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Genetic regulatory networks are dynamic systems which describe the interactions among gene products (mRNAs and proteins).
The internal states of a genetic regulatory network consist of the concentrations of mRNA and proteins involved in it, which
are very helpful in understanding its dynamic behaviors. However, because of some limitations such as experiment techniques,
not all internal states of genetic regulatory network can be effectively measured. Therefore it becomes an important issue to
estimate the unmeasured states via the available measurements. In this study, we design a state observer to estimate the states
of genetic regulatory networks with time delays from available measurements. Furthermore, based on linear matrix inequality
(LMI) approach, a criterion is established to guarantee that the dynamic of estimation error is globally asymptotically stable. A
gene repressillatory network is employed to illustrate the effectiveness of our design approach.

1. Introduction

Recently nonlinear differential equations have been proposed
to model genetic regulatory networks. Based on this model,
stability of genetic regulatory networks has been intensively
studied, which is believed useful in designing and controlling
genetic regulatory networks. In [1], sufficient and necessary
local delay-independent stability conditions are given for
several types of simplified genetic regulatory networks with
a single time delay. In [2, 3], we present some sufficient
and necessary conditions of local delay-independent stability
conditions for general genetic regulatory networks with a
single time delay and multiple time delays. Some sufficient
conditions for global stability of genetic regulatory networks
have been derived based on LMI approaches [4–6] and M-
matrix theorem [7, 8].

On the other hand, to understand the dynamic behavior
of genetic regulatory networks, measurements of all internal
states are very useful. The internal states of a genetic regu-
latory network consist of the concentrations of mRNA and
proteins involved in it. However, because of some limitations
such as experiment techniques, not all internal states of

genetic regulatory network can be effectively measured. As
a result, the internal states of genetic regulatory networks
cannot be completely available. Therefore, the state estima-
tion problem can play an important role in understanding the
dynamic behaviors of genetic regulatory networks. The state
estimation problem addressed is to estimate the states based
on available output measurements such that the dynamic of
estimation error is globally asymptotically stable. Actually,
the state estimation methods have been very important in
understanding, designing, and controlling dynamic systems
such as engineering control system [9], neural networks [10,
11], and complex systems [12].

In this study, we will study the state estimation of genetic
regulatory networks with time delays modeled by nonlinear
differential equations. Section 2 briefly describes delayed
genetic regulatory networks with SUM regulatory logic. In
Section 3 we design a full-order state observer to estimate
the states of delayed genetic regulatory networks. Some
properties of this observer are discussed. In Section 4, based
on LMI approach we establish a sufficient condition under
which the dynamic of estimation error for designed state
observer is asymptotically and delay-independently stable.
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In Section 5, a gene repressillatory network is employed
to illustrate the effectiveness of our approach described in
Section 4. Section 6 gives our conclusion of this study and
points out some directions of future work.

2. Delayed Genetic Regulatory Networks

A delayed genetic regulatory network consisting of 𝑛mRNAs
and 𝑛 proteins can be described by the following equations:

𝑚̇
𝑖 (
𝑡) = −𝑘𝑚𝑖

𝑚
𝑖 (
𝑡) + 𝑐𝑖

(𝑝 (𝑡 − 𝜏
𝑝
))

𝑝̇
𝑖 (
𝑡) = −𝑘𝑝𝑖

𝑝
𝑖 (
𝑡) + 𝑟𝑖

𝑚
𝑖
(𝑡 − 𝜏
𝑚
)

for 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑚
𝑖
(𝑡), 𝑝

𝑖
(𝑡) ∈ 𝑅

𝑛

+
represent the concentrations of

mRNA 𝑖 and protein 𝑖, respectively. 𝑘
𝑚𝑖

and 𝑘
𝑝𝑖
are positive

real numbers that represent the degradation rates of mRNA 𝑖
and protein 𝑖, respectively. 𝑟

𝑖
is a positive constant represent-

ing the rate of translating mRNA 𝑖 to protein 𝑖. 𝑐
𝑖
(𝑝(𝑡, 𝜏

𝑝
)) is

a nonlinear function of 𝑝
1
(𝑡 − 𝜏
𝑝
), . . . , 𝑝

𝑛
(𝑡 − 𝜏
𝑝
) representing

the regulation function of gene 𝑖. Both 𝜏
𝑚
and 𝜏
𝑝
are positive

constants indicating time delays of mRNAs and proteins,
respectively.

The bottom equation in model (1) describes the trans-
lational process. The term 𝑟

𝑖
𝑚
𝑖
(𝑡) reflects the fact that one

kind of proteins is translated only from one kind of mRNA
molecules. The top equation in model (1) describes the
transcriptional process. One gene or mRNA is generally acti-
vated or repressed by multiple proteins in the transcriptional
process indicated in the definition of 𝑐

𝑖
(𝑝(𝑡)). In this paper,

we take 𝑐
𝑖
(𝑝(𝑡)) = ∑

𝑛

𝑗=1
𝑐
𝑖𝑗
(𝑝
𝑗
(𝑡)), which is called the “SUM”

logic [13]. That is, each transcription factor acts additively to
regulate gene 𝑖. The SUM logic is applicable if one gene can
be regulated by several proteins independently by binding
with different promoters or by a family of similar proteins
independently binding to one promoter. In many natural
gene networks, this SUM logic does exist [13]. The regulation
function 𝑐

𝑖𝑗
(𝑝
𝑗
(𝑡)) is a function of theHill form [14] as follows:

𝑐
𝑖𝑗
(𝑝
𝑗 (
𝑡)) = 𝑎𝑖𝑗

1

1 + (𝑝
𝑗 (
𝑡) /𝑏𝑗

)

ℎ𝑗 (2)

if transcription factor 𝑗 is a repressor of gene 𝑖, or

𝑐
𝑖𝑗
(𝑝
𝑗 (
𝑡)) = 𝑎𝑖𝑗

(𝑝
𝑗 (
𝑡) /𝑏𝑗

)

ℎ𝑗

1 + (𝑝
𝑗 (
𝑡) /𝑏𝑗

)

ℎ𝑗
(3)

if transcription factor 𝑗 is an activator of gene 𝑖, where 𝑎
𝑖𝑗

and 𝑏
𝑗
are nonnegative constants and ℎ

𝑗
is the Hill coefficient

representing the degree of cooperativity. In this study, assume
that ℎ

𝑗
≥ 1. Note that

1

1 + (𝑝
𝑗 (
𝑡) /𝑏𝑗

)

ℎ𝑗
= 1 −

(𝑝
𝑗 (
𝑡) /𝑏𝑗

)

ℎ𝑗

1 + (𝑝
𝑗 (
𝑡) /𝑏𝑗

)

ℎ𝑗
. (4)

Then system (1) can be rewritten as follows:

𝑚̇ (𝑡) = −𝐾𝑚
𝑚(𝑡) + 𝐺𝑔 (𝑝 (𝑡 − 𝜏𝑝

)) + 𝐿

𝑝̇ (𝑡) = −𝐾𝑝
𝑝 (𝑡) + 𝑅𝑚 (𝑡 − 𝜏𝑚

) ,

(5)

where 𝑚(𝑡) = (𝑚
1
(𝑡), . . . , 𝑚

𝑛
(𝑡)) and 𝑝(𝑡) = (𝑝

1
(𝑡), . . . ,

𝑝
𝑛
(𝑡));𝐾

𝑚
= diag(𝑘

𝑚1
, . . . , 𝑘

𝑚𝑛
),𝐾
𝑝
= diag (𝑘

𝑝1
, . . . , 𝑘

𝑝𝑛
), and

𝑅 = diag (𝑟
1
, . . . , 𝑟

𝑛
); 𝐺 = (𝐺

𝑖𝑗
) is an 𝑛 × 𝑛 stoichiometric

matrix representing regulatory relationships of the network,
which is defined as follows: 𝐺

𝑖𝑗
= 0 if transcription factor

𝑗 does not directly regulate gene 𝑖, 𝐺
𝑖𝑗
= 𝑎
𝑖𝑗
if transcription

factor 𝑗directly activates gene 𝑖, and𝐺
𝑖𝑗
= −𝑎
𝑖𝑗
if transcription

factor 𝑗 directly represses gene 𝑖; 𝐿 = (𝑙
1
, . . . , 𝑙
𝑛
) where 𝑙

𝑖
is a

constant and is defined as 𝑙
𝑖
= ∑
𝑗∈Rep 𝑎𝑖𝑗, where Rep is the

set of repressors of gene 𝑖. 𝑔 = (𝑔
1
, . . . , 𝑔

𝑛
) where 𝑔

𝑗
(𝑢) =

(𝑢/𝑏
𝑗
)
ℎ𝑗
/[1+(𝑢/𝑏

𝑗
)
ℎ𝑗
] is a monotonically increasing function.

Obviously these functions with ℎ
𝑗
≥ 1 have the continuous

derivatives for 𝑢 ≥ 0. From calculus, we have

𝜃
𝑗
= max
𝑢≥0

𝑔
󸀠

𝑗
(𝑢) =

(ℎ
𝑗
− 1)

(ℎ𝑗−1)/ℎ𝑗
(ℎ
𝑗
+ 1)

(ℎ𝑗+1)/ℎ𝑗

4𝑏
𝑗
ℎ
𝑗

> 0. (6)

3. State Observer

In practice, the information about the network states is often
incomplete from the experimental measurements. For exam-
ple, the concentrations of proteins might be immeasurable
because of the limitation of measurement techniques. Our
purpose of this study is to develop an efficient estimation
system (called a state observer) in order to estimate the
network states from the available measurements. In this
paper, assume thatmeasurements are the linear combinations
ofmRNA and protein concentrations and thus the output can
be expressed as follows:

𝑧 (𝑡) = 𝐶[

𝑚 (𝑡)

𝑝 (𝑡)

] , (7)

where 𝑧(𝑡) is an 𝑚-dimensional vector representing the
measurements and 𝐶 is an𝑚×2𝑛 observation matrix. Unless
the rank ofmatrix𝐶 in (7) is 2𝑛, the states of system (5) cannot
be exactly estimated from the static observation equation (7)
only. In practice, the rank of matrix 𝐶 in (7) is less than 2𝑛.
To approximately estimate the states of a dynamic system,
a dynamic system similar to the original one is designed to
estimate the states. In this paper, the full-order state estimator
of network (5) is designed as follows:

[

̇
𝑚̂ (𝑡)

̇
𝑝̂ (𝑡)

] = − [

𝐾
𝑚

0

0 𝐾
𝑝

][

𝑚̂ (𝑡)

𝑝 (𝑡)

] + [

𝐺𝑔 (𝑝 (𝑡 − 𝜏
𝑝
)) + 𝐿

𝑅𝑚̂ (𝑡 − 𝜏
𝑚
)

]

+ 𝐷(𝑧 (𝑡) − 𝐶[

𝑚̂ (𝑡)

𝑝 (𝑡)

]) ,

(8)

where 𝑚̂(𝑡) and 𝑝(𝑡) are the estimation of states and𝐷 is 2𝑛×
𝑚 estimate gain matrix to be determined.
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Let the estimation error be

𝑥 (𝑡) = 𝑚 (𝑡) − 𝑚̂ (𝑡) 𝑦 (𝑡) = 𝑝 (𝑡) − 𝑝 (𝑡) . (9)

Then from (5), (8), and (9), the error system can be
described as follows:

[

𝑥̇ (𝑡)

̇𝑦 (𝑡)

] = − (𝐾 + 𝐷𝐶)[

𝑥 (𝑡)

𝑦 (𝑡)

] + [

𝐺𝑓 (𝑡 − 𝜏
𝑝
)

𝑅𝑥 (𝑡 − 𝜏
𝑚
)

] , (10)

where𝐾 = diag(𝐾
𝑚
, 𝐾
𝑝
) and 𝑓(𝑡) = 𝑔(𝑝(𝑡)) − 𝑔(𝑝(𝑡)).

Now designing the state estimator for network (5) is
reduced to find the estimate gainmatrix𝐷 such that the error
system (10) is globally asymptotically stable. From (6), we
have

0 ≤

𝑓
𝑗 (
𝑡)

𝑦
𝑗 (
𝑡)

≤ 𝜃
𝑗

for 𝑗 = 1, 2, . . . , 𝑛. (11)

Furthermore, for any nonnegative diagonal Λ =

diag(𝜆
1
, . . . , 𝜆

𝑛
) ≥ 0, from (11) it follows that

− 𝑓
𝑇
(𝑡 − 𝜏
𝑝
) 2Λ𝑓 (𝑡 − 𝜏

𝑝
) + 𝑦
𝑇
(𝑡 − 𝜏
𝑝
) 2ΛΘ𝑓 (𝑡 − 𝜏

𝑝
)

≥ 0,

(12)

where Θ = diag(𝜃
1
, . . . , 𝜃

𝑛
).

Once matrix 𝐷 is determined, the estimations 𝑚̂(𝑡) and
𝑝(𝑡) are numerically calculated from (8). That the same
technique can be applied for solving (1) directly is the same as
solving system (8) with𝐷 = 0, which results in an estimation
error system (10) with 𝐷 = 0. If the system (1) is unstable
and the values of 𝑚̂(0) and 𝑝(0) are different from their true
counterparts, then the estimation errors will be exponentially
increased. Even if the values of 𝑚̂(0) and 𝑝(0) are the exact
same as their true counterparts, the round-off errors can also
cause the estimation errors to be exponentially increased.
Therefore, in practice it is important to design matrix 𝐷 to
make sure the estimation error system is stable. Theorems 1
and 2 in next section will guarantee that, for any values of
𝑚̂(0) and 𝑝(0), the estimation errors will be asymptotically
converged to zero.

4. Main Results and Proofs

In this section we will first derive the conditions under which
the error system (10) is globally asymptotically stable for a
given estimate gain matrix.

Theorem 1. For a given estimate gain matrix 𝐷, the error
system (10) has a unique equilibrium state𝑥 = 0 and𝑦 = 0 and
is globally asymptotically stable if there exist 2𝑛 × 2𝑛 positive
definite matrices 𝑃 and 𝑛 × 𝑛 positive definite matrices 𝑄 and
𝑆 and positive diagonal matrix Λ = diag(𝜆

1
, . . . , 𝜆

𝑛
) > 0, such

that the following LMI holds:

Ω =

[

[

[

[

[

Ω
11
Ω
12

0

Ω
𝑇

12
Ω
22
Ω
23

0 Ω
𝑇

23
−𝑆

]

]

]

]

]

< 0, (13)

whereΩ
11
= −(𝐾 + 𝐷𝐶)

𝑇
𝑃 − 𝑃(𝐾 + 𝐷𝐶) + diag(𝑄, 𝑆),Ω

22
=

− diag(2Λ, 𝑄), Ω
12
= 𝑃 diag(𝐺, 𝑅), and Ω

23
= [ΛΘ, 0]

𝑇.

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑉1
(𝑥 (𝑡) , 𝑦 (𝑡)) + 𝑉2

(𝑥 (𝑡) , 𝑦 (𝑡)) , (14)

where

𝑉
1
(𝑥 (𝑡) , 𝑦 (𝑡)) = [𝑥

𝑇
(𝑡) 𝑦
𝑇
(𝑡)] 𝑃 [

𝑥 (𝑡)

𝑦 (𝑡)

] ,

𝑉
2
(𝑥 (𝑡) , 𝑦 (𝑡)) = ∫

𝑡

𝑡−𝜏𝑚

𝑥
𝑇
(𝑢)𝑄𝑥 (𝑢) 𝑑𝑢

+ ∫

𝑡

𝑡−𝜏𝑝

𝑦
𝑇
(𝑢) 𝑆𝑦 (𝑢) 𝑑𝑢.

(15)

Differentiating 𝑉
𝑖
(𝑥(𝑡), 𝑦(𝑡)) defined above along the trajec-

tories of system (10), we have

𝑉̇
1
(𝑥 (𝑡) , 𝑦 (𝑡)) = 2 [𝑥

𝑇
(𝑡) 𝑦
𝑇
(𝑡)] 𝑃 [

𝑥̇ (𝑡)

̇𝑦 (𝑡)

]

= −2 [𝑥
𝑇
(𝑡) 𝑦
𝑇
(𝑡)] 𝑃 (𝐾 + 𝐷𝐶)[

𝑥 (𝑡)

𝑦 (𝑡)

]

+ 2 [𝑥
𝑇
(𝑡) 𝑦
𝑇
(𝑡)]

× 𝑃 diag (𝐺, 𝑅) [

[

𝑓 (𝑡 − 𝜏
𝑝
)

𝑥 (𝑡 − 𝜏
𝑚
)

]

]

,

𝑉̇
2
(𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑥

𝑇
(𝑡) 𝑄𝑥 (𝑡) − 𝑥

𝑇
(𝑡 − 𝜏
𝑚
) 𝑄𝑥 (𝑡 − 𝜏

𝑚
)

+ 𝑦
𝑇
(𝑡) 𝑆𝑦 (𝑡) − 𝑦

𝑇
(𝑡 − 𝜏
𝑝
) 𝑆𝑦 (𝑡 − 𝜏

𝑝
) .

(16)

Taking inequality (12) into consideration, we have

𝑉̇ (𝑥 (𝑡) , 𝑦 (𝑡))

≤ 𝑉̇
1
(𝑥 (𝑡) , 𝑦 (𝑡)) + 𝑉̇2

(𝑥 (𝑡) , 𝑦 (𝑡))

− 𝑓
𝑇
(𝑡 − 𝜏
𝑝
) 2Λ𝑓 (𝑡 − 𝜏

𝑝
)

+ 𝑦
𝑇
(𝑡 − 𝜏
𝑝
) 2ΛΘ𝑓 (𝑡 − 𝜏

𝑝
)

= [𝑥
𝑇
(𝑡) 𝑦
𝑇
(𝑡)] (−2𝑃 (𝐾 + 𝐷𝐶) + diag (𝑄, 𝑆)) [

𝑥 (𝑡)

𝑦 (𝑡)

]

+ 2 [𝑥
𝑇
(𝑡) 𝑦
𝑇
(𝑡)] 𝑃 diag (𝐺, 𝑅) [

𝑓 (𝑡 − 𝜏
𝑝
)

𝑥 (𝑡 − 𝜏
𝑚
)

]

− [𝑓
𝑇
(𝑡 − 𝜏
𝑝
) 𝑥
𝑇
(𝑡 − 𝜏
𝑚
)] diag (2Λ, 𝑄) [

𝑓 (𝑡 − 𝜏
𝑝
)

𝑥 (𝑡 − 𝜏
𝑚
)

]
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+ 2𝑦
𝑇
(𝑡 − 𝜏
𝑝
) [ΛΘ 0]

[

[

𝑓 (𝑡 − 𝜏
𝑝
)

𝑥 (𝑡 − 𝜏
𝑚
)

]

]

− 𝑦
𝑇
(𝑡 − 𝜏
𝑝
) 𝑆𝑦 (𝑡 − 𝜏

𝑝
)

= 𝜉
𝑇
(𝑡) Ω𝜉 (𝑡) < 0,

(17)

where 𝜉(𝑡) = [(𝑥
𝑇
(𝑡), 𝑦
𝑇
(𝑡)), (𝑓

𝑇
(𝑡 − 𝜏

𝑝
), 𝑥
𝑇
(𝑡 − 𝜏

𝑝
)), 𝑦
𝑇
(𝑡 −

𝜏
𝑝
)]
𝑇.
From Lyapunov-Krasovskii theory [15], the error system

(10) is globally asymptotically stable. From (10), 𝑥 = 0 and
𝑦 = 0 are an equilibrium state. To prove the uniqueness
of the equilibrium state of the error system (10), here we
use proof-by-contradiction technique. Note that Lyapunov-
Krasovskii functional (18) associated with the error system
(10) is independent of the equilibrium state. Therefore if the
error system (10) has another equilibrium state, it is also
globally asymptotically stable, which is not possible.

In Theorem 1, for a given estimate gain matrix 𝐷, the
stability condition of the error dynamic system (10) is
established in terms of linear matrix inequality (LMI) which
can be solved by standard MATLAB function. If matrix 𝐷
is unknown, matrix inequality (13) becomes nonlinear in
matrices, 𝑃, 𝐷, 𝑄, 𝑆, and Λ, which is not easy to be solved.
However, let 𝑃𝐷 = −𝑇; then matrix inequality (13) becomes
linear in matrices, 𝑃, 𝑇, 𝑄, 𝑆, and Λ. Therefore, we have the
following theorem.

Theorem 2. If there exist 2𝑛 × 2𝑛 positive definite matrices 𝑃
and 𝑛 × 𝑛 positive definite matrices 𝑄 and 𝑆, positive diagonal
matrixΛ = diag(𝜆

1
, . . . , 𝜆

𝑛
) > 0, and an 2𝑛×𝑚matrix𝑇 such

that the following LMI

Ω =

[

[

[

[

[

Ω
11
Ω
12

0

Ω
𝑇

12
Ω
22
Ω
23

0 Ω
𝑇

23
−𝑆

]

]

]

]

]

< 0 (18)

holds, whereΩ
11
= −𝐾𝑃−𝑃𝐾+𝐶

𝑇
𝑇
𝑇
+𝑇𝐶+ diag(𝑄, 𝑆), and

sub-matrices Ω
22
, Ω
12
, and Ω

23
are the same as in Theorem 1,

then with the estimator gain matrix

𝐷 = −𝑃
−1
𝑇 (19)

the error system (10) has a unique equilibrium state 𝑥 = 0 and
𝑦 = 0 and is globally asymptotically stable.

Proof of Theorem 2 is straightforward from Theorem 1
and thus is omitted here.

5. An Illustration Example

In this section, we employ the gene repressilatory network
to show the effectiveness and correctness of our theoretical
results. The gene repressilatory network consists of three

1
lacl

3
cl

2
tetR

Figure 1: Structure of gene repressilatory network.

genes and three proteins (lacl, tetR, and cl), each repressing
the transcription of its downstream partner [16] as shown
in Figure 1. This network without time delays has been
studied theoretically and experimentally in [16]. The delay-
independent local and global stability of this gene repressi-
latory network with time delays has widely been studied in
[1–8].

The mathematical model of this gene repressilatory net-
work with time delay is described by the following equation:

𝑚̇
𝑖 (
𝑡) = −𝑘𝑚

𝑚
𝑖 (
𝑡) +

𝑎

1 + 𝑝
ℎ

𝑖−1
(𝑡 − 𝜏
𝑝
)

,

𝑝̇
𝑖 (
𝑡) = −𝑘𝑝

𝑝
𝑖 (
𝑡) + 𝑟𝑚𝑖

(𝑡 − 𝜏
𝑚
) ,

(20)

where 𝑘
𝑚
, 𝑎, 𝑘
𝑝
, and 𝑟 are positive constants and subscript

0 = 3.
In this study we consider gene repressillatory network

(20) with the values of parameters set as follows: ℎ = 2,
𝑘
𝑚
= 1.2, 𝑎 = 2.5, 𝑘

𝑝
= 1, and 𝑟 = 0.8. For system (20) with

these parameter specifications, we have

𝐾
𝑚
=
[

[

[

1.2 0 0

0 1.2 0

0 0 1.2

]

]

]

, 𝐺 =
[

[

[

0 −2.5 0

0 0 −2.5

−2.5 0 0

]

]

]

,

𝐾
𝑝
=
[

[

[

1 0 0

0 1 0

0 0 1

]

]

]

, 𝑅 =
[

[

[

0.8 0 0

0 0.8 0

0 0 0.8

]

]

]

.

(21)

And 𝜃
𝑗
= 3√3/8 for 𝑗 = 1, 2, 3.

Case A. Assume that the concentration of all proteins is
unable to be measured. The observation matrix 𝐶 is

𝐶 =
[

[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

]

]

]

. (22)
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By using MATLAB LMI toolbox, we solve LMIs (18) with the
above data for 𝑃, 𝑇, 𝑄, 𝑆, and Λ and obtain

𝑃 =

[

[

[

[

[

[

[

[

[

[

[

[

1.8750 0 0 0 0 0

0 1.8750 0 0 0 0

0 0 1.8750 0 0 0

0 0 0 8.3807 0 0

0 0 0 0 8.3807 0

0 0 0 0 0 8.3807

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑇 = −

[

[

[

[

[

[

[

[

[

[

[

[

10.1248 0 0

0 10.1248 0

0 0 10.1248

0 0 0

0 0 0

0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑄 =
[

[

[

9.2810 0 0

0 9.2810 0

0 0 9.2810

]

]

]

,

𝑆 =
[

[

[

7.9497 0 0

0 7.9497 0

0 0 7.9497

]

]

]

,

Λ =
[

[

[

6.9963 0 0

0 6.9963 0

0 0 6.9963

]

]

]

.

(23)

Therefore, we have

𝐷 = −𝑃
−1
𝑇 =

[

[

[

[

[

[

[

[

[

[

[

[

5.4 0 0

0 5.4 0

0 0 5.4

0 0 0

0 0 0

0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

. (24)

Figure 2 depicts the estimation errors of protein concen-
trations of delayed genetic regulatory network (20) with spec-
ified parameters in the caption of Figure 2. From Figure 2,
it can be seen that in six minutes the estimated protein
concentrations are exactly the same as the true protein
concentrations although they are notmeasured.The time that
needs to exactly estimate the true states depends on the initial
errors between the true states and estimated states (which are
random guesses in practice). In Figure 2, the initial errors of
protein estimations range from 0.1 to 0.6. If the initial errors
are zero, the estimated state would be the exact true states
from beginning on.
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Figure 2: Estimation errors of protein concentrations of system (20)
with specified parameters and 𝜏

𝑝
= 𝜏
𝑚
= 0.5 minutes while mRNA

concentrations are available.

Case B. Assume that the concentration of all proteins is able
to be measured while we would like to estimate the gene
expressions. The observation matrix 𝐶 becomes

𝐶 =
[

[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]

]

]

. (25)

By using MATLAB LMI toolbox, we solve LMIs (18) with
above data for 𝑃, 𝑇, 𝑄, 𝑆, and Λ and obtain

𝑃 =

[

[

[

[

[

[

[

[

[

19.3747 0 0 0 0 0

0 19.3747 0 0 0 0

0 0 19.3747 0 0 0

0 0 0 21.9879 0 0

0 0 0 0 21.9879 0

0 0 0 0 0 21.9879

]

]

]

]

]

]

]

]

]

,

𝑇 = −

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0

0 0 0

0 0 0

53.1451 0 0

0 53.1451 0

0 0 53.1451

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑄 =
[

[

[

17.6592 0 0

0 17.6592 0

0 0 17.6592

]

]

]

,
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Figure 3: Estimation errors of mRNA concentrations of system (20)
with specified parameters and 𝜏

𝑝
= 𝜏
𝑚
= 0.5minutes while protein

concentrations are available.

𝑆 =
[

[

[

75.9017 0 0

0 75.9017 0

0 0 75.9017

]

]

]

,

Λ =
[

[

[

69.2189 0 0

0 69.2189 0

0 0 69.2189

]

]

]

.

(26)

Therefore, we have

𝐷 = −𝑃
−1
𝑇 =

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0

0 0 0

0 0 0

2.4170 0 0

0 2.4170 0

0 0 2.4170

]

]

]

]

]

]

]

]

]

]

]

]

. (27)

Figure 3 depicts the estimation errors of mRNA con-
centrations of delayed genetic regulatory network (20) with
specified parameters in the caption of Figure 3 and knowing
protein concentrations. From Figure 3, it can be seen that
in about ten minutes the estimated mRNA concentrations
can pretty well approximate the true mRNA concentrations
although they are not measured. In Figure 3, the initial errors
of protein estimations range from 0.2 to 0.5.

6. Conclusion and Future Work

In this paper, we have studied the state estimation of
genetic regulatory networks with time delays. Based on

LMI approach, a full-order state observer is designed to
estimate the states from incomplete measurements so that
the state estimation error is globally asymptotically stable.
The theorems presented in this paper have been illustrated by
the gene repressillatory network. The simulation results have
verified that our designed observer can effectively estimate
the unmeasured states. In this study, we assume that all
parameters of genetic regulatory networks are available. In
practice, some of parameters in networks may be unknown.
One direction of our future work is to employ the extended
Kalman filter [17] to estimate the known parameters and
state of the systems simultaneously. Parameter uncertainties
and noise perturbations exist in genetic regulatory networks
[4, 6, 7, 16, 18] and measured outputs, which can affect the
performance of state observer. The second direction of our
future work is to design robust state observer for genetic
regulatory networks with parameter uncertainties and noises.
Typically measured outputs are sampled at a series of time
points although state variables of genetic regulatory networks
are continuous. The third direction of our future work is to
design a state observer for genetic regulatory networks with
discretized outputs.
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