident with the cycle. So, the final sampling scheme

recommended:
� D
ivide the process into 6 min intervals (10 increments per

hour) and make a random cut within each of these inter-

vals. Every hour the automated sampling device is emp-

tied and the mass of the final sample is reduced to

whatever size needed by the analytical laboratory using

a correctly designed device (for instance a correctly

designed riffle splitter with a large number of chutes). If

a smaller variation is critical, then use a higher number of

units (perhaps 30), even though this complicates material

handling.

5.7.1. Note on didactic data set
The above data was constructed using a linearly increasing

trend (from 1 to 4) over the 60 samples, adding a cyclic value

of period 13 and amplitude 1.5. Finally, a random noise
J. Chemometrics 2005; 19: 625–647
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Figure 12. Absolute standard deviation of content of ‘A’ in samples extracted

by the different selection modes as function of the number of units making up

the final sample. This figure is available in colour online at www.interscience.
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component with value between 0 and 2 was added to make

the data more realistic.

wiley.com/journal/cem
6. SUMMARY OF ALL SAMPLING
ERRORS

Basically, TOS defines seven different errors connected to

sampling. These will not be explained in detail here, only

summarized. The interested reader is referred to the

literature on TOS for further information [1–4].

The ‘zero-dimensional errors’ covers errors that have to do

with sampling of 0-D lots (see Section 3):
� T
Co
he Fundamental Sampling Error (FSE): This is the error

due to the CH of the material and is constant for a given

material in a given physical state (comminution/crushing

reduces FSE)
� T
he Grouping and Segregation Error (GSE): This error

exists because of two factors, as the name implies: segre-

gation (mixing reduces this) and grouping (composite

sampling reduces this)
� T
he Increment Delimitation Error (IDE): When the deli-

mitation of an increment does not cover entirely, with

parallel sides, a full cross-section of the lot (ensuring that

all parts of the cross section of the lot are equally

represented in the sample), IDE results. It can (and should)

be eliminated completely
� T
he Increment Extraction Error (IEE): If the extracted

increment does not comply with that delineated, IEE crops

out. A simple rule states that a fragment (physical piece of

material) is to be extracted if it has its center of gravity

inside the delineated increment
� T
he Increment Preparation Error (IPE): This error does not

follow any statistical distributions—it covers all forms of

alteration of the increment after extraction. Examples are:

loss of fines, water evaporation, degradation of biological

material etc. Only careful field, plant and laboratory prac-

tice can guard against IPE

The additional ‘1-D errors’ covers two special errors that

only arise when sampling 1-D lots.
pyright # 2006 John Wiley & Sons, Ltd.
� T
he CE comprises of three parts, of which only two are

new in addition to the 0-D case [9]:

� CE1: This error describes random fluctuations and is

nothing more than a compounding of all the zero-

dimensional errors pertaining to sampling each incre-

ment

� CE2: Also known as the ‘Time Fluctuation Error’ (TFE).

This error describes contributions due to the existence of

trends in the lot/process

� CE3: Also known as the ‘Cyclic Fluctuation Error’ (CFE)

describes errors stemming from the presence of periodic

variation of the lot/process.
All the above errors combine to form the total sampling

error (TSE).

TSE ¼ FSEþGSEþ IDEþ IEEþ IPEþ TFEþ CFE

Note: The global estimation error (GSE) also includes the

TAE, which is strictly connected to the analytical measure-

ment and has nothing to do with the sampling process itself:

GSE ¼ TSEþ TAE

7. EQUIPMENT OF 1-DIMENSIONAL
SAMPLING

This section serves to inform on only a very small selection of

the vast amount of (correct and incorrectly designed) process

sampling equipment and devices, and to give an idea of

which aspects to consider when installing a new device or

altering an existing one. The reader is referred to the

comprehensive, authoritative treatment in Pitard [3].
7.1. Cross-stream sampling device
This is the automated counterpart to the so-called ‘stopped

belt sampling’, where a perfectly delineated increment with

parallel sides is extracted from a lot of material in a conveyor

belt. If designed correctly, a cross-stream sampling device

also extracts a full cross-section with parallel sides from the
J. Chemometrics 2005; 19: 625–647
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Figure 13. Cross-stream sampling device extract a full cross-section of a falling stream of

material by traversing the sample box completely through the stream from side to side at a

constant speed. In this example, the device is placed in a transfer end-point between two

conveyor belts.
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lot [10,11]. It is simply a rectangular box that traverses at

constant speed through the entire stream of free falling

material. It is normally installed at a discharge or end-point

of a conveyor belt. Dependent on the material to be sampled

(material cohesion, stickiness etc.), some models have a

scraper-blademounted to ensure that all material is removed

from the belt. Figure 13 illustrates the principle of a cross-

stream sampling device:

7.2. Flap sampling device
Another widely used device is the so-called ‘flap sampling

device’. Unfortunately, this device will very often yield biased

samples according to TOS principles. A flap sampling device

functions by diversion of the entire stream from the main

flow into a ‘sample flow’ by a vertically (or much worse,

horizontally) installed flap. Figure 14 illustrates the function

of both an incorrectly and a correctly designed vertical flap

sampling device.

The design on the left side in Figure 14 is so-called

structurally incorrect, since only a part of the stream is
Figure 14. Schematics of two different flap-sampling device

designs. The model on the left is incorrectly designed, since

the right-hand side of the material flow (P) will be overrepre-

sented in the sample (B) when the flap is moved from right to

left diverting the material into the sample container, and back.

The model on the right is correctly designed, as all parts of the

process stream (P) are represented equally in the final sample

(D) as a flexible sample hose is traversed across the sample

outlet. The left-over material (A, C and E respectively) is for

both models fed back to the main process stream.

Copyright # 2006 John Wiley & Sons, Ltd.
diverted as the flap is beginning tomove. This means that the

right side of the material flow is unavoidably always

overrepresented. The degree of overrepresentation is depen-

dent on the speed of flap movement and on the time of

the device in the open position. The motion of the incorrectly

designed flap causes an increment delimitation error as the

delimited increment does not have parallel sides. If any form

of flow segregation or stratification exists in the flowing

material (flow, rolling or gravitation segregation etc.), the

flap sampling device will overestimate some size or

compositional fraction of the flow.

This can however be easily remedied by altering the device

to work according to the design in the right side of Figure 14

instead. Here, the entire stream is led through a flexible hose

that normally rests at either side of the pipeline (C or E).

When a sample is extracted, the flexible hose is moved

completely across the sample outlet (D), which now cuts a

correctly delimited incrementwith parallel sides. The sample

outlet is naturally covering the whole dimension perpen-

dicular to the paper plane in Figure 14, and it is most often

designed as a rectangular box.

7.3. Valves
Valves are often used as sampling devices in pipelines. This

usually results in a sampling bias unknown to most users.

Imagine a liquid with suspended particles moving in a

horizontal pipeline. If the flow is ‘homogeneous’ (i.e.

turbulent and totallymixed), resulting in a perfectly identical

cross-section of the flow in both vertical and horizontal

directions, using valves as sampling outlets would be

permitted. However, if the stream is not completely mixed

(for instance by having laminar flow along the walls of the

pipe, or displaying local flow eddies and vortices), a serious

sampling error will always result, as heavier and lighter

particles are bound to be disproportionally represented in an

increment materialized through a valve (which in this

context functions as a flap valve). The problems associated

with segregation can be minimized, but never absolutely

eliminated, by inserting the valve in a vertical pipeline

instead (Figure 15).

Many different designs and engineering solutions exist in

the industrial sector, but the authors have not yet been able to
J. Chemometrics 2005; 19: 625–647
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Figure 15. Different valve designs. The position of a valve (A,

B, C) is dependent on how the material in the tank is behaving

and howwell it is mixed. One can argue that the position of the

valve is of insignificant importance if the material is indeed

well-mixed (and sampling is performed isokinetically to avoid

classification of the different particle sizes), but process

industry knows that mixing in reactor vessels is never this

perfect. The design of the valve on the other hand does have

an impact on the sampling quality. None of the designs (D, E,

F) will ensure a correct sample, unless the flow is totally

turbulent and thus completely mixed (and, again, sampling

is performed isokinetically). Often, it proves best to install the

valve in a vertical pipeline (G, H, I) as this minimizes signifi-

cantly (but does not necessarily eliminate completely), the

problems associated with horizontal segregation of particles

in the flow.
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find a truly correct valve sampling device for pipeline flows

(one that samples a perfect ‘slice’ of the flow like the cross

stream sampling device described above); the best (repre-

senting existing process technology) would be installed in

upward-flowing pipelines.
8. PRACTICAL EXAMPLES

In this section examples of sampling 1-D lots, and the use of

variography to characterize the lots and find an optimal

sampling strategy, are presented.
Figure 16. Data from on-line measurem

and steam pressure in a power plant fee

series has been averaged to one value e

close relationship between steam pressu

depicted on the secondary ordinate axi

colour online at www.interscience.wiley.c
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8.1. On-line measuring of pressure,
temperature and oxygen concentration in a
power plant
This first data set is used to illustrate all of the information

features of a variographic analysis. In a major Danish coal-

fuelled power plant, several parameters in the feed water are

routinely monitored on-line. A data set for a variographic

analysis is extracted, in order to see if any hidden trends or

periodic fluctuations are present in the process. The data are

collected over a 24-h period, from 23.00 until 23.00. The

extracted parameters are:
� S
e

d

ve

re

s (

om
team pressure in feed water tank [bar]—Logged on

average every 215 s (402 measurements total)
� O
xygen content in feed water [mg/kg]—Logged on aver-

age every 32 s (2670 measurements total)
� F
eed water flow [kg/s]—Logged on average every 47 s

(1842 measurements total)

The data set is way too large for normal variographic

analysis, so it is compressed by averaging every measure-

ment inside all 20 min windows, yielding a suitable total of

72 units. Since all measurements are performed on-line,

without loss of generality the sample weight contributions

are here neglected by setting them all to unity. Normally, on-

line data points like these should be coupled with a flow

measurement, to ensure a single readout per defined volume

that passes the sampling/measurement probe. Hence, the

sample mass in the calculation of the variogram should be

substituted by a flow measurement. These data were,

however, not present in this data set.

Figure 16 shows a plot of the raw data.

From the plot of the raw data, a relatively smooth time-

trend is observed. This is in a dominant way due to averaging

over 20 min intervals. The grand means are:
� S
team pressure: 13.4 bar
� O
2 content: 74.3 mg/kg
� F
low rate: 183.7 kg/s
nts of oxygen content, flow rate

water system over 24 h; all three

ry 20 min. There seems to be a

and flow rate. Steam pressure is

right). This figure is available in

/journal/cem
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Figure 17. Variogram and auxiliary functions for steam pressure. A mini-

mum at j¼ 30 is observed. This indicates the existence of a cyclic fluctuation

with a rather long period ( j¼ 30¼ 600 min¼ 10 h). V(0) can be estimated to

be very close to zero in this case. This figure is available in colour online at

www.interscience.wiley.com/journal/cem
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Figure 17 shows the resulting variogram and auxiliary

functions. A minimum at j¼ 30 is observed, which indicates

that the process is following a period of 10 h (30�
20 min¼ 600 min). Either this period is already known to

the plant operators or not; in the latter case, the variogram

would be very valuable indeed for establishing this new

process insight alone.

Now the error generating functions are calculated in order

to see if an optimal sampling procedure for this process can

be found, illustrating a scenario where it would be preferable

to find the average steam pressure and not have to

continuously monitor this process on-line perhaps. The

pertinent error generating functions are shown in Figure 18.

Increasing the number of units going into the final sample

drastically increases the reliability of the result. Systematic

sampling apparently provides a slightly lower variation as
Figure 18. Error generating functions (v

plotted as a function of the number NU

sample. From this plot it is suggested to

systematic random selection (due to the

the error sampling variation by approxima

colour online at www.interscience.wiley.c
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does stratified random sampling. However, both these

selection methods are far superior to the complete random

selection, and since the process shows periodic behavior, it is

suggested to use stratified random selection of perhaps eight

units making up a composite sample. This would yield an

expected sampling variation of steam pressure (for eight

units in a composite sample) of:

Systematic :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00099

p
� 13:4 bar � 3 ¼ 1:26 bar

Stratified :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00182

p
� 13:4 bar � 3 ¼ 1:71 bar

Random :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00685

p
� 13:4 bar � 3 ¼ 3:33 bar
ariance of CE) for steam pressure

of units combined to form the final

use, for instance six units picked by

periodic process), as this reduces

tely 95%. This figure is available in

om/journal/cem
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Figure 19. Variogram and auxiliary functions for the power plant feed water

oxygen contents over 24 h (20min averaged samples). The variogram does not

suggest the existence of periodic behavior of the process. On the other hand it

can be seen that the variogram increases until at app. j¼ 10, where the process

seems to have passed the range, meaning that samples further apart than

200 min are not correlated to one another. V(0) can best be estimated as

0.018, from back-extrapolation of the five last points of either of the auxiliary

functions. This figure is available in colour online at www.interscience.

wiley.com/journal/cem
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Analyzing flow rate behavior yields almost exactly the

same results (not shown here).

Regarding the oxygen content a very different result is

obtained. Figure 19 shows the variogram and auxiliary

functions for the oxygen content measurements.

The error generating functions (Figure 20) suggest

basically the same as with steam pressure: select perhaps

eight units to reduce sampling variation heavily. In this case

it is safe to select the systematic selection scheme, as there

does not appear to be any cycles in the development of the

process for this on-line analyte.

This would yield an expected sampling variation of

oxygen content (for eight units in a composite sample) of:

Systematic :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00322

p
� 74:3mg=kg � 3c

¼ 12:65mg=kg

Straified :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00351

p
� 74:3 mg=kg � 3

¼ 13:21 mg=kg

Random :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00464

p
� 74:3 mg=kg � 3

¼ 15:18 mg=kg

For comparison, the variogram and auxiliary functions of

the full data set of 2670 measurements of oxygen content has

been calculated. This can be seen in Figure 21.

A high degree of consistency between the results from the

full and the reduced data set is found, as they both have
Copyright # 2006 John Wiley & Sons, Ltd.
ranges of approximately 100 min. None of these variograms

show any periodic behavior of the feed water oxygen

content, signifying completely different time-functionalities

for this variable.

8.2. On-line measurement of particle sizes
by acoustic chemometrics
In a major Danish-international company, a particulate

material is produced by a granulation process. In this process

the particle size of the product is measured on-line by acoustic

chemometrics: at a specific process point, particulate aggre-

gates collide with the exterior reactor vessel walls producing

compound acoustic signals picked up by suitable vibration

sensors. The resulting raw signals are further processed,

domain transformed and ultimately used as input data in a

PLS prediction with regard to grain size, the principles

behind which can be found in References [12–15]. A

particular data set has been gathered over approximately

2000 min, logged every 5 min. Predicted particle sizes in this

example have been transformed (encrypted) to a relative

particle size of [�1.6 to 1.6] for confidentiality reasons. There

were a few (26) missing values, which have all been replaced

by the average particle size. The raw data are plotted in

Figure 22:

The objective of the acoustic chemometric monitoring is

straightforward: the particle size must stay within (very)

narrowly defined specifications (customer demands). On-

line prediction of this critical parameter is of obvious interest.

The pertinent variogram and auxiliary functions can be

seen in Figure 23.

This variogram does not show any clear signs of

periodicity. A tentative indication of a minimum around

j¼ 175 might perhaps be argued, but this is not doubled
J. Chemometrics 2005; 19: 625–647
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Figure 20. Error generating functions (variance of CE) for measurement of

oxygen content as a function the number of units making up the final composite

sample. As with steam pressure, it is suggested to combine six or eight units,

this time selected systematically, however, to form the final sample. This figure

is available in colour online at www.interscience.wiley.com/journal/cem

Figure 21. Variogram and auxiliary functions for the full dataset (2670

measurements) for oxygen content. The variogram reaches its sill at j¼
app. 200, and therefore it is concluded that no autocorrelation exist between

units spaced by more than approximately 107 min (200� 32 s). This is

consistent with the results for the reduced dataset above (where the

range¼ approximately 100 min). This figure is available in colour online at

www.interscience.wiley.com/journal/cem
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around j¼ 350. Here it must be concluded that at least no

obvious periodicity is present.

An optimal sampling strategy can be specified, in order to

minimize the sampling variance. In this case the variation is

again reduced by increasing the number of increments.

The goal of invoking on-line acoustic chemometrics is to

substitute current manual sampling at regular intervals of

samples for laboratory size-distribution analysis (a process

which is far from delivering results in real-time). The above

results of the variographic experiments and its conclusions

have been used to develop an optimal reference sampling

strategy for the critical particle size multivariate calibration.
Copyright # 2006 John Wiley & Sons, Ltd.
8.3. Variographic check of grain impurities
during unloading
In order to find the true average content of dust and

impurities in a grain silo (an unwanted component in grain

lots meant for livestock consumption), a base-line vario-

graphic experiment was performed. A grain storage silo

was emptied at constant flow from a hatch at the bottom

where units were collected by correct, representative

cross-stream cuts every minute (for a total of 75 min).

Analysis for dust and impurities was performed by an

automated device (model MLN from Rationel Kornservice

A/S, see Reference [16]). This is a ‘by-the-book’ example
J. Chemometrics 2005; 19: 625–647
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Figure 22. Particle size predictions (estimates) from acoustic chemometrics

on-line measurements in a granulated product. Approximately 2000

measurements were performed every 5 min for 34 h. All measurements

pertain to the same formulation production campaign.

Figure 23. Variogram and auxiliary functions for on-line measurement of

particle sizes. The variogram has a range of j¼ 50, signifying that units

spaced by more than 250 min are no longer correlated with each other. This

figure is available in colour online at www.interscience.wiley.com/journal/cem
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of reducing the dimensionality of a difficult 3-D lot to a

1-D lot, opening up for much more reliable sampling [1].

There is a certain similarity of the present experiment and

the flow segregation study described by Miserque and

Pirard [17].

After leaving the silo, the unsampled material (stock) was

stored in a large trailer, and subsequently pumped back into

the silo.

An ‘easier’, but far less reliable and very often used

alternative, would have been extracting just one (or maybe a

few) samples either from the top of the silo, or from the

bottom hatch—employing the proverbial ‘grab-sampling’.

This is an approach used by many not conversant with

TOS’ scientific principles, to be emphatically discouraged

[1]. Below, sampling errors arising from this approach are

given. Figure 24 shows the raw data.

Figure 25 shows the corresponding variogram and

auxiliary functions.
Copyright # 2006 John Wiley & Sons, Ltd.
At first glance, there does not seem to exist much

autocorrelation between these units as the variogram quickly

reaches what appears to be a relatively flat sill for j¼ 4–10.

Close inspection of the variogram also reveals a subtle trend

related to the silo discharge process, however. On the whole,

this trend reflects that the variance for the highest j-lags is

some 40% higher than for j below, say, 4. This means that the

average difference between the increments of the silo

discharge is increasing throughout the emptying of the

silo—attesting to a significant heterogeneity in the vertical

dimension, perhaps as a consequence of flow segregation

(originating either from the current discharging or from

previous loading(s) of the silo), or from a direct influence of

gravity. Here the increasing variogram type produces insight

into the internal distribution of impurities in the silo, which

in the present didactic experiment, of course, is also revealed

by the display of the individual sample contents (Figure 24),

but in a much less obvious manner.
J. Chemometrics 2005; 19: 625–647
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Figure 24. Raw data from the silo experiment. The average dust and impu-

rities content is 1.30%, while deviations run as high as 5.20% (extreme low

values of impurities are of less interest in the context of the objective). This

figure is available in colour online at www.interscience.wiley.com/journal/cem

Figure 25. Variogram and auxiliary functions for measurements of dust and

impurities sampled during the base-line emptying of a grain silo (3-D to 1-D lot

dimensionality reduction). V(0) is estimated to be approximately 0.27 by

linear extrapolation of the first five points of either of the auxiliary functions or

for that matter, from V(j). This figure is available in colour online at www.

interscience.wiley.com/journal/cem
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As in the other examples, the error generating functions

(Figure 26) are calculated in order to see what kind of

sampling variance reduction can be expected from using

composite sampling and one of the three selection modes.

Figure 26 indicates, for example eight units in a final

composite sample. Further it is observed that in this case

there is no significant difference between the three selection

modes. This is due to the fact that there is no significant

autocorrelation between the units, in which context all

selection modes will perform equally well. This is a nice

substantiation of the general TOS findings on this issue [2,3].

The absolute standard deviations (99.7% confidence

interval) are likewise calculated for a sample made from

just one unit (a ‘grab sample’) and a composite sample made

from eight units, in order to see the effect of reducing the lot
Copyright # 2006 John Wiley & Sons, Ltd.
dimensionality and of using composite sampling:

1 unit ðgrab samplingÞ :

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:34725

p
� 1:30% � 3 ¼ 2:30%

8 units ðrandomÞ:

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:04341

p
� 1:30% � 3 ¼ 0:81%

8 units ðsystematicÞ

Expected variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:03739

p
� 1:30% � 3 ¼ 0:75%

Had a grab sample (one sample only) been utilized, a

sampling error of 2.30% would have been incurred, whereas

a threefold reduction can be achieved (0.75%–0.81%) by

basing the analysis for impurities/dust on a composite
J. Chemometrics 2005; 19: 625–647
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Figure 26. Error generating functions as a function of the number of units

making up a final composite sample by three different selection modes. This

figure is available in colour online at www.interscience.wiley.com/journal/cem
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sample made up of eight increments. Agricultural account-

ing demands highly accurate and precise determination of

impurities/dust, and will gladly accept the extra work

included in the above composite sampling approach in order

to reduce TSE significantly (to below 1%).

This example, like the others above, underlines that large

reductions of sampling errors from using composite

sampling, combined with one of the three sampling modes

can always be quantified, and clearly illustrates the

significant benefits from performing a variographic exper-

iment. It is always valuable to know to which degree the

units of the lot are correlated with their ‘neighbors’ for

optimal planning of a sampling scheme.
9. DISCUSSION AND CONCLUSIONS

This tutorial has outlined the most important aspects

regarding sampling of 1-D lots or processes. By several

didactic examples the benefit of a thorough variographic

analysis of any lot, prior to implementing a new sampling

routine, has been shown. From variographic experiments

specific information on the following issues can be obtained:
� L
Co
ot/process variation over time or space
� A
utocorrelation in the lot/process (MPE, range, sill)
� D
elineation of trends in the lot/process
� D
elineation of short- or long-term periodic behavior of the

lot/process
� S
ampling variance as a function of the sample selection

mode
� S
ampling variance as a function of the number of units in

composite sampling

The following can be concluded:
� G
enerally, for heterogeneous materials, systematic sample

selection for composite sampling provides the lowest

sample variances. Contrastingly:
� C
ompletely random sample selection provides the highest

errors and may for this reason as well be abandoned

forthwith—Use one of the other two instead
pyright # 2006 John Wiley & Sons, Ltd.
� I
f the lot/process shows any form of periodic behavior, it is

recommended to use stratified random sample selection—

to make sure samples are not extracted with the same

frequency as the cycle (or a multiple thereof)

The specific examples presented here are only that—

examples: the general 1-D sampling principles presented are

completely general however. All 1-D sampling procedures

must be based on a correct variographic experiment if to have

credibility and reliability.

This tutorial has shown that TOS provides the necessary

and sufficient theoretical as well as practical, framework for

fully representative process sampling. The procedures

outlined are easy to understand and while not in any way

being prohibitive with respect to the physical and the

analytical efforts needed for total Q.A. control over the often

dominating sampling errors.

9.1. TOS process sampling software
It is relatively easy to construct a spreadsheet (MS Excel, etc.)

that will produce all the above variographic plots and

calculations following the outlined point-by-point calcu-

lation method, at least when the number of units is

reasonably low (say less than 100 or so). When dealing with

much larger data sets, an alternative may also be needed.

Codes/spreadsheets have been developed for both EXCEL

(for small data sets) and MATLAB (for large data sets). In

addition a (beta-version) of a stand-alone program (VARIO)

that handles (almost) any data set size has been developed by

ACABS. This software is available at the homepages:

www.acabs.dk (freeware).
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