

A Novel Differential Evolution Algorithm for TWET-NFSSP with SDSTs

and RDs

Bin Qian1, a, Hua-Bing Zhou1,b, Rong Hu1,c and Li-Ping Wu1,d
1
 Department of Automation, Kunming University of Science and Technology, Kunming 650500,

China

a
bin.qian@vip.163.com,

b
zhouhuabing2007@yahoo.cn,

c
ronghu@vip.163.com,

d
lipingwu1981@163.com

Keywords: differential evolution, no-wait flow-shop scheduling problem, sequence-dependent
setup times and release dates, total weighted earliness/tardiness, speed-up method, special local
search

Abstract. A novel differential evolution (DE) algorithm, namely DE_TWET, is presented to deal

with the no-wait flow-shop scheduling problem (NFSSP) with sequence-dependent setup times

(SDSTs) and release dates (RDs). The criterion is to minimize a total weighted earliness/tardiness

(TWET) cost function. The presented algorithm is a hybrid of DE, problem’s properties, and a special

designed local search. In DE_TWET, DE is adopted to execute global search in the solution space,

and the problem’s properties are utilized to give a speed-up evaluation method and construct the local

search, and the special local search is designed to enhance the local search ability of DE.

Experimental results and comparisons demonstrate the effectiveness and robustness of the presented

algorithm.

Introduction

With the development of just-in-time (JIT) manufacturing systems, the study on the scheduling

problems with both earliness and tardiness (E/T) costs is of greater significance. In this paper, a

typical production scheduling problem with strong engineering background [1,2], the no-wait

flow-shop scheduling problem (NFSSP) with sequence-dependent setup times (SDSTs) and release

dates (RDs), is considered, whose criterion is to minimize a total weighted earliness/tardiness

(TWET) cost function. In such a case, each job j must be processed through all machines without

any interruption, and both the setup times and the release dates need to be explicitly treated, and an

optimal schedule is the one that all jobs finish exactly on their due dates. This type of model is

classified as ∑ ′′+′−)(/, ,/ jjjjjsd TwEwrSTwaitnoFm , which can also be identified as

TWET-NFSSP with SDSTs and RDs. Because ∑ jT//1 is NP-hard and it reduces to /Fm

∑ ′′+′−)(/, , jjjjjsd TwEwrSTwaitno (i.e., ∑∑ ′′+′−∝)(/, ,///1 jjjjjsdj TwEwrSTwaitnoFmT),

it can be concluded that ∑ ′′+′−)(/, ,/ jjjjjsd TwEwrSTwaitnoFm is NP-hard [3]. Moreover,

literature review show that the researches on the scheduling problems with both sequence-dependent

setup times and release dates are very limited [4]. Thus, it is meaningful and practical to develop an

effective algorithm for the considered problem.

Differential evolution (DE) algorithm, which was first designed for optimizing complex

continuous problems [5], is one of the latest population-based evolutionary methods. Owing to its

quick convergence and easy implementation, nowadays, the DE algorithm has gained many

successful applications in different fields. However, due to DE’s continuous nature, the applications

of the DE-based algorithms to scheduling problems are still limited. Tasgetiren et al. [6] devised a

DE-based algorithm for flow-shop scheduling problems (FSSPs) to minimize makespan. Onwubolu

and Davendra [7] developed a DE-based approach for FSSPs, where makespan, mean flowtime, and

total tardiness were considered. Qian et al. [8] designed an very efficient DE-based algorithm for

Advanced Engineering Forum Online: 2012-09-26
ISSN: 2234-991X, Vols. 6-7, pp 748-756
doi:10.4028/www.scientific.net/AEF.6-7.748
© 2012 Trans Tech Publications Ltd, Switzerland

This is an open access article under the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.4028/www.scientific.net/AEF.6-7.748

NFSSPs with the makespan criterion. Wang et al. [9] proposed an efficient discrete differential

evolution algorithm for FSSPs with blocking. Recently, Hu et al. [10] presented a hybrid DE

algorithm (DE_NTJ) for ∑− jjsd UrSTwaitnoFm /, ,/ , which is the current best approach for the

problem considered. To the best of our knowledge, there has no promising results on

∑ ′′+′−)(/, ,/ jjjjjsd TwEwrSTwaitnoFm , and there has no published work addressing it by using

DE-based algorithm.

In the current paper, a novel DE algorithm (DE_TWET) is proposed to deal with TWET-NFSSP

with SDSTs and RDs. In our DE_TWET, firstly, a largest-order-value (LOV) in [11] is utilized to

map the real-valued vectors or individuals in DE to job permutations so as to make DE suitable for

solving NFSSP; secondly, a speed-up evaluation method based on the property of the considered

scheduling problem is given to calculate the cost function efficiently; thirdly, the DE-based search is

adopted to perform global exploration in the solution space and guide the whole search to the

promising regions/solutions, while a special local search based on problem’s properties is developed

to emphasize exploitation from those regions. Test results and comparisons demonstrate the

efficiency and robustness of the proposed DE_TWET.

The remainder of this paper are partitioned into four sections. Section 2 introduces the

mathematical model of TWET-NFSSP with SDSTs and RDs. Section 3 presents DE_TWET in

details. Section 4 provides and discusses test results and comparisons. Finally, Section 5 gives some

concluding remarks and suggestions of future research.

TWET-NFSSP with SDSTs and RDs

The NFSSP with SDSTs and RDs can be described as follows. There are n jobs and m machines. Each

of n jobs will be sequentially processed on machine m,...,2,1 . The processing time of each job on each

machine is deterministic. At any time, preemption is forbidden and each machine can process at most

one job. To satisfy the no-wait restriction, each job must be processed without interruptions between

consecutive machines. Thus, all jobs are processed in the same sequence on all machines. In a

flow-shop with SDSTs, setup must be performed between the completion time of one job and the start

time of another job on each machine, and setup time depends on both the current and the immediately

preceding jobs at each machine. In a flow-shop with RDs, if a machine is ready to process a job but the

job has not been released yet, it stays idle until the release date of the job.

NFSSP with SDSTs. Let],,,[21 njjj �=π denote the schedule or permutation of jobs to be

processed, lji
p , the processing time of job ij on machine l,

ij
sp the total processing time of job ij

on all machines, lji
ML , the minimum delay on the machine l between the completion of job 1−ij and

ij ,
ii jjL ,1−
 the minimum delay on the first machine between the start of job 1−ij and ij , ljj ii

s ,,1−
 the

sequence-dependent setup time between job 1−ij and ij on machine l. Let 0,0
=ljp for ml ,...,1= .

Then lji
ML , can be calculated as follows:

=+−

=+−+
=

−−

−−−

− mlpspML

lpspps
ML

ljljjljlj

jjjjjjj

lj

iiiii

iiiiiii

i ,...,3 ,},max{

 2 ,},max{

,,,,1,

2,2,,2,1,1,,

,

11

111 . (1)

Accordingly,
ii jjL ,1−
 can be calculated by using the following formula:

iiiii jjmjjj spspMLL −+=
−− 11 ,, . (2)

Advanced Engineering Forum Vols. 6-7 749

2.2 TWET-NFSSP with SDSTs. Denote
ij

r the arrival time of job ij ,
ij

St the process start time of

job ij on machine 1,
ij

C the completion time of job ij on machine m ,
ij

d the due date of job ij ,

ij
E the earliness of job ij on machine m ,

ij
T the tardiness of job ij on machine m , and)(πTWET

the total weighted earliness/tardiness cost function. Then
ij

St can be written as follows:

=−+

=−
=

−−−
niStrLSt

irspML
St

iiiii

iii

i
jjjjj

jjmj

j ,...,2 },,max{

1 },,max{

111 ,

,
. (3)

So,
ij

C ,
ij

E ,
ij

T , and)(πTWET can be calculated as follows:

nispStC
iii jjj ,...,1, =+= , (4)

niCdE
iii jjj ,...,1),0,max(=−= , (5)

nidCT
iii jjj ,...,1),0,max(=−= , (6)

0,0 ,)()(1 >′′>′′′+′=∑ = iiiiii jjjjjj
n
i wwTwEwTWET π . (7)

The aim of this paper is to find a permutation *π in the set of all permutations Π such that

)(min)*(ππ
π

TWETTWET
∏∈

= . (8)

DE_TWET for TWET-NFSSP with SDSTs and RDs

In this section, we will propose DE_TWET for TWET-NFSSP with SDSTs and RDs after explaining

the solution representation, speed-up evaluation method, DE-based global search, and special

designed local search.

Solution Representation. Owing to the continuous nature of the individuals in DE, the standard

encoding scheme of DE cannot be directly applied to NTJ-NFSSP with SDSTs and RDs. In this paper,

we adopt a largest-order-value (LOV) rule in [11] to map DE’s ith individual =iX [niii xxx ,2,1, ,,, �]

to the job permutation vector =iπ [niii jjj ,2,1, ,,, �]. According to LOV rule, =iX [niii xxx ,2,1, ,,, �]

are firstly ranked by descending order to get the sequence =iϕ [niii ,2,1, ,,, ϕϕϕ �]. Then the job

permutation iπ is calculated by the following formula:

kj
kii =

,,ϕ . (9)

According to our tests, LOV rule can achieve better results than the well-known random key

representation.

Speed-up Evaluation Method. Based on the mathematical model of TWET-NFSSPs with SDSTs

and RDs in Section 2,
ii jjL ,1−
 is only decided by the job 1−ij and ij . By utilizing this property, one

method can be adopted to reduce the computing complexity (CC) of)(πTT . That is,
ii jjL ,1−
,

ij
sp and

∑ = ij
n
i sp1 can be calculated and saved in the initial phase of DE_TWET and then can be used as

constant values in the global and local search phase of DE_TWET, which can reduce the CC of

)(πTWET from)(nmO to)(nO .

DE-based Global Search. Since many published works show that DE-based search has the strong

ability of obtaining enough promising regions over the solution space, we use it to execute global

search in the solution space. DE algorithm introduced by Storn and Price [5] is a branch of

750 Information Technology for Manufacturing Systems III

population-based evolutionary algorithms for solving optimization problems over continuous domain.

In the basic DE algorithm, it uses simple differential operator to create new candidate solutions and

one-to-one competition strategy to select each new candidate. During its evolutionary phase, the

searching behavior of each DE’s individual is dynamically adjusted according to the differentiations

among population. In our DE_TWET, DE/rand-to-best/1/exp scheme [12] is adopted to perform

DE-based global search, in which base vector is the best individual of the present population. So, the

information of the best individual can be utilized by all individuals in the population.

Special Designed Local Search.

Interchange-based Neighborhoods. Because interchange is an effective neighborhood in the

published papers, we select it as the fundamental neighborhood for local search. Denote

()vueinterchang ,,π the interchange of the job at the uth dimension (i.e., uj) and the job at the vth

dimension (i.e., vj). The interchange-based neighborhood of π can be expressed as

=)(πeinterchangN { () nuvnuvueinterchangn,u,v ,...,1 and 1,...,1|,, +=−== ππ }. (10)

As for a fixed u , the subset of)(πeinterchangN can be written as

=)(uN einterchang π, { () nuvvueinterchangn,u,v ,...,1|,, +== ππ }. (11)

Thus, it has

)1,(),2(),1()(−∪∪∪= nNNNN einterchangeinterchangeinterchangeinterchang ππππ � . (12)

Obviously, the sizes of)(πeinterchangN and)(uN einterchang π, are 2/)1(−nn and un − ,

respectively.

Speed-up Search Method for)(πeinterchangN . Let)(πeinterchangFindBestN denote the search

procedure of finding the best neighbor bestπ in)(πeinterchangN , and n,u,v
π =

[nvu jjjjj ',...,',...,',...,',' 21]. When 1,2, −= nu � and 1,1, −= ui � , it has 'ii jj = ,
11 ' −−

=
uu jj StSt ,

and ∑∑ ′′+′=′′+′ −
=′′′′

−
=)()(1

1
1
1 iiiiiiii jjjj

u
ijjjj

u
i TwEwTwEw . Then, based on Eq. 4-Eq. 7, when 1>u , it has

)()()(1
1 iiiiiiii jjjj

n
uijjjj

u
i

n,u,v TwEwTwEwTWET ′′′′=′′′′
−
= ′′+′+′′+′= ∑∑π

)()(1
1 iiiiiiii jjjj

n
uijjjj

u
i TwEwTwEw ′′′′=
−
= ′′+′+′′+′= ∑∑ . (13)

Therefore, in)(πeinterchangFindBestN ,
ij

St and)(1 llllllll jjjj
i
ll TwEw ′′+′∑ = (2,...,1 −= ni) can be

calculated and saved before scanning or evaluating the neighbors in)(πeinterchangN , and they can be

used as constant values for evaluating)(n,u,vTWET π , which can reduce the CC of

)(πeinterchangFindBestN to some extent. In other words, if 1>u ,
1' −ujSt and)(1

1 iiii jjjj
u
i TwEw ′′′′
−
= ′′+′∑

need not be computed and can be replaced with
1−uj

St and)(1
1 iiii jjjj

u
i TwEw ′′+′∑ −
= , respectively, and

ujSt ' can be computed directly from
1−uj

St . In DE_TWET’s local search, the above speed-up search

method is utilized in)(πeinterchangFindBestN , which is denoted as)(_ πeinterchangFindBestNSP .

Two Strategies for)(_ πeinterchangFindBestNSP . Denote)(_ uFindBestNSP einterchang π, the

search procedure of finding the best neighbor u
bestlocal _π in)(uN einterchang π, by using speed-up search

method in subsection 3.4.2. The procedure of)(_ πeinterchangFindBestNSP is given as follows:

Step 1: Set 1=u and ππ =best ;

Step 2:)(__ uFindBestNSP einterchang
u

bestlocal π,π = ;

Advanced Engineering Forum Vols. 6-7 751

Step 3: If)()(best_ ππ TWETTWET u
bestlocal < , then u

bestlocal _best ππ = ;

Step 4: If 1−< nu , then 1+= uu and go to Step 2;

Step 5: Output bestπ .

In order to reach quite different regions, two strategies are adopted in)(_ πeinterchangFindBestNSP .

The first one is a first move strategy. That is, if the first neighbor u
firstπ in)(uN einterchang π, that can

improve bestπ is obtained,)(_ uFindBestNSP einterchang π, terminates and outputs u
firstπ . The second

one is a promising region search strategy. That is, the permutation π in

)(_ uFindBestNSP einterchang π, is replaced by bestπ , which is helpful in executing the search

immediately from the current promising regions found by)(_ uFindBestNSP einterchang π, . Denote

)(__ uFBNSPFirstS einterchang π, the procedure of)(_ uFindBestNSP einterchang π, with the first move

strategy. Then, a changed search procedure with the above two strategies, namely

),(__ KLFBNSPTwoS einterchang π , can be given as follows:

Step 1: Set KLu = and ππ =best ;

Step 2:)(__ best_ uFBNSPFirstS einterchang
u

bestlocal ,ππ = ;

Step 3: If)()(best_ ππ TWETTWET u
bestlocal < , then u

bestlocal _best ππ = ;

Step 4: If 1−< nu , then 1+= uu and go to Step 2;

Step 5: Output bestπ .

),(__ KLFBNSPTwoS einterchang π is the key element of DE_TWET’s local search. KL is a

variable in),(__ KLFBNSPTwoS einterchang π , which is used to control the actual search range in

)(πeinterchangN and can be set to any value in 1},{1, −n� . Obviously, the larger value of KL is set to,

the smaller search range in)(πeinterchangN is.

Procedure of Local Search. Let),,(vuinsert π denote the insertion of uj in the vth dimension of

π . The procedure of DE_TWET’s local search is given as follows:

Step 1: Convert DE’s individual)(tX i to a job permutation 0_iπ according to the LOV rule.

Step 2: Perturbation phase.

Set 0__ iti ππ = .

For 1=kk to KM

Randomly select ii and ll , where >− || llii 3/n ;

),,(_ lliiinsert tii ππ = ;

iti ππ =_ ;

End.
Step 3: Exploitation phase.

Set loop=0;
repeat

),(__1_ KLFBNSPTwoS ieinterchangi ππ = ;

 If)(1_iTWET π <)(iTWET π then

 1_ii ππ = ;

else
loop++;

 end;
until loop=1.

Step 4: If)()(0_ii TWETTWET ππ ≤ , then ii ππ =0_ .

Step 5: Convert 0_iπ back to)(tX i .

752 Information Technology for Manufacturing Systems III

In the above procedure, Step 2 is the perturbation phase, which can avoid cycling and overcome

local optima, and Step 3 executes exploitation from the region obtained by Step 2.

DE_TWET. According to the above solution representation, speed-up evaluation method, speed-up

evaluation method, and special designed local search, the procedure of DE_TWET is presented as

follows:

Step 0: Let t denote a generation,)(tPop a population with size pN in generation t,)(tX i the ith

individual with dimension N (nN =) in)(tPop ,)(, tx li the lth variable of individual)(tX i , ltmp

the lth variable of tmp , CR the crossover probability, and)1,0(random the random value in the

interval [0,1]. The objective value of each individual is calculated by using speed-up evaluation

method.

Step 1: Input N , ≥pN 3, ∈CR [0,1], let bounds be 0)(, =lixlower and 4)(, =lixupper ,

Nl ,,1�= .

Step 2: Calculate and save
ij

sp and
ii jjL ,1−
 (njj ii ,...,1,1 ∈−). //prepare for using speed-up

// evaluation method

Step 3: Population initialization.

)0(,lix =)(,lixlower +)1,0(random *))()((,, lili xlowerxupper − , l = N,,1� for

pNi ,,1�= .

Step 4: Set t=1 and select an individual)0(bestX from)0(Pop as best with the minimum

objective value.

Step 5: Evolution phase (Step 5 through Step 11). Set i =1.

Step 6: Set the trial vector)1(−= tXtmp i and 0'=L . Randomly select),,1(2,1 pNrr �∈ , where

irr ≠≠ 21 , and randomly select),,1(Nl �∈ .

Step 7: Perform DE’s Mutation and Crossover.

 Step 7.1: Let ltmp = ltmp +)(* ll tmpbestF − + F *))1()1((,2,1 −−− txtx lrlr .

If)(,lil xlowertmp < , then let ltmp = lli tmpxlower −)(*2 , .

If)(,lil xuppertmp > , then let ltmp = lli tmpxupper −)(*2 , .

 Step 7.2: Set 1)mod(+= Nll and 1'' += LL .

 Step 7.3: If))1,0((CRrandom < and)'(NL < , go to Step 7.1.

Step 8: Perform DE’s Selection.

If ()(tmpf))1((−≤ tXf i), then set tmptX i =)(;

else, set)1()(−= tXtX ii .

Step 9: If)(tmpf <)(bestf , then tmpbest = .

Step 10: Set i=i+1. If pNi ≤ , then go to Step 6.

Step 11: Apply special designed local search to best .

Step 12: Set t=t+1. If ≤t max_t (the maximum number of iteration), then go to Step 5.

Step 13: Output best and its objective value.

It can be seen that DE_TWET not only applies the DE-based algorithm to obtain promising regions

within the entire solution space, but also applies a special designed local search to enhance the search

quality. Because both global and local search are well balanced, DE_TWET is expected to achieve

good results.

Test Results and Comparisons

Experiment Setup. Some random generated instances with different scales are used to test the

performance of DE_TWET. That is, the mn× combinations are: {20, 30, 50, 70, 100}×{10, 20}.

The processing time lji
p , and the setup time ljj ii

s ,,1−
 are generated from a uniform distribution [1,

Advanced Engineering Forum Vols. 6-7 753

100]. The job arrival time
ij

r is an integer that is randomly generated in]150 ,0[αn , where the

parameter α is used to control the jobs’ arrival speeds. The values of α are set to 0, 0.2, 0.4, 0.6, 0.8,

1 and 1.5, respectively. Moreover, the due date of each job is specified as follows:

Step 1: For each problem p , randomly generate a permutation of the jobs.

Step 2: Calculate the completion time of each job in the permutation specified in Step 1.

Step 3: Specify the due date of each job by

]0,[,,, iii jpjpjp CrandomCd −+= , (14)

where
ijpd , is the due date of job ij to problem p ,

ijpC , is the completion time of job ij to

problem p , and]0,[, ijpCrandom − is a random value in the interval]0,[, ijpC− . For each instance at

each α , every algorithm independently run 20 replications for comparison. Thus, it has a total of 70

different instances.

For the purpose of evaluating the effectiveness of DE_TWET, we carry out simulations to compare

our DE_TWET with an iterated greedy heuristic (IG) [13] and a hybrid DE (DE_NTJ) [10]. IG is the

new state-of-the-art approach for solving FSSPs with SDSTs [13], and DE_NTJ is one of the current

best algorithms for NFSSPs with SDSTs and RDs [10]. Moreover, we also compare DE_TWET with

its five variants, whose abbreviations are as follows:

(1) DE_TWET_S1: In DE_TWET’s local search, only speed-up evaluation method is used.

(2) DE_TWET_S12: In DE_TWET’s local search, only speed-up evaluation method and speed-up

search method are used.

(3) DE_TWET_noST2: In DE_TWET’s local search, the promising region search strategy (i.e.,

strategy two) is not used.

(4) DE_ TWET_0.3n: In Step 3 of DE_TWET’s local search, KL is set to)*3.0(nround , where

)(around is a round function rounds a real-type value a to an integer-type value.

(5) DE_TWET_0.6n: In Step 3 of DE_TWET’s local search, KL is set to)*6.0(nround .

DE_TWET’s parameters are set as follows: the population size 30=popsize , the scaling factor

F =0.7, the crossover parameter CR =0.1, the local search variable 3=KM , and the local search

variable 1=KL . Moreover, all values of
ij

w′ and
ij

w ′′ in)(πTWET are set to 0.1. To make a fair

comparison, all the compared algorithms use the same runtime limit of nm2 milliseconds as a

termination criterion. We code all procedures in Delphi 7.0 and run all tests on an Intel Q8200

2.33GHz PC with 3 GB memory.

Performance Metrics. Denote)(αiniπ the permutation in which jobs are ranked by ascending value

of job’s release date at α ,))((απTWET the total weighted earliness/tardiness of the permutation

)(απ at α ,))((_ απTWETavg the average value of))((απTWET ,))((_ απTWETbest the best

value of))((απTWET ,))((_ απTWETworst the worst value of))((απTWET ,

)(αARI =))((/)))((_))(((ααα iniini TWETTWETavgTWET πππ − × %100 the

average percentage improvement over))((αiniTWET π , −=))((()(αα iniTWETBEI π

%100))((/)))((_ ×αα iniTWETTWETbest ππ the best percentage improvement over

))((αiniTWET π , =)(αWRI %100))((/)))((_))(((×− ααα iniini TWETTWETworstTWET πππ the

worst percentage improvement over))((αiniTWET π ,)(αSD the standard deviation of

))((απTWET at α , αS the set of all values of α , and || αS the number of different values in αS .

Then, we define four metrics to evaluate the performances of the compared algorithms, i.e.,

ααα α SARIARI S /)(∑ ∈= , ααα α SBEIBEI S /)(∑ ∈= , ααα α SWRIWRI S /)(∑ ∈= , and

ααα α SSDSD S /)(∑ ∈= .

754 Information Technology for Manufacturing Systems III

Comparisons of DE_TWET with Its Five Variants. In order to investigate DE_TWET’s local

search ability, we compare DE_TWET with its five variants. Statistical results can be found in Table

1. In Table 1, it can be seen from ARI metric that DE_TWET can obtain better results than its five

variants for most instances, which manifest the importance of simultaneously adopting two speed-up

methods and two strategies in local search and show the necessity of setting KL to the smallest value.

From SD metric, it can be seen that the SD values of DE_TWET are smaller than those of five

variants for almost all instances. This means DE_TWET is more robust than its five variants.

Table 1 Statistical results of testing DE_TWET and its variants

Instance

n, m

DE_TWET_S1 DE_TWET_S12 DE_TWET_noST2 DE_ TWET_0.3n DE_TWET_0.6n DE_TWET

ARI SD ARI SD ARI SD ARI SD ARI SD ARI SD

20, 10 45.827 0.728 46.662 0.247 46.569 0.323 43.119 1.749 39.501 1.888 46.655 0.207
20, 20 43.094 0.384 43.527 0.116 43.503 0.149 42.218 1.084 41.012 1.046 43.479 0.123
30, 10 51.787 1.015 53.547 0.420 53.522 0.345 44.417 3.743 41.091 2.365 53.570 0.246
30, 20 54.753 0.726 56.054 0.253 56.024 0.265 51.304 1.918 49.800 1.505 56.027 0.247
50, 10 58.414 1.644 61.389 0.442 61.266 0.420 42.194 5.772 39.124 2.778 61.581 0.334
50, 20 55.472 1.699 58.618 0.385 58.383 0.508 43.949 3.678 44.459 1.998 58.693 0.379
70, 10 57.447 2.245 62.067 0.526 61.164 0.971 28.760 6.178 28.003 3.873 62.414 0.406
70, 20 58.895 2.337 63.425 0.386 63.120 0.479 40.245 5.328 42.068 2.492 63.552 0.325

100, 10 62.876 1.555 65.642 0.680 64.044 1.547 23.096 5.885 24.262 4.065 66.508 0.405
100, 20 63.296 1.402 66.545 0.422 65.799 0.652 32.481 6.390 34.898 3.006 66.979 0.346
average 55.186 1.374 57.748 0.388 57.339 0.566 39.178 4.172 38.422 2.502 57.946 0.302

Comparisons of DE_TWET, IG, and DE_NTJ. To show the effectiveness of DE_TWET, we carry

out some comparisons with IG [13] and DE_NTJ [10]. The test results of the three algorithms are

shown in Table 2. From Table 2, it can be concluded that the searching quality of DE_TWET is better

than that of IG for almost all instances and is superior or comparable to that of DE_NTJ. Therefore, it

is concluded that DE_TWET is an effective and robust algorithm for dealing with TWET-NFSSP

with SDSTs and RDs.

Table 2 Statistical results of testing DE_TWET, IG, and DE_NTJ

Instance

n, m

IG DE_NTJ DE_TWET

BEI ARI WRI SD BEI ARI WRI SD BEI ARI WRI SD

20, 10 46.846 46.014 45.213 0.497 46.875 46.641 45.905 0.263 46.875 46.655 46.201 0.207

20, 20 43.222 42.219 41.084 0.649 43.615 43.550 43.262 0.097 43.615 43.479 43.165 0.123

30, 10 53.838 52.655 51.019 0.857 54.035 53.614 53.127 0.254 54.005 53.570 53.095 0.246

30, 20 55.960 54.837 53.378 0.789 56.352 56.101 55.503 0.246 56.360 56.027 55.496 0.247

50, 10 61.668 60.824 59.848 0.497 61.900 61.351 60.613 0.346 62.153 61.581 60.917 0.334

50, 20 58.847 57.944 56.801 0.589 59.246 58.337 57.497 0.504 59.347 58.693 57.827 0.379

70, 10 62.987 61.984 60.873 0.566 62.311 60.904 59.288 0.737 63.240 62.414 61.654 0.406

70, 20 63.633 62.942 61.919 0.434 63.815 62.975 62.211 0.477 64.124 63.552 62.907 0.325

100, 10 67.143 66.527 65.953 0.389 66.667 66.011 65.397 0.410 67.138 66.508 65.743 0.405

100, 20 67.386 66.730 65.954 0.437 66.836 66.153 65.525 0.372 67.465 66.979 66.380 0.346

average 58.153 57.268 56.204 0.570 58.165 57.564 56.833 0.371 58.432 57.946 57.338 0.302

Conclusion and Future Research

To the best of the current authors’ knowledge, this is the first report on the application of differential

evolution (DE) algorithm for NFSSP with SDSTs and RDs with the criterion to minimize the total

weighted earliness/tardiness. In our presented algorithm, DE-based global search was used to perform

exploration for promising regions within the entire solution space, while a special local search based

on problem’s properties was developed to stress exploitation in these regions. Due to the

hybridization of DE and local search, DE_TWET’s search behavior can be enriched and its search

ability can be enhanced. Simulations and comparisons showed the effectiveness and robustness of

DE_TWET. The future work is to develop some effective DE-based algorithms for dynamical

scheduling and reentrant scheduling.

Advanced Engineering Forum Vols. 6-7 755

Acknowledgements

This research is partially supported by National Science Foundation of China (Grant No. 60904081),

Applied Basic Research Foundation of Yunnan Province (Grant No. 2009ZC015X), and 2012

Academic and Technical Leader Candidate Project for Young and Middle-Aged Persons of Yunnan

Province.

References

[1] W.H.M. Raaymakers, J.A. Hoogeveen, Scheduling multipurpose batch process industries with

no-wait restrictions by simulated annealing, Eur. J. Oper. Res. 126(1) (2000) 131–151.

[2] F. Jin, S.J. Song, C. Wu, A simulated annealing algorithm for single machine scheduling

problems with family setups, Comput. Oper. Res. 36(7) (2009) 2133-2138.

[3] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, fourth ed., Springer, 2012.

[4] A. Allahverdi, C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling problems with

setup times or costs, Eur. J. Oper. Res. 187(3) (2008) 985-1032.

[5] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization

over continuous spaces, J. Glob. Optim. 11(4) (1997) 341–359.

[6] M.F. Tasgetiren, Y.C. Liang, M. Sevkli, G. Gencyilmaz, Differential evolution algorithm for

permutation flowshop sequencing problem with makespan criterion, In Proceedings of 4th

International Symposium on Intelligent Manufacturing Systems, Sakarya, Turkey, (2004)

442-452.

[7] G. Onwubolu, D. Davendra, Scheduling flow shops using differential evolution algorithm, Eur. J.

Oper. Res. 171(2) (2006) 674–692.

[8] B. Qian, L. Wang, R. Hu, D.X. Huang, X. Wang, A DE-based approach to no-wait flow-shop

scheduling, Comput. Ind. Eng. 57(3) (2009) 787-805.

[9] L. Wang, Q.K. Pan, P.N. Suganthan, W.H. Wang, Y.M. Wang, A novel hybrid discrete

differential evolution algorithm for blocking flow shop scheduling problems, Comput. Oper.

Res. 37(3) (2010) 509-520.

[10] R. Hu, X.H. Meng, B. Qian, K. Li, A differential evolution approach for NTJ-NFSSP with

SDSTs and RDs, Lecture Notes in Artificial Intelligence, 7390 (2012) 288-299.

[11] B. Qian, L. Wang, R. Hu, W.L. Wang, D.X. Huang, X. Wang, A hybrid differential evolution for

permutation flow-shop scheduling, Int. J. Adv. Manuf. Tech., 38(7-8) (2008) 757-777.

[12] Information on http://www.icsi.berkeley.edu/%7Estorn/code.html

[13] R. Ruiz, T. Stützle, An iterated greedy heuristic for the sequence dependent setup times flowshop

problem with makespan and weighted tardiness objectives, Eur. J. Oper. Res. 187(3) (2008)

1143-1159.

756 Information Technology for Manufacturing Systems III

