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Abstract. We study the global centre symmetry set (GCS) of a
smooth closed submanifoldMm ⊂ R

n, n ≤ 2m. The GCS includes
both the centre symmetry set defined by Janeczko [15] and the
Wigner caustic defined by Berry [3]. The definition of GCS(M)
uses the concept of an affine λ-equidistant of M , Eλ(M), λ ∈ R.
When M = L is a Lagrangian submanifold in the affine symplectic
space (R2m, ω =

∑m

i=1
dpi ∧ dqi), we present generating families

for singularities of Eλ(L) and prove that the caustic of any simple
stable Lagrangian singularity in a 4m-dimensional Lagrangian fibre
bundle is realizable as the germ of an affine equidistant of some L ⊂
R

2m. We characterize the criminant part of GCS(L) in terms of
bitangent hyperplanes to L. Then, after presenting the appropriate
equivalence relation to be used in this Lagrangian case, we classify
the affine-Lagrangian stable singularities of GCS(L). In particular
we show that, already for a smooth closed convex curve L ⊂ R

2,
many singularities of GCS(L) which are affine stable are not affine-
Lagrangian stable.

1. Introduction

The centre of symmetry of an ellipse in R
2 can be defined as the set

(in this case consisting of a single element) of midpoints of intervals
connecting pairs of points on the curve with parallel tangent vectors.
For a generic smooth convex closed curve, this set is not a single point,
but forms a curve with an odd number of cusps, in the interior of the
smooth original curve, which has been known as the Wigner caustic of
the smooth curve since the work of Berry in the 70’s. Thus, the Wigner
caustic is an affine-invariant generalization of the centre of symmetry
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of an ellipse and this definition of centre of symmetry extends to higher
dimensional smooth closed submanifolds of Rn.
On the other hand, the centre of symmetry of an ellipse in R

2 can
also be described as the envelope of all straight lines connecting pairs
of points on the curve with parallel tangent vectors. For a generic
smooth convex closed curve, this set is not a single point, but forms
a curve with an odd number of cusps, in the interior of the smooth
original curve, which has been known as the centre symmetry set of the
smooth curve since the work of Janeczko in the 90’s. Again, this is an
affine-invariant generalization of the centre of a circle, which extends
to higher dimensional smooth closed hypersurfaces of Rn [15].
The Wigner caustic and the centre symmetry set of a generic smooth

convex closed curve are not the same singular curve. Instead, the
Wigner caustic is interior to the centre symmetry set and the cusp
points of the inner curve touches the outer one in its smooth part. A
larger centre symmetry set, containing the two previous ones, can be
defined in an affine-invariant way, for an arbitrary smooth closed m-
dimensional submanifold M of Rn, for n/2 ≤ m < n. We call this new
set the global centre symmetry set of M and denote it by GCS(M).
Our definition is a slight modification of a definition introduced by

Giblin and Zakalyukin [9]-[11] to study singularities of centre symmetry
sets of hypersurfaces. A key notion in this definition is that of an affine
λ-equidistant of the smooth submanifold M , denoted Eλ(M), of which
the Wigner caustic is the case λ = 1/2. The singularities of Eλ(M) are
then fundamental to characterize GCS(M) and its own singularities.
In this paper, we study singularities of Eλ(L) and GCS(L), when L

is a smooth closed Lagrangian submanifold of (R2m, ω), where ω is the
canonical symplectic form. The paper is organized as follows.
In section 2 we present the definitions of an affine λ-equidistant of

M and of the global centre symmetry set of M , for a general smooth
submanifold Mm ⊂ R

n, n ≤ 2m. In section 3, for M = L Lagrangian
in R

2m, we obtain the generating families for the affine equidistants
Eλ(L), cf. Theorem 3.8, relating their general classification to the
well known classification by Lagrangian equivalence (chapters 18, 19,
21 in [2]). This is used in section 4 to study singularities of affine
equidistants. Theorem 4.1 states that the caustic of any simple stable
Lagrangian singularity in a 4m-dimensional Lagrangian fibre bundle is
realizable as the germ of an affine equidistant Eλ(L) of some L ⊂ R

2m.
In section 5 we obtain a geometric characterization for the criminant

of GCS(L) in terms of bitangent hyperplanes to the Lagrangian sub-
manifold Lm ⊂ R

2m, cf Theorem 5.5. This result is similar to results
presented for a hypersurface Mm ⊂ R

m+1 in [9]-[11].
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In section 6 we introduce the equivalence relation (also as an equiv-
alence of generating families) that is used to classify the singularities
of GCS(L), cf. Definitions 6.1, 6.3 and 6.7. Then, we show that the
only affine-Lagrangian stable singularities of GCS(L) are singularities
of the criminant, the smooth part of the Wigner caustic, or tangent
union of both, cf. Theorems 6.12 through 6.16 and Lemma 6.13 .
Section 7 is devoted to the GCS of curves in the affine symplectic

plane. First, in Theorem 7.1 we collect results on the GCS of con-
vex curves in non-symplectic plane, [3], [15], [8]-[12], and we obtain in
Theorem 7.2 a new inequality on the number of cusps of the centre
symmetry set and the Wigner caustic. Pictures illustrate these results.
Then, we obtain in Theorem 7.7 and Corollary 7.8 all the affine-

Lagrangian stable singularities of the GCS of curves in symplectic
plane. Comparison of Theorem 7.1 and Corollary 7.8 shows that most
of the singularities of the GCS which are affine-stable when no sym-
plectic structure is considered, are not affine-Lagrangian stable.
In other words, although any smooth curve on R

2 is Lagrangian, the
singularities of their GCS are sensitive to the presence of a symplectic
form to be accounted for, that is, there is a breakdown of their stability.
Thus, we end the paper with some discussion of this result, which is
similar to some results in [4]-[7] showing a breakdown of the simplicity
of some singularities due to a symplectic form.

Acknowledgements: We specially thank M.A.S. Ruas for many stim-
ulating discussions and invaluable remarks. We also thank P. Giblin
and S. Janeczko for discussions and V. Goryunov for remarks. We are
also very grateful to the referee for many invaluable suggestions.

2. Definition of the global centre symmetry set.

Let M be a smooth closed m-dimensional submanifold of the affine
space R

n, with n ≤ 2m. Let a, b be points of M . Let τa−b be the
translation by the vector (a− b), i.e., τa−b : R

n ∋ x 7→ x+(a− b) ∈ R
n.

Definition 2.1. A pair a, b ∈ M (a 6= b) is a weakly parallel pair if

TaM + τa−b(TbM) 6= TaR
n.

A weakly parallel pair a, b ∈ M is called k-parallel if

dim(TaM ∩ τb−a(TbM)) = k.

If k = m the pair a, b ∈ M is called strongly parallel, or just parallel.
We also refer to k as the degree of parallelism of the pair (a, b).
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Definition 2.2. A chord passing through a pair a, b, is the line

l(a, b) = {x ∈ R
n|x = λa + (1− λ)b, λ ∈ R}.

Definition 2.3. For a given λ, an affine λ-equidistant of M , Eλ(M),
is the set of all x ∈ R

n such that x = λa+(1−λ)b, for all weakly parallel
pairs a, b ∈ M . Eλ(M) is also called a (affine) momentary equidis-
tant of M . Whenever M is understood, we write Eλ for Eλ(M).

Note that, for any λ, Eλ(M) = E1−λ(M) and in particular E0(M) =
E1(M) = M . Thus, the case λ = 1/2 is special:

Definition 2.4. E1/2(M) is called the Wigner caustic of M [3] [16].

The extended affine space is the space Rn+1
e = R×R

n with coordinate
λ ∈ R (called affine time) on the first factor and projection on the
second factor denoted by π : Rn+1

e ∋ (λ, x) 7→ x ∈ R
n.

Definition 2.5. The affine extended wave front of M , E(M), is
the union of all affine equidistants each embedded into its own slice of
the extended affine space: E(M) =

⋃
λ∈R {λ} ×Eλ(M) ⊂ R

n+1
e .

Note that, whenM is a circle in the plane, E(M) is the (double) cone,
which is a smooth manifold with nonsingular projection π everywhere,
but at its singular point, which projects to the centre of the circle. From
this, we generalize the notion of centre of symmetry. Thus, let πr be
the restriction of π to the affine extended wave front of M : πr = π|E(M).
A point x ∈ E(M) is a critical point of πr if the germ of πr at x fails
to be the germ of a regular projection of a smooth submanifold. We
now introduce the main definition of this paper:

Definition 2.6. The global centre symmetry set of M , GCS(M),
is the image under π of the locus of critical points of πr.

Remark 2.7. The set GCS(M) is the bifurcation set of the family of
affine equidistants (the family of chords of weakly parallel pairs) of M .
In general, GCS(M) consists of two components: the caustic Σ(M)

being the projection of the singular locus of E(M) and the criminant
∆(M) being the (closure of) the image under πr of the set of regular
points of E(M) which are critical points of the projection π restricted
to the regular part of E(M). Thus ∆(M) is the envelope of the family
of regular parts of momentary equidistants, while Σ(M) contains all
the singular points of momentary equidistants.

The above definition (with its following remarks) is a slight modifi-
cation of the definition that has already been introduced by Giblin and
Zakalyukin [9]. However, in our present definition the whole manifold
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M is considered, as opposed to pairs of germs, as in [9], and weak par-
allelism is also taken into account. Considering the whole manifold in
the definition leads to the following simple but important result:

Theorem 2.8. The set GCS(M) contains the Wigner caustic of M .

Proof. Let x be a regular point of E 1
2
(M). Then x = 1

2
(a + b) for a

weakly parallel pair a, b ∈ M . It means that x is a intersection point
of the chords l(a, b) and l(b, a). Then E(M) contains the sets

{(λ, λa+ (1− λ)b)|λ ∈ R}, {(λ, (1− λ)a + λb)|λ ∈ R}.

If (1
2
, x) is a regular point of E(M) then the above sets are included in

the tangent space to E(M) at (1
2
, x). Therefore the fiber {(λ, x)|λ ∈ R}

is included in the tangent space of E(M). Thus if (1
2
, x) is a regular

point of E(M) then x is in the criminant ∆(M). If (1
2
, x) is not a

regular point of E(M) then x is in the caustic Σ(M). �

If M ⊂ R
2 is a smooth curve, then E1/2(M) is the bifurcation set

for the number of chords connecting two points in M and having a
given midpoint x, for any x ∈ E1/2(M) [3]. Similarly, if Rx : R2 → R

2

denotes reflection through x ∈ R
2, then x ∈ E1/2(M) when M and

Rx(M) are not transversal [16, 13]. Finally, let A(x, κ) be the area of
the planar region bounded by M and a chord, considered as a function
of a point x on the chord and a variable κ locating one of the endpoints
of the chord on the curve. Then, A(x, κ) is a generating family for
E1/2(M) [3, 12]. Below we generalize this notion to every λ-equidistant
of any Lagrangian submanifold.

3. Generating families

Consider the product affine space Rn×R
n with coordinates (x+, x−),

the tangent bundle to R
n, TRn = R

n × R
n with coordinate system

(x, ẋ), and standard projection pr : TRn → R
n, (x, ẋ) 7→ x.

Definition 3.1. ∀λ ∈ R \ {0, 1}, a λ-chord transformation

Φλ : Rn × R
n → TRn , (x+, x−) 7→ (x, ẋ)

is a linear diffeomorphism defined by the λ-point equation:

(3.1) x = λx+ + (1− λ)x− ,

for the λ-point x, and a chord equation:

(3.2) ẋ = λx+ − (1− λ)x−.
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Now, let M be a smooth closed m-dimensional submanifold of the
affine space Rn (2m ≥ n) and consider the product M×M ⊂ R

n×R
n.

Let Mλ denote the image of M ×M by a λ-chord transformation,

Mλ = Φλ(M ×M) .

Theorem 3.2. The set of critical values of the standard projection
pr : TRn → R

n restricted to Mλ is Eλ(M).

Proof. If a is a critical value of pr|Mλ
, then

k = dimT(a,ȧ)Mλ ∩ T(a,ȧ)pr
−1(a) ≥ 2m− n.

Let v1, · · · , vk be a basis of T(a,ȧ)Mλ ∩ T(a,ȧ)pr
−1(a) of the form vj =∑n

i=1 αji
∂
∂ẋi

|(a,ȧ) for j = 1, · · · , k . We have (Φ−1
λ )∗(vj) = 1

2λ
v+j −

1
2(1−λ)

v−j , where

v+j =

n∑

i=1

αji
∂

∂x+
i

|a+ ∈ Ta+M, v−j =

n∑

i=1

αji
∂

∂x−
i

|a− ∈ Ta−M.

It implies that v+j ∈ Ta+M ∩ τ(a+−a−)Ta−M for j = 1, · · · , k. Thus
Ta+M+τ(a+−a−)Ta−M 6= Ta+R

n and consequently a+, a− is a k-parallel
pair. Hence λa+ + (1− λ)a− = a ∈ Eλ.
Now, assume a ∈ Eλ. Then a = λa+ + (1 − λ)a− for a weakly

k-parallel pair a+, a− for k > 2m − n. Thus there exist linearly in-
dependent vectors v+j =

∑n
i=1 αji

∂
∂x+

i

|a+ ∈ Ta+M ∩ τ(a+−a−)Ta−M for

j = 1, · · · , k. Consider linearly independent vectors vj = (Φλ)∗((1 −
λ)v+j −λτ(a−−a+)v

+
j ) for j = 1, · · · , k. Then, vj belongs to T(a,ȧ)Mλ and

pr∗(vj) = 0 for j = 1, . . . , k. Thus a is a critical value of pr|Mλ
. �

Let (R2m, ω) be the affine symplectic space with canonical coordi-
nates pi, qi, so that ω =

∑m
i=1 dpi ∧ dqi, and let L be a smooth closed

Lagrangian submanifold of (R2m, ω). For a fixed λ ∈ R\{0, 1}, consider
the product affine space R2m×R

2m with the λ-weighted symplectic form

(3.3) δλω = 2λ2π∗
1ω − 2(1− λ)2π∗

2ω ,

where πi is the projection of R2m × R
2m on i-th factor for i = 1, 2.

Now, let Φλ be the λ-chord transformation (3.1)(3.2). Then,

(3.4)
(
Φ−1

λ

)∗
(δλω) = ω̇ .

where ω̇ is the canonical symplectic form on the tangent bundle to
(R2m, ω), defined by ω̇(x, ẋ) = d{ẋyω}(x) or, in Darboux coordinates,

(3.5) ω̇ =

m∑

i=1

dṗi ∧ dqi + dpi ∧ dq̇i .
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The fibers of TR2m are Lagrangian for ω̇, so that pr : TR2m → R
2m

defines a Lagrangian fiber bundle with respect to ω̇, that is, a fiber
bundle whose fibers are Lagrangian in the total symplectic space.
Denote the restriction of the projection pr of (TR2m, ω̇) to the La-

grangian submanifold
Lλ = Φλ(L× L)

by pr|Lλ
. According to chapter 18 in [2], pr|Lλ

is a Lagrangian map.
The set of critical values of a Lagrangian map is called a caustic.
Theorem 3.2 implies

Proposition 3.3. The caustic of the Lagrangian map pr|Lλ
is Eλ(L).

Definition 3.4. Eλ(L) and Eλ(L̃) are Lagrangian equivalent if the
Lagrangian maps pr|Lλ

and pr|L̃λ
are Lagrangian equivalent (see chap-

ter 18 in [2]).

It follows from above definitions:

Proposition 3.5. The classification of affine equidistants Eλ(L) by
Lagrangian equivalence is affine symplectic invariant, i.e., invariant
under the standard action of the affine symplectic group on (R2m, ω).

From the above, we also use the term affine-Lagrangian equiva-
lence for Lagrangian equivalence (see chapter 18 in [2]) of Eλ(L).

Remark 3.6. The definition of the λ-weighted symplectic form δλω
given by (3.3) is not arbitrary. When λ = 1/2, a Lagrangian subman-
ifold Λ ⊂ (R2m × R

2m, δ1/2ω) defines a canonical relation in (R2m, ω)
which can be locally described by a generating function of the mid-
points x1/2 = (x+ + x−)/2, for (x+, x−) ∈ Λ, when L1/2 = Φ1/2(Λ)
locally projects regularly to the zero section of (TR2m, ω̇), cf. [17, 18].
Thus, a Lagrangian submanifold Λ ⊂ (R2m × R

2m, δλω) defines a λ-
weighted canonical relation in (R2m, ω) which can be locally described
by a generating function of the λ-points xλ = λx+ + (1 − λ)x−, when
Lλ = Φλ(Λ) locally projects regularly to the zero section of (TR2m, ω̇).
Such generating functions give rise to the generating families, as de-
scribed below, used to study singularities of the Lagrangian map pr|Lλ

.

Let L+ and L− denote germs of L at points a+ and a−.

Proposition 3.7. If the pair a+, a− is k-parallel, then there exist
canonical coordinates (p, q) in R

2m and function germs S+ and S−

such that

(3.6) L+ : pi =
∂S+

∂qi
(q1, · · · , qm), i = 1, · · · , m
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L− :

{
pj =

∂S−

∂qj
(q1, · · · , qk, pk+1, · · · , pm), j = 1, · · · , k,

ql = −∂S−

∂pl
(q1, · · · , qk, pk+1, · · · , pm), l = k + 1, · · · , m

and d2S+(q+a,1, · · · , q
+
a,m) = 0 and d2S−(p−a,1, · · · , p

−
a,k, q

−
a,k+1, · · · , p

−
a,m) =

0, where a+ = (p+a , q
+
a ) and a− = (p−a , q

−
a ).

Proof. We can find a linear symplectic change of coordinates such that
Ta+L

+ = {p = p+a }, where a+ = (p+a , q
+
a ), and Ta−L

− = {p1 =
p−a,1, · · · , pk = p−a,k, qk+1 = q−a,k+1, · · · , qm = q−a,m}, where a− = (p−a , q

−
a ).

Since L is a smooth Lagrangian submanifold, it follows from standard
considerations that it can be described locally by differentials of gener-
ating functions of the forms stated above in neighborhoods of a+ and
a−, in which case we have that d2S+|a+ = d2S−|a− = 0. �

Let q = (q1, · · · , qm), p = (p1, · · · , pm), q̇ = (q̇1, · · · , q̇m), ṗ =
(ṗ1, · · · , ṗm).
Also, let β = (β1, · · · , βm) and, for any k < m, let [k] = {1, · · · , k},

so that β[k] = (β1, · · · , βk), and α[m]\[k] = (αk+1, · · · , αm).
Let L+×L− denote the germ of L×L at the point (a+, a−) ∈ L×L so

that Lλ = Φλ(L
+×L−) is the germ at (a, ȧ), where a = λa++(1−λ)a−,

ȧ = λa+−(1−λ)a−, of a smooth Lagrangian submanifold of (TR2m, ω̇).

Theorem 3.8. If the pair a+, a− is k-parallel and germs L+ and L−

are given by (3.6) then the germ of the generating family

Fλ(p, q, α[m]\[k], β) =(3.7)

2λ2S+
(
q+β
2λ

)
− 2(1− λ)2S−

(
q[k]−β[k] , p[m]\[k]−α[m]\[k]

2(1−λ)

)

−
∑k

i=1 piβi +
1
2

∑m
j=k+1 qjαj − pjβj − αjβj − pjqj

generates the germ of Lλ at (a, ȧ) as follows:

Lλ =

{
(ṗ, q̇, p, q) : ∃(α, β) ṗ =

∂Fλ

∂q
, q̇ = −

∂Fλ

∂p
,
∂Fλ

∂α
=

∂Fλ

∂β
= 0

}
.

Proof. The proof is a straightforward calculation. �

Remark 3.9. It follows from (3.7) that the degree of parallelism is the
corank of the singularity, i.e. the corank of the Hessian of Fλ(pa, qa, α[m]\[k], β)
as a function in (α[m]\[k], β) ∈ R

2m−k.

Theorem 3.10 ([2]). Germs of Lagrangian maps are Lagrangian equiv-
alent iff the germs of their generating families are stably R+-equivalent.

Corollary 3.11. Germs Eλ(L) and Eλ(L̃) are Lagrangian equivalent
iff germs of generating families for Lλ and L̃λ are stably R+-equivalent.
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4. Singularities of equidistants of Lagrangian

submanifolds

We have the following results on singularities of affine equidistants
of closed Lagrangian submanifolds, up to Lagrangian equivalence:

Theorem 4.1. The caustic of any simple stable Lagrangian singularity
(A-D-E singularities) in the 4m-dimensional symplectic tangent bundle
(TR2m, ω̇) is realizable as Eλ(L), for some smooth closed Lagrangian
submanifold L in (R2m, ω).

The generic Lagrangian maps for manifolds of dimension smaller
than 6 have only simple stable Lagrangian singularities (chapter 21 in
[2]). Therefore we obtain the following corollary.

Corollary 4.2. Any germ of generic caustics on 2m-dimensional man-
ifold for m = 1, 2 is realizable as Eλ(L), for some smooth Lagrangian
submanifold L in (R2m, ω).

Proof of Theorem 4.1. We use the method described in chapters 8 and
21 in [2]. For a fixed λ, let x = (p, q) and κ = (α, β). From (3.7) we
easily see that

rank(a,ȧ)

[
∂2Fλ

∂κ2
,
∂2Fλ

∂κ∂x

]
= 2m− k,

hence is equal to the dimension of κ-space. Let the arguments of the
function S+ be denoted by (q+1 , · · · , q

+
m) and the arguments of the func-

tion S− by (q−1 , · · · , q
−
k , p

−
k+1, · · · , p

−
m).

We find S+ and S− such that Fλ(x, κ) is a R+-versal deformation of
A-D-E singularities. Let

S+(q+) =

m∑

i=1

p+a,i(q
+
i − q+a,i) + S+

3 (q
+ − q+a )

S−(q−[k], p
−
[m]\[k]) =

k∑

i=1

p−a,i(q
−
i − q−a,i)−

m∑

i=k+1

q−a,i(p
−
i − p−a,i) +

+ S−
3 (q

−
[k] − q−a,[k], p

−
[m]\[k] − p−a,[m]\[k]),

where we used Proposition 3.7 and where S±
3 ∈ m

3 (m is the maximal
ideal of the ring of smooth function-germs on R

n at 0). We write the
generating families in coordinates p̃ = p − pa, q̃ = q − qa, s = α − ṗa,
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t = β − q̇a, where a = (pa, qa), ȧ = (ṗa, q̇a). By Theorem 3.8 we obtain

Fλ(p̃, q̃, s, t) =(4.1)

2λ2S+
3

(
q̃+t
2λ

)
− 2(1− λ)2S−

3

(
q̃[k]−t[k] , p̃[m]\[k]−s[m]\[k]

2(1−λ)

)

−
∑k

i=1 p̃iti +
1
2

∑m
j=k+1 q̃jsj − p̃jtj − sjtj − p̃j q̃j +

∑m
l=1 ṗa,lq̃l − q̇a,lp̃l

fλ(s, t) = Fλ(0, 0, s, t) =(4.2)

2λ2S+
3

(
t
2λ

)
− 2(1− λ)2S−

3

(
−t[k],−s[m]\[k]

2(1−λ)

)
− 1

2

∑m
j=k+1 sjtj

The following singularities are realizable by generating function-germs:

A2l :

S+
3 (q̃

+) = λ(q̃+1 )
3 + (q̃+1 )

2l+1 +
l∑

i=2

q̃+i (q̃
+
1 )

2i−1,

S−
3 (q̃

−
1 , p̃

−
2 , · · · , p̃

−
m) = −(1− λ)(q̃−1 )

3 +

l−1∑

i=2

p̃−i (q̃
−
1 )

2(l−i+1).

A2l+1 :

S+
3 (q̃

+) = λ(q̃+1 )
3 + (q̃+1 )

2l+2 +

l∑

i=2

q̃+i (q̃
+
1 )

2i−1,

S−
3 (q̃

−
1 , p̃

−
2 , · · · , p̃

−
m) = −(1− λ)(q̃−1 )

3 +
l∑

i=2

p̃−i (q̃
−
1 )

2(l−i+2).

D2l :

S+
3 (q̃

+) = λ(q̃+1 )
3 + q̃+2 (q̃

+
1 )

2 ± (q̃+2 )
2l−1 + λ(q̃+2 )

3 +
l−1∑

i=2

q̃+i+1(q̃
+
2 )

2i−1,

S−
3 (q̃

−
[2], p̃

−
[m]\[2]) = −(1− λ)(q̃−1 )

3 − (1− λ)(q̃−2 )
3 +

l−2∑

i=2

p̃−i+1(q̃
−
2 )

2(l−i).

D2l+1 :

S+
3 (q̃

+) = λ(q̃+1 )
3 + q̃+2 (q̃

+
1 )

2 ± (q̃+2 )
2l + λ(q̃+2 )

3 +
l−1∑

i=2

q̃+i+1(q̃
+
2 )

2i−1,

S−
3 (q̃

−
[2], p̃

−
[m]\[2]) = −(1− λ)(q̃−1 )

3 − (1− λ)(q̃−2 )
3 +

l−1∑

i=2

p̃−i+1(q̃
−
2 )

2(l−i+1).

E6 :

S+
3 (q̃

+) = (q̃+1 )
3 ± (q̃+2 )

4 + λq̃+1 (q̃
+
2 )

2 + λ(q̃+2 )
3 + q̃+1 (q̃

+
2 )

2q̃+3 ,

S−
3 (q̃

−
[2], p̃

−
[m]\[2]) = −(1 − λ)q̃−1 (q̃

−
2 )

2 − (1− λ)(q̃−2 )
3.
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E7 :

S+
3 (q̃

+) = (q̃+1 )
3 + q̃+1 (q̃

+
2 )

2 + λq̃+1 (q̃
+
2 )

2 + λ(q̃+2 )
3 + (q̃+2 )

3q̃+3 ,

S−
3 (q̃

−
[2], p̃

−
[m]\[2]) = −(1− λ)q̃−1 (q̃

−
2 )

2 − (1− λ)(q̃−2 )
3 + (q̃−2 )

4p̃−3 .

E8 :

S+
3 (q̃

+) = (q̃+1 )
3 + (q̃+2 )

5 + λq̃+1 (q̃
+
2 )

2 + λ(q̃+2 )
3+ q̃+1 (q̃

+
2 )

2q̃+3 + q̃+1 (q̃
+
2 )

3q̃+4 ,

S−
3 (q̃

−
[2], p̃

−
[m]\[2]) = −(1− λ)q̃−1 (q̃

−
2 )

2 − (1− λ)(q̃−2 )
3 + (q̃−2 )

3p̃−3 .

By long but straightforward calculations one can show that (4.1) is
a R+-versal deformation of (4.2) for the above choices of S±

3 . �

5. The GCS of a Lagrangian submanifold: the criminant

We now begin the study of singularities of the global centre symmetry
set of a smooth closed Lagrangian submanifold L ⊂ (R2m, ω). Recall
that in general the set GCS(L) consists of the caustic and the criminant
(see Remark 2.7). As part of the GCS(L) caustic, the Wigner caustic
of L has been almost entirely classified in section 4. In a subsequent
paper [5], we study E1/2(L) in a neighborhood of L, considering pairs
of points of the type (a, a) ∈ L×L as strongly parallel pairs. In terms
of the generating families of section 4, these are odd functions of the
variables, so we consider classification in the category of odd functions.
This implies a hidden Z2-symmetry for these singularities [5].
This section is devoted to the criminant ∆(L). In order to study

the global centre symmetry set, the whole λ-family must be considered
together. Due to the Lagrangian condition, we resort to a classification
via generating families. We know that Eλ(L) is the caustic of Lλ =
Φλ(L × L). The generating family for Lλ is given by Fλ(p, q, α, β) of
the form (3.7). Since E(L) is the union of {λ} ×Eλ, the germ of E(L)
is described in the following way (for κ = (α, β)):

Proposition 5.1. E(L) =
{
(λ, p, q) : ∃κ ∂Fλ

∂κ
= 0, det

[
∂2Fλ

∂κi∂κj

]
= 0
}
.

Let us consider the fiber bundle

(5.1) Pr : T ∗
R× TR2m ∋ ((λ∗, λ), (ṗ, q̇, p, q)) 7→ (λ, (p, q)) ∈ R×R

m.

The above bundle with the canonical symplectic structure

dλ∗ ∧ dλ+ ω̇

is a Lagrangian fiber bundle. For Fλ given by (3.7) in Theorem 3.8, let

(5.2) F (λ, p, q, α, β) = Fλ(p, q, α, β).
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Proposition 5.2. The germ of E(L) is the caustic of the germ of a
Lagrangian submanifold L of (T ∗

R×TR2m, dλ∗∧ dλ+ ω̇) generated by
the family F given by (3.7)-(5.2) in the following way (κ = (α, β)):
(5.3){
((λ∗, λ), (ṗ, q̇, p, q)) : ∃κ λ∗ =

∂F

∂λ
, ṗ =

∂F

∂q
, q̇ = −

∂F

∂p
,
∂F

∂κ
= 0

}
.

We find the condition for the tangency of E(L) to the fibers of the
projection π : (λ, p, q) 7→ (p, q).

Proposition 5.3. If (λ, a) is a regular point of E(L), then there exists
a 1-parallel pair a+, a− such that a = λa+ + (1− λ)a−.

Proof. If (λ, a) is a regular point of E(L) then the rank of the map

(5.4) κ 7→

(
∂F

∂κ
(λa, pa, qa, κ), det

[
∂2F

∂κi∂κj
(λa, pa, qa, κ)

])

is maximal 2m − k. It implies that corank
[

∂2F
∂κi∂κj

(λa, pa, qa, κa)
]
is 1.

By Remark 3.9 we obtain that a+, a− is a 1-parallel pair. �

Proposition 5.4. Let (λa, a) = (λa, pa, qa) be a regular point of E(L).
The fiber of πr = π|E(M) is tangent to E(L) at (λa, a) if and only if

(5.5) rank

[
∂2F

∂λ∂κj
,

∂2F

∂κi∂κj

]
= rank

[
∂2F

∂κi∂κj

]
= 2m− 2

at (λa, pa, qa, κa) s.t.
∂F
∂κ
(λa, pa, qa, κa) = det

[
∂2F

∂κi∂κj
(λa, pa, qa, κa)

]
= 0.

Proof. By Proposition 5.3 if (λa, pa, qa) is a regular point of E(L), the

map (5.4) has maximal rank 2m− 1. Also, rank
[

∂2F
∂κi∂κj

(λa, pa, qa, κa)
]

is 2m − 2 which implies one of the columns of this matrix is linearly
dependent on the others. Assume this is the first column. Thus,

κ 7→
(

∂F
∂κ[2m−1]\[1]

(λa, pa, qa, κ), det
[

∂2F
∂κi∂κj

(λa, pa, qa, κ)
])

has maximal

rank. By implicit function theorem there is a smooth map germ K :
R

2m+1
e → R

2m−1 at (λa, a), s.t. κ = K(λ, p, q) iff ∂F
∂κ[2m−1]\[1]

(λ, p, q, κ) =

0, det
[

∂2F
∂κi∂κj

(λ, p, q, κ)
]
= 0. Then the germ of E(L) at(λa, a) is E(L) ={

(λ, p, q) : ∂F
∂κ1

(λ, p, q,K(λ, p, q)) = 0
}
. The fiber of πr is tangent to

E(L) at (λa, a) iff
(5.6)

∂2F

∂λ∂κ1
(λa, pa, qa, κa) +

2m−1∑

j=1

∂2F

∂κj∂κ1
(λa, pa, qa, κa)

∂Kj

∂λ
(λa, pa, qa) = 0.
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Differentiating ∂F
∂κ[2m−1]\[1]

(λ, p, q,K(λ, p, q)) = 0 w.r.t. λ we obtain

(5.7)

∂2F

∂λ∂κi

(λa, pa, qa, κa) +
2m−1∑

j=1

∂2F

∂κj∂κi

(λa, pa, qa, κa)
∂Kj

∂λ
(λa, pa, qa) = 0.

Thus (5.6)-(5.7) imply (5.5). But also (5.7) and (5.5) imply (5.6). �

Theorem 5.5. The point a = λa++(1−λ)a− belongs to the criminant
∆(L) of GCS(L) iff there is a bitangent hyperplane to L at a+ and a−.

Proof. If (λ, a) ∈ E(L) is regular, by Propositions 5.3-5.4, a+, a− are 1-

parallel and a = (p, q) ∈ ∆(L) iff (λ, a) satisfies (5.5). Thus
[

∂2F
∂κi∂κj

]
=

1

2




∂2S+

(∂q+1 )2
− ∂2S−

(∂q−1 )2
∂2S+

∂q+1 ∂q+2
· · · ∂2S+

∂q+1 ∂q+m
− ∂2S−

∂q−1 ∂p−2
· · · − ∂2S−

∂q−1 ∂p−m
∂2S+

∂q+1 ∂q+2

∂2S+

(∂q+2 )2
· · · ∂2S+

∂q+2 ∂q+m
−1 · · · 0

...
...

. . .
...

...
. . .

...
∂2S+

∂q+1 ∂q+m

∂2S+

∂q+2 ∂q+m
· · · ∂2S+

(∂q+m)2
0 · · · −1

− ∂2S−

∂q−1 ∂p−2
−1 · · · 0 − ∂2S−

(∂p−2 )2
· · · ∂2S−

∂p−2 ∂p−m
...

...
. . .

...
...

. . .
...

− ∂2S−

∂q−1 ∂p−m
0 · · · −1 ∂2S−

∂p−2 ∂p−m
· · · − ∂2S−

(∂p−m)2




and ∂2F
∂λ∂β1

= p+1 − p−1 −
∑n

j=1 q
+
j

∂2S+

∂q+1 ∂q+j
+ q−1

∂2S−

(∂q−1 )2
+
∑n

j=2 p
−
j

∂2S−

∂q−1 ∂p−j
,

∂2F
∂λ∂βi

= p+i −
∑n

i=1 q
+
j

∂2S+

∂q+i ∂q+j
, ∂2F

∂λ∂αi
= q−i + q−1

∂2S+

∂p−i ∂q−1
+
∑n

j=2 p
−
j

∂2S+

∂p−i ∂p−j
,

for i = 2, · · · , m,, with q+ = q+β
2λ

, p+ = ∂S+

∂q+
and q−1 = q1−β1

2(1−λ)
, p−[m]\[2] =

p[m]\[2]−α[m]\[2]

2(1−λ)
, p−1 = ∂S−

∂q−1
, q−[m]\[2] = − ∂S−

∂p−
[m]\[2]

. Then, (5.5) is equivalent

to

(5.8) (a+ − a−) ∈ Ta+L
+ + Ta−L

−,

since Ta+L
+ is spanned by

∑m
j=1

∂2S+

∂q+i ∂q+j

∂
∂pj

+ ∂
∂qi

for i = 1, · · · , m and

Ta−L
− is spanned by ∂2S−

(∂q−1 )2
∂

∂p1
−
∑m

j=2
∂2S−

∂q−1 ∂p−j

∂
∂qj

+ ∂
∂q1

and ∂2S−

∂p−i ∂q−1

∂
∂p1

−
∑m

j=2
∂2S−

∂p−i ∂p−j

∂
∂qj

+ ∂
∂pi

for i = 2, · · · , m. If a+, a− is 1-parallel, (5.8)

means there is a bitangent hyperplane to L+ at a+ and to L− at a−.
By continuity, a point in the closure of the set of points satisfying (5.8)
also satisfies this condition. �

Corollary 5.6. If, for some λ, λa++(1−λ)a− = a ∈ ∆(L) ⊂ GCS(L),
then the whole chord l(a+, a−) ⊂ GCS(L). Equivalently, if there is a
bitangent hyperplane to L at a+ and a−, then l(a+, a−) ⊂ GCS(L).
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Thus, we generalize the notion of convexity of a curve on the plane.

Definition 5.7. A smooth closed Lagrangian submanifold L of (R2m, ω)
is weakly convex if there is no bitangent hyperplane to L.

Corollary 5.8. If L is a weakly convex closed Lagrangian submanifold
of (R2m, ω) then the criminant ∆(L) of GCS(L) is empty.

6. Affine-Lagrangian stable singularities of the GCS

We now define an equivalence relation to classify the singularities of
GCS(L). Due to the Lagrangian condition, we look for an equivalence
of generating families. For the classification of E(λ) and GCS(L),
because λ is no longer fixed it has become an extra parameter that
unfolds the generating families F . The naive approach is to consider the
extended parameter space R×R

2m ∋ (λ, x) for unfolding the generating
families f(λ, κ) = fλ(κ) and classify their stable unfoldings in the usual
way. However, such a classification of GCS(L) would not take into
account the projection π : R×R

2m → R
2m in a proper way, because it

does not distinguish the affine time λ ∈ R from x ∈ R
2m.

Now, if A = (A, a) is an element of the affine symplectic group
iSp2m

R
= Sp(2m,R)⋉ R

2m, with A ∈ Sp(2m,R), a ∈ R
2m, then

(6.1) A : (R2m, ω) ⊃ L → L′ ⊂ (R2m, ω) , x 7→ Ax = Ax+ a .

From this, we define the natural action

idT ∗R ×A×A : T ∗
R× R

2m × R
2m → T ∗

R× R
2m × R

2m ,

(λ, λ∗, x+, x−) 7→ (λ, λ∗,Ax+,Ax−) ,

which, via the chord transformation Φλ, induces an action

iSp2m
R

∋ idT ∗R ×AΦ : T ∗
R× TR2m ⊃ L → L′ ⊂ T ∗

R× TR2m,

(6.2) idT ∗R ×AΦ : (λ, λ∗, x, ẋ) 7→ (λ, λ∗, Ax+ a, Aẋ+ (2λ− 1)a),

that commutes with projection idT ∗R×pr : T ∗
R×TR2m → T ∗

R×R
2m,

that is, defining the obvious action idR ×A on R× R
2m, we have

(6.3) (idR ×A) ◦ (idT ∗R × pr) = (idT ∗R × pr) ◦ (idT ∗R ×AΦ).

Definition 6.1. Germs of Lagrangian submanifolds L, L̃ of the fiber
bundle (T ∗

R× TR2m, dλ∗ ∧ dλ+ ω̇) are (1,2m)-Lagrangian equiva-
lent if there exists a symplectomorphism-germ Υ of T ∗

R×TR2m such
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that Υ(L) = L̃ and the following diagram commutes:

Pr π
L →֒ T ∗

R× TR2m −→ R× R
2m → R

2m

↓ Υ ↓ ↓
Pr π

L̃ →֒ T ∗
R× TR2m −→ R× R

2m → R
2m

The first two vertical diffeomorphism-germs (from right to left) read:

x 7→ X(x) , (λ, x) 7→ (Λ(λ, x), X(x)).

Moreover, germs L, L̃ at (1
2
, a, ȧ) are (1,2m)-Lagrangian equivalent

for λ = 1
2

if, in addition, for every x ∈ R
2m

(6.4) Λ(
1

2
, x) =

1

2
.

Remark 6.2. Condition (6.4) is introduced for the classification of the
Wigner caustic E1/2(L) as a part of GCS(L).

Definition 6.3. GCS(L) andGCS(L̃) are (1,2m)-Lagrangian equiv-

alent if L and L̃ are (1,2m)-Lagrangian equivalent.

Remark 6.4. From (6.3), it is clear that classification of GCS(L) by
(1, 2m)-Lagrangian equivalence of L is affine symplectic invariant.

Remark 6.5. (1, 2m)-Lagrangian equivalence of germs of Lagrangian
submanifolds of (T ∗

R × TR2m, dλ∗ ∧ dλ + ω̇) is the equivalence of bi-
furcations of Lagrangian maps (chapter 22 in [2]), that is, diagrams of
the form:

Pr π
D(L) : L →֒ T ∗

R× TR2m −→ R× R
2m → R

2m

Definition 6.6. L is (1,2m)-Lagrangian stable if the diagram of

maps D(L) is stable, i.e. every L̃ with nearby diagram D(L̃) is (1, 2m)-
Lagrangian equivalent to L. GCS(L) is (1,2m)-Lagrangian stable
if L is (1,2m)-Lagrangian stable.
In view of Remark 6.4, we also use the term affine-Lagrangian

stability for (1, 2m)-Lagrangian stability.

Definition 6.7. The function-germs F, F̃ : R × R
2m × R

k → R are
(1,2m)-R+-equivalent if there exists a diffeomorphism-germ

(λ, x, κ) 7→ (Λ(λ, x), X(x), K(λ, x, κ))
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and a smooth function-germ g : R× R
2m → R such that

F̃ (λ, x, κ) = F (Λ(λ, x), X(x), K(λ, x, κ)) + g(λ, x).

Germs F and F̃ with the common (λ, x)-space R×R
2m of parameters,

and with different spaces of arguments, κ ∈ R
k, κ̃ ∈ R

k̃, are stably
(1,2m)-R+-equivalent if there are nondegenerate quadratic forms Q

in new arguments ξ and Q̃ in new arguments ξ̃ such that F + Q and
F̃ + Q̃ are (1, 2m)-R+-equivalent. The germ F at (1

2
, a, κa) and the

germ F̃ at (1
2
, a, κ̃a) are (stably) (1,2m)-R+-equivalent for λ = 1

2
if, in

addition, for every x ∈ R
m condition (6.4) is satisfied.

Remark 6.8. (1, 2m)-R+-equivalence is a special case of Wassermann’s
(1, 2m)-equivalence [19]. For relations between the (r, s)-classification
of families of functions [19], the classification of bifurcations of caustics
[1], [20] and the classification of bifurcations of Lagrangian maps, see
chapter 22 in [2].

We have the following result, whose proof is a minor modification
for (1, 2m)-Lagrangian equivalence of the proof of Theorem 3.10 in [2].

Proposition 6.9. Germs of Lagrangian submanifolds L, L̃ of (T ∗
R×

TR2m, dλ∗ ∧ dλ+ ω̇) are (1, 2m)-Lagrangian equivalent iff the germs of

generating families F and F̃ are stably (1, 2m)-R+-equivalent.

Definition 6.10. A function-germ F at z is (1,2m)-R+-stable if for
any neighborhood U ∋ z in R× R

2m × R
k and representative function

F ′ of the germ F on U , there is a neighborhood V of F ′ in C∞(U,R)
(with weak C∞-topology) s.t. for any function G′ ∈ V there is a point
z′ ∈ U such that the germ of G′ at z′ is (1, 2m)-R+-equivalent to F .

Remark 6.11. L and GCS(L) are (1, 2m)-Lagrangian stable if and
only if the germ of generating family F (of L) is (1, 2m)-R+-stable.

The following theorems show that the only affine-Lagrangian stable
singularities of GCS are singularities of the criminant, the smooth part
of the Wigner caustic and their “tangent” union.

Theorem 6.12. Let λa 6=
1
2
. If F is the germ at (λa, a, κa) of a (1, 2m)-

R+-stable unfolding of f ∈ m
2 then F is stably (1, 2m)-R+-equivalent

to the germ of the trivial unfolding or to one of the following germs at
(0, 0, 0) of unfoldings of f(t) = t3

(6.5) A
A±

k

2 : F (λ, x, t) = t3 + t

(
k∑

i=1

xiλ
i−1 ± λk+1

)
,

for k = 0, 1, 2, · · · , 2m (the notation A
A±

k

2 is taken from [14]).
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Proof. If f has A1 singularity then it is obvious that F is stably (1, 2m)-
R+-equivalent to the trivial unfolding. Now we assume that f has A2

singularity. Since F is stable, then F is stably (1, 2m)-R+-equivalent to
F (λ, x, t) = t3 + tg(λ, x), where g is a smooth function-germ vanishing
at 0. If g is a versal unfolding of the function-germ λ 7→ g(λ, 0) with Ak

singularity we can reduce F to the form (6.5) by a diffeomorphism-germ
of the form (λ, x, t) 7→ (Λ(λ, x), X(x), t). �

The following lemma shows that these are the only (1, 2m)-R+-stable
unfoldings.

Lemma 6.13. Unfoldings of A±
3 singularity are not (1, 2m)-R+-stable.

Proof. If f has A3 singularity then F is stable (1, 2m)-R+-equivalent
to F (λ, x, t) = ±t4 + t2g2(λ, x) + tg1(λ, x), where g1, g2 are smooth
function-germs vanishing at 0. Now we use the standard arguments of
the singularity theory that stability implies infinitesimal stability. In
the case of (1, 2m)-R+-equivalence, the infinitesimal stability implies
(6.6)

E2 = E2

〈
∂F

∂t
|R2

〉
+E1

〈
1,

∂F

∂λ
|R2

〉
+R

〈
∂F

∂x1

|R2, · · · ,
∂F

∂x2m

|R2

〉
+m

2m+4
2 ,

where R
2 denotes the t, λ-plane {x = 0}, E2 is the ring of smooth

function-germs in λ and t, m2 is the maximal ideal in E2 and E1 is
the ring of smooth function-germs in λ. Now we use the method from
[19]. Let V = E2

/(
E2
〈
∂F
∂t
|R2

〉
+m

2m+4
2

)
and let π : E2 → V . We

have π(t3) = π(∓1/2tg2|R2 ∓ 1/4g1|R2) in V . Thus elements π(tiλj)
for i = 0, 1, 2 and j < 2m + 4 − i form a basis of V over R. Thus,
dimR V = 6m + 9. Moreover, ∂F

∂λ
|R2 = t

(
t∂g2
∂λ

|R2 + ∂g1
∂λ

|R2

)
. Then

dimR π
(
E1
〈
1, ∂F

∂λ
|R2

〉)
≤ 4m + 7, dimR π

(
R

〈
∂F
∂x1

|R2 , ..., ∂F
∂x2m

|R2

〉)
≤

2m. So, (6.6) implies dimR V ≤ 6m + 7 < 6m + 9, which is impos-
sible. Thus F is not (1, 2m)-R+-stable, A3 has no (1, 2m)-R+-stable
unfoldings. �

For E1/2(L) ⊂ GCS(L), we consider the germ of F at (1/2, a, κa).

Theorem 6.14. If F is the germ at (1
2
, a, κa) of a (1, 2m)-R+-stable

unfolding of f ∈ m
2 then F is stably (1, 2m)-R+-equivalent (λ = 1/2)

to the germ of the trivial unfolding or to one of the following germs at
(1
2
, 0, 0) of unfoldings of f(t) = t3

(6.7) A
B±

k

2 : F (λ, x, t) = t3 + t

(
k−1∑

i=0

xi+1

(
λ−

1

2

)i

±

(
λ−

1

2

)k
)
,

for k = 1, 2, · · · , 2m (the notation A
B±

k

2 is taken from [14]).
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Proof. If f has A1 singularity then F is stably (1, 2m)-R+-equivalent
to the trivial unfolding. If f has A2 singularity, then (since F is stable)
F is stably (1, 2m)-R+-equivalent to F (λ, x, t) = t3 + tg(λ, x), where
g is a smooth function-germ vanishing at (1/2, 0). If g is a versal
unfolding of the function-germ λ 7→ g(λ, 0) with B±

k singularity on
a manifold (λ-space) with the boundary (λ = 1

2
) (see [1]) then we

can reduce F to the form (6.7) by a diffeomorphism-germ of the form
(λ, x, t) 7→ (1/2 + (λ− 1/2)Λ(λ, x), X(x), t). �

Theorem 6.15. If F (generating L) has A
A±

k

2 singularity, for k =
0, 1, · · · , 2m, then E(L) is a germ of a smooth hypersurface in R×R

2m.
If F has AA0

2 singularity at (λa, a, κa) then E(L) is transversal at
(λa, a) to the fibers of projection π.

If F has A
A±

k

2 singularity for k ≥ 1 at (λa, a, κa) then E(L) is k-
tangent at (λa, a) to the fibers of π, a belongs to the criminant ∆(L) of
GSC(L) and the germ of ∆(L) at a is the caustic of A±

k singularity.

Proof. By Proposition 5.1 and the normal form of F for A
A±

k

2 singularity

we obtain E(L) = {(λ, x) ∈ R × R
2m :

∑k
i=1 xiλ

i−1 ± λk+1 = 0}. It is
easy to see that E(L) is the germ at (0, 0) of a smooth hypersurface and
E(L) is transversal at (0, 0) to {λ = 0} for k = 0 and E(L) is k-tangent
to {λ = 0} at (0, 0) for k = 1, 2, · · · , 2m. The germ of ∆(L) at 0 is

{x ∈ R
2m : ∃λ

k∑

i=1

xiλ
i−1±λk+1 = 0,

k∑

i=2

(i−1)xiλ
i−2±(k+1)λk = 0}.

So ∆(L) is a caustic of A±
k singularity. �

Theorem 6.16. If the germ at (1
2
, a, κa) of F has A

B±
k

2 singularity (k =
1, · · · , 2m), then E(L) is a germ of smooth hypersurface in R× R

2m.
If F has AB1

2 singularity at (1
2
, a, κa), then E(L) is transversal at

(1
2
, a) to the fibers of projection π. The germ of GCS(L) at a is the

germ of a smooth hypersurface of R2m - the Wigner caustic E1/2(L).

If F has A
B±

k

2 singularity for k ≥ 2 at (1
2
, a, κa), then E(L) is k-

tangent at (1/2, a, t) to the fibers of π. The germ of GCS(L) at a
consists of two tangent components: the germ of a smooth hypersurface
- E1/2(L) - and the germ of the caustic of B±

k singularity - ∆(L).

Proof. By Proposition 5.1 and the normal form of F for A
B±

k

2 singularity

we get E(L) = {(λ, x) ∈ R×R
2m :

∑k−1
i=0 xi+1(λ−1/2)i±(λ−1/2)k = 0}.

E1/2(L) = {x ∈ R
2m : x1 = 0} is a germ of smooth hypersurface. Thus

E(L) is the germ at (1/2, 0) of a smooth hypersurface and E(L) is
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transversal at (1/2, 0) to {λ = 1/2} for k = 1. For k = 2, · · · , 2m,
E(L) is k-tangent to {λ = 1/2} at (1/2, 0). The germ of ∆(L) at 0 is

{x ∈ R
2m : ∃τ

k−1∑

i=0

xi+1τ
i ± τk = 0,

k−1∑

i=1

ixi+1τ
i−1 ± kτk−1 = 0}.

So ∆(L) is a caustic of B±
k and E1/2(L) is tangent to ∆(L) at 0. �

Remark 6.17. Not all (1, 2m)-R+-stable singularities can be realizable
as singularities of generating families F for L which are of the special
form given in Theorem 3.8. In the next section, in Theorem 7.7, we
prove that the AA2

2 singularity is not realizable for Lagrangian curves.

7. Classifications of the GCS of Lagrangian curves

We now classify the singularities of the global centre symmetry set
of a Lagrangian curve L ⊂ (R2, ω). To set the stage, we first state
the results for the GCS of a curve on the affine plane R

2, when no
symplectic structure is considered.

Theorem 7.1 ([3], [15], [9]-[10]). Affine stable GCS of a smooth convex
closed curve M ⊂ R

2 (no symplectic structure) consists of:
i) The CSS, a smooth curve with (possible) self intersections and cusp
singularities, ii) the Wigner caustic, a smooth curve with (possible)
self intersections and cusp singularities lying on the smooth part of the
CSS, and iii) the medial axis, which are smooth half-lines starting at
the cusp points of the CSS.

The results stated in Theorem 7.1, originally obtained by various
methods, can also be proved using the affine-invariant method of chord
equivalence, the analogous of (1, 2m)-Lagrangian equivalence when no
symplectic structure is considered, cf Definition 7.10, below.

Theorem 7.2. Let M be a generic smooth convex closed curve in R
2.

The number of cusps of the Wigner caustic of M is odd and not smaller
than 3. The number of cusps of the CSS of M is odd and not smaller
than 3. The number of cusps of the Wigner caustic of M is not greater
than the number of cusps of the CSS of M .

The statement on the number of cusps of Wigner caustics was first
proved by Berry [3], and the statement on the number of cusps of CSS
by Giblin and Holtom [8]. The last inequality of the theorem is new. It
follows immediately from the characterization in [8] of cusps of E1/2(M)
by the curvature ratio being 1 and cusps of CSS of M by the derivative
of the curvature ratio being 0, using Rolle’s theorem.
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Figure 1. GCS of an oval: CSS with five cusps and the Wigner caustic

with three cusps (the medial axis are not shown here).

Figure 2. GCS of an oval: CSS and the Wigner caustic with five cusps.
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Figures of GCS(M) where the number of cusps of the CSS and of the
Wigner caustic are equal to three and neither curve is self intersecting
can be found in [8]. We picture a case when the number of cusps of the
Wigner caustic is three and the CSS is self intersecting and the number
of its cusps is five, and another case when both the Wigner caustic and
the CSS are self intersecting and both have five cusps.

7.1. Affine-Lagrangian classification of the GCS of Lagrangian
curves. Let L be a smooth closed curve in (R2, ω = dp ∧ dq). Us-
ing the (1, 2)-Lagrangian equivalence introduced in Definitions 6.1 and
6.3, we classify the singularities of GCS(L). In what follows, a+ =
(p+a , q

+
a ), a

− = (p−a , q
−
a ) denote a parallel pair on L and aλ = λa++(1−

λ)a−, q̇λ = λq+a − (1− λ)q−a . Let S
± be germs of generating functions

of L at a± satisfying the conditions in Proposition 3.7. The germ of
generating family of L and the big wave front set are given by

F (λ, p, q, t) = 2λ2S+(
q + t

2λ
)− 2(1− λ)2S−(

q − t

2(1− λ)
)− pt.

E(L) =

{
(λ, p, q) ∈ R× R

2 : ∃t
∂F

∂t
(λ, p, q, t) =

∂2F

∂t2
(λ, p, q, t) = 0

}
.

The following propositions present geometrical descriptions of posi-
tions of E(L) with respect to π in terms of functions F , S+ and S−.

Proposition 7.3. The following conditions are equivalent

(i) (λ, aλ) belongs to the regular part of E(L),

(ii) ∃t ∂3F
∂t3

(λ, aλ, t) 6= 0, ∂F
∂t
(λ, aλ, t) =

∂2F
∂t2

(λ, aλ, t) = 0,

(iii) 1
λ

∂3S+

∂(q+)3
(q+a ) +

1
1−λ

∂3S−

∂(q−)3
(q−a ) 6= 0,

(iv) 1
λ
κ(a+) + 1

1−λ
κ(a−) 6= 0, where κ(x) is the curvature of L at x.

Proof. Equivalence of (i) and (ii) follows from the definition of the
regular part of E(L). Equivalence of (ii) and (iii) is obtained by direct

calculations. (iv) is obvious since κ(a±) = ∂3S±

∂(q±)3
(q±a ). �

Proposition 7.4. The following conditions are equivalent

(v) the regular part of E(L) is tangent to the fiber of π at (λ, aλ),

(vi) ∃t: (ii) is satisfied and ∂2F
∂λ∂t

(λ, aλ, t) = 0.

(vii) (iii) is satisfied and p+a = ∂S+

∂q+
(q+a ) =

∂S−

∂q−
(q−a ) = p−a .

(viii) (iv) is satisfied and l(a+, a−) is bitangent to a+, a− to L.

Proof. All statements follow from Proposition 5.4 and Theorem 5.5. �

Proposition 7.5. The following conditions are equivalent

(ix) the regular part of E(L) is 1-tangent to the fiber of π at (λ, aλ),
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(x) ∃t : (vi) is satisfied and

(7.1)

(
∂3F

∂λ∂t2
(λ, aλ, t)

)2

−
∂3F

∂t3
(λ, aλ, t)

∂3F

∂λ2∂t
(λ, aλ, t) 6= 0.

(xi) (vii) is satisfied and ∂3S+

∂(q+)3
(q+a )

∂3S−

∂(q−)3
(q−a ) 6= 0.

(xii) (iv) is satisfied and l(a+, a−) is 1-tangent to L at a+ and a−

Proof. (λ, aλ) ∈ E(L) is regular. By Proposition 7.3, ∂3F
∂t3

(λ, aλ, t) 6= 0.

Thus, exists smooth function-germ T on R
3 s.t. ∂2F

∂t2
(λ, p, q, t) = 0

iff t = T (λ, p, q). Then E(L) =
{
(λ, p, q) : ∂F

∂t
(λ, p, q, T (λ, p, q)) = 0

}
.

Then

(7.2)
∂

∂λ

(
∂F

∂t
(λ, p, q, T (λ, p, q))

)∣∣
(λ,aλ) = 0

(7.3)
∂2

∂λ2

(
∂F

∂t
(λ, p, q, T (λ, p, q))

)∣∣
(λ,aλ) 6= 0

are equivalent to (ix). Using the formula
(7.4)

∂T

∂λ
(λ, p, q) = −

(
∂2F

∂t3
(λ, p, q, T (λ, p, q)

)−1
∂2F

∂λ∂t2
(λ, p, q, T (λ, p, q))

we see that (7.2)-(7.3) are equivalent to (x). Equivalence of (x) and (xi)
is obtained by a direct calculation. The last equivalence is obvious. �

Proposition 7.6. The following conditions are equivalent

(xiii) the regular part of E(L) is 2-tangent to the fiber of π at (λ, aλ),
(xiv) ∃t: (vi) is satisfied, (7.1) is not satisfied and{

∂4F
∂λ3∂t

(
∂3F
∂t3

)3
− 3 ∂4F

∂λ2∂t2

(
∂3F
∂t3

)2
∂3F
∂λ∂t2

+3 ∂4F
∂λ∂t3

∂3F
∂t3

(
∂3F
∂λ∂t2

)2
− ∂4F

∂t4

(
∂3F
∂λ∂t2

)3
}
(λ, aλ, t) 6= 0

(xv) (vii) is satisfied and
(

∂3S+

∂(q+)3
(q+a ) = 0 ∧ ∂4S+

∂(q+)4
(q+a ) 6= 0

)
or

(
∂3S−

∂(q−)3
(q−a ) = 0 ∧ ∂4S−

∂(q−)4
(q−a ) 6= 0

)

(xvi) (iv) is satisfied and l(a+, a−) is 1-tangent to L at one of points
a+, a− and 2-tangent to L at the other.

Proof. (xiii) means that (7.2) is satisfied, (7.3) is not satisfied and
∂3

∂λ3

(
∂F
∂t
(λ, p, q, T (λ, p, q))

) ∣∣
(λ,aλ) 6= 0. Using (7.4), we see that these

conditions are equivalent to (xiv). By direct calculation we see that
(xiv) ⇐⇒ (xv). Finally, (xvi) is the geometric description of (xv). �
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Theorem 7.7. Let 1
λ

∂3S+

∂(q+)3
(q+a )+

1
1−λ

∂3S−

∂(q−)3
(q−a ) 6= 0 (for (1)-(2) below,

λ = 1/2). Let l(a+, a−) denote the chord passing through (a+, a−).

(1) If l(a+, a−) is not bitangent to L at a+, a−, then the germ of F
at (1/2, a1/2, q̇1/2) has A

B1
2 singularity, and the germ of GCS at

a1/2 is a smooth curve (the smooth part of the Wigner caustic).
(2) If l(a+, a−) is 1-tangent to L at a+ and at a−, then the germ

of F at (1/2, a1/2, q̇1/2) has AB2
2 singularity, and the germ of

GCS at a1/2 is a union of two 1-tangent smooth curves (the
smooth part of the Wigner caustic and the smooth part of the
criminant).

(3) If l(a+, a−) is 1-tangent to L at a+ and at a−, then the germ of
F at (λ, aλ, q̇λ) for λ 6= 1/2 has AA1

2 singularity and the germ of
GCS at aλ is a smooth curve (the smooth part of the criminant).

(4) If l(a+, a−) is 1-tangent to L at one of the points a+, a− and
2-tangent at the other, then the germ of F at (λ, aλ, q̇λ) for λ 6=
1/2 is not (1, 2)-R+-stable. In particular, AA2

2 is not realizable
as stable singularity of the GCS of a Lagrangian curve.

Proof. By Proposition 7.3, if 1
λ

∂3S+

∂(q+)3
(q+a ) +

1
1−λ

∂3S−

∂(q−)3
(q−a ) 6= 0 then the

germ of F is a unfolding of A2 singularity. Therefore we can reduce F
to the form F ′(λ, p, q, t) = t3+g(λ, p, q)t, where g is a smooth function-
germ vanishing at (λa, 0) (for λa = 0 or λa = 1/2). By Proposition 7.4,
if l(a+, a−) is not bitangent to L at a+, a− then ∂F ′

∂t∂λ
(1/2, 0, 0) 6= 0 and

this implies ∂g
∂λ
(1/2, 0) 6= 0. By Theorems 6.14 and 6.16 we obtain

(1). If the chord l(a+, a−) is tangent to L at a+, a− then by Proposi-
tion 7.4 we get that p+a = p−a and ∂F ′

∂t∂λ
(λa, 0, 0) = 0 and this implies

∂g
∂λ
(λa, 0) = 0. But dg|(λa,0) 6= 0 since ∂F

∂t∂p
(λa, a, q̇a) 6= 0. By Proposi-

tion 7.5 if l(a+, a−) is 1-tangent to L at a+, a− then
(

∂3F ′

∂λ∂t2
(λa, 0, 0)

)2
−

∂3F ′

∂t3
(λa, 0, 0)

∂3F ′

∂λ2∂t
(λa, 0, 0) 6= 0. But this implies ∂2g

∂λ2 (λa, 0, ) 6= 0. Thus
if λa = 1/2 by Theorems 6.14 and 6.16 we obtain (2) and other-
wise by Theorems 6.12 and 6.15 we obtain (3). Finally, assume that
l(a+, a−) is 1-tangent to L at a+ and 2-tangent at a−. By Proposition

7.6 we get ∂2g
∂λ2 (λa, 0, ) = 0 and

{
∂4F
∂λ3∂t

(
∂3F
∂t3

)3
− 3 ∂4F

∂λ2∂t2

(
∂3F
∂t3

)2
∂3F
∂λ∂t2

+

3 ∂4F
∂λ∂t3

∂3F
∂t3

(
∂3F
∂λ∂t2

)2
− ∂4F

∂t4

(
∂3F
∂λ∂t2

)3 }
(λa, 0, 0) 6= 0. Thus, ∂3g

∂λ3 (λa, 0, ) 6=

0. We know that ∂g
∂p
(λa, 0, ) 6= 0 since ∂2F

∂t∂p
(λa, a, q̇a) 6= 0. It is easy to

see that ∂2F
∂t∂q

(λa, a, q̇a) = 0. Thus F has AA2
2 singularity at (λa, a, q̇a)

iff ∂3F
∂λ∂q∂t

(λa, a, q̇a)
∂3F
∂t3

(λa, a, q̇a)−
∂3F
∂λ∂t2

(λa, a, q̇a)
∂3F
∂q∂t2

(λa, a, q̇a) 6= 0. By
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direct calculation, this is equivalent to (q+a −q−a )
λa(1−λa)

∂3S+

∂(q+)3
(q+a )

∂3S−

∂(q−)3
(q−a ) 6= 0,

which is not satisfied, since l(a+, a−) is 2-tangent to L at a−. �

Corollary 7.8. Let L be a smooth closed convex curve in (R2, ω). The
smooth part of E1/2(L) is (1, 2)-Lagrangian stable, but the cusps of
E1/2(L), seen as part of GCS(L), are not (1, 2)-Lagrangian stable; the
medial axis and the whole CSS are not (1, 2)-Lagrangian stable.

Remark 7.9. For a convex curve L ⊂ R
2, most singularities which

are affine stable are not affine-Lagrangian stable (compare Theorem
7.1 and Corollary 7.8). Also, although the cusps of E1/2(L) are affine-
Lagrangian stable when E1/2(L) is considered by itself, they are not
affine-Lagrangian stable considering E1/2(L) ⊂ GCS(L), that is, the
meeting of E1/2(L) and CSS is not affine-Lagrangian stable.

7.2. Discussion. Because of the large loss of stability for singularities
of the GCS, when going from the affine to the affine-Lagrangian case,
one wonders if it is possible to consider a coarsen classification of singu-
larities of the GCS of Lagrangian submanifolds, which produces more
stable singularities. In fact, the usual Lagrangian equivalence will do.
As mentioned at the beginning of section 6, classification by usual

Lagrangian equivalence amounts to considering the unfolding param-
eters y = (λ, x) ∈ R × R

2m on an equal footing. In this setting,

Lagrangian equivalence of E(L) and E(L̃) is defined in terms of La-

grangian equivalence of L and L̃ in the usual way, which means that
their generating families must be stably R+-equivalent (theorem 3.10),
in other words, there is a symplectomorphism-germ Υ of T ∗

R× TR2m

such that Υ(L) = L̃ and the following diagram commutes:

Pr
L →֒ T ∗

R× TR2m −→ R× R
2m

↓ Υ ↓
Pr

L̃ →֒ T ∗
R× TR2m −→ R× R

2m

where the right-vertical arrow is a diffeomorphism-germ of general form

R× R
2m ∋ (λ, x) 7→ (Λ(λ, x), X(λ, x)) ∈ R× R

2m.

Comparing with the classifying diagram in Definition 6.3 for (1, 2m)-
Lagrangian equivalence, one expects that many singularities ofGCS(L)
which are Lagrangian stable are not (1, 2m)-Lagrangian stable. In
fact, for convex Lagrangian curves, it is easy to see that most of the
singularities of Theorem 7.1 are Lagrangian stable in the above sense.



SINGULARITIES OF GCS OF LAGRANGIAN SUBMANIFOLDS 25

However, the fact that the last projection π : R
1+2m → R

2m is
not taken into account is an obvious indication that usual Lagrangian
equivalence is not the correct equivalence relation for classification of
the singularities of GCS(L), because this latter is the image under π
of the locus of critical points of π restricted to E(L).
This becomes even clearer when we also analyze the non-symplectic

case. In this case, consider the following extended chord transformation

Γ : R× R
n × R

n → R× TRn , (λ, x+, x−) 7→ (λ,Γλ(x
+, x−)) ,

where Γλ : Rn × R
n → TRn is a simpler λ-chord transformation,

(7.5) Γλ(x
+, x−) = (x, ẋ) =

(
λx+ + (1− λ)x−,

x+ − x−

2

)
,

which differs from Φλ only in the kind of linear equation for ẋ (compare
(7.5) to (3.1) and (3.2)), this latter chosen in the symplectic case so
that (Φ−1

λ )∗(δλω) = ω̇ (no extra semi-basic form in the r.h.s.).

Now, let M and M̃ be germs of m-dimensional smooth submanifolds

of Rn, n ≤ 2m, and let M and M̃ be the chord transformed cylinders

M = Γ(R×M ×M) , M̃ = Γ(R× M̃ × M̃) .

Definition 7.10. Germs of GCS(M) and GCS(M̃) are chord equiv-

alent if there is a diffeomorphism-germ Θ of R× TRn s.t. M̃ = Θ(M)
and the following diagram commutes:

idR × pr π
R× TRn −→ R× R

n −→ R
n

↓ Θ ↓ ↓
idR × pr π

R× TRn −→ R× R
n −→ R

n

where vertical arrows indicate diffeomorphism-germs, as follows:

Θ : R× TRn ∋ (λ, x, ẋ) 7→ (Λ(λ, x), X(x), Ẋ(λ, x, ẋ)) ∈ R× TRn,

R× R
n ∋ (λ, x) 7→ (Λ(λ, x), X(x)) ∈ R× R

n,

R
n ∋ x 7→ X(x) ∈ R

n.

Definition 7.11. A singularity of GCS(M) is affine stable if it is a
stable singularity under its classification by the chord equivalence.

Using classification by the chord equivalence, one proves Theorem 7.1
for the GCS of convex curves by somewhat lengthy but straightforward
computations. The classification of the singularities of GCS(M) in the



26 DOMITRZ & RIOS

other known cases, for instance hyperplanes, can be similarly accom-
plished by chord equivalence, which gives the correct affine-invariant
classification of the singularities of GCS(M) for general m-dimensional
submanifolds M ⊂ R

n, n ≤ 2m.
Comparison of the classifying diagram in Definition 7.10 for chord

equivalence with the classifying diagram in Definition 6.3 for (1, 2m)-
Lagrangian equivalence shows their obvious analogy.
On the other hand, the “obvious” analog of the classifying diagram

for usual Lagrangian equivalence, when no symplectic form has to be
accounted for, is

idR × pr
R× TRn −→ R× R

n

↓ Θ ↓
idR × pr

R× TRn −→ R× R
n

where vertical arrows indicate diffeomorphism-germs of the form:

Θ : R× TRn ∋ (λ, x, ẋ) 7→ (Λ(λ, x), X(λ, x), Ẋ(λ, x, ẋ)) ∈ R× TRn,

R× R
n ∋ (λ, x) 7→ (Λ(λ, x), X(λ, x)) ∈ R× R

n.

Of course, applying the above “obvious” and wrong equivalence re-
lation to classify singularities of GCS(M) for general submanifolds
Mm ⊂ R

n, n ≤ 2m, produces many more stable singularities than
when applying the correct classifying diagram of Definition 7.10.
Thus, choosing the correct classifying diagram in both the non-

symplectic and the symplectic cases shows that most singularities of
the GCS which are stable when no symplectic form has to be ac-
counted for, cease to be stable when there is a symplectic form to be
accounted for. In other words, there is breakdown of stability due to
a symplectic form. Other similar cases, of breakdown of simplicity due
to a symplectic form, can be found in [4, 6] and especially in [7].
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