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Abstract. A novel differential evolution (DE) algorithm, namely DE_TWET, is presented to deal 

with the no-wait flow-shop scheduling problem (NFSSP) with sequence-dependent setup times 

(SDSTs) and release dates (RDs). The criterion is to minimize a total weighted earliness/tardiness 

(TWET) cost function. The presented algorithm is a hybrid of DE, problem’s properties, and a special 

designed local search. In DE_TWET, DE is adopted to execute global search in the solution space, 

and the problem’s properties are utilized to give a speed-up evaluation method and construct the local 

search, and the special local search is designed to enhance the local search ability of DE. 

Experimental results and comparisons demonstrate the effectiveness and robustness of the presented 

algorithm. 

Introduction 

With the development of just-in-time (JIT) manufacturing systems, the study on the scheduling 

problems with both earliness and tardiness (E/T) costs is of greater significance. In this paper, a 

typical production scheduling problem with strong engineering background [1,2], the no-wait 

flow-shop scheduling problem (NFSSP) with sequence-dependent setup times (SDSTs) and release 

dates (RDs), is considered, whose criterion is to minimize a total weighted earliness/tardiness 

(TWET) cost function. In such a case, each job j  must be processed through all machines without 

any interruption, and both the setup times and the release dates need to be explicitly treated, and an 

optimal schedule is the one that all jobs finish exactly on their due dates. This type of model is 

classified as ∑ ′′+′− )(/, ,/ jjjjjsd TwEwrSTwaitnoFm , which can also be identified as 

TWET-NFSSP with SDSTs and RDs. Because ∑ jT//1  is NP-hard and it reduces to /Fm  

∑ ′′+′− )(/, , jjjjjsd TwEwrSTwaitno   (i.e., ∑∑ ′′+′−∝ )(/, ,///1 jjjjjsdj TwEwrSTwaitnoFmT ), 

it can be concluded that ∑ ′′+′− )(/, ,/ jjjjjsd TwEwrSTwaitnoFm  is NP-hard [3]. Moreover, 

literature review show that the researches on the scheduling problems with both sequence-dependent 

setup times and release dates are very limited [4]. Thus, it is meaningful and practical to develop an 

effective algorithm for the considered problem.  

Differential evolution (DE) algorithm, which was first designed for optimizing complex 

continuous problems [5], is one of the latest population-based evolutionary methods. Owing to its 

quick convergence and easy implementation, nowadays, the DE algorithm has gained many 

successful applications in different fields. However, due to DE’s continuous nature, the applications 

of the DE-based algorithms to scheduling problems are still limited. Tasgetiren et al. [6] devised a 

DE-based algorithm for flow-shop scheduling problems (FSSPs) to minimize makespan. Onwubolu 

and Davendra [7] developed a DE-based approach for FSSPs, where makespan, mean flowtime, and 

total tardiness were considered. Qian et al. [8] designed an very efficient DE-based algorithm for 
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NFSSPs with the makespan criterion. Wang et al. [9] proposed an efficient discrete differential 

evolution algorithm for FSSPs with blocking. Recently, Hu et al. [10] presented a hybrid DE 

algorithm (DE_NTJ) for ∑− jjsd UrSTwaitnoFm /, ,/ , which is the current best approach for the 

problem considered. To the best of our knowledge, there has no promising results on 

∑ ′′+′− )(/, ,/ jjjjjsd TwEwrSTwaitnoFm , and there has no published work addressing it by using 

DE-based algorithm.  

In the current paper, a novel DE algorithm (DE_TWET) is proposed to deal with TWET-NFSSP 

with SDSTs and RDs. In our DE_TWET, firstly, a largest-order-value (LOV) in [11] is utilized to 

map the real-valued vectors or individuals in DE to job permutations so as to make DE suitable for 

solving NFSSP; secondly, a speed-up evaluation method based on the property of the considered 

scheduling problem is given to calculate the cost function efficiently;  thirdly, the DE-based search is 

adopted to perform global exploration in the solution space and guide the whole search to the 

promising regions/solutions, while a special local search based on problem’s properties is developed 

to emphasize exploitation from those regions. Test results and comparisons demonstrate the 

efficiency and robustness of the proposed DE_TWET. 

The remainder of this paper are partitioned into four sections. Section 2 introduces the 

mathematical model of TWET-NFSSP with SDSTs and RDs. Section 3 presents DE_TWET in 

details. Section 4 provides and discusses test results and comparisons. Finally, Section 5 gives some 

concluding remarks and suggestions of future research. 

TWET-NFSSP with SDSTs and RDs 

The NFSSP with SDSTs and RDs can be described as follows. There are n jobs and m machines. Each 

of n jobs will be sequentially processed on machine m,...,2,1 . The processing time of each job on each 

machine is deterministic. At any time, preemption is forbidden and each machine can process at most 

one job. To satisfy the no-wait restriction, each job must be processed without interruptions between 

consecutive machines. Thus, all jobs are processed in the same sequence on all machines. In a 

flow-shop with SDSTs, setup must be performed between the completion time of one job and the start 

time of another job on each machine, and setup time depends on both the current and the immediately 

preceding jobs at each machine. In a flow-shop with RDs, if a machine is ready to process a job but the 

job has not been released yet, it stays idle until the release date of the job. 

NFSSP with SDSTs. Let ],,,[ 21 njjj �=π  denote the schedule or permutation of jobs to be 

processed, lji
p ,  the processing time of job ij  on machine l, 

ij
sp  the total processing time of job ij  

on all machines, lji
ML ,  the minimum delay on the machine l between the completion of job 1−ij  and 

ij , 
ii jjL ,1−
 the minimum delay on the first machine between the start of job 1−ij  and ij , ljj ii

s ,,1−
 the 

sequence-dependent setup time between job 1−ij  and ij  on machine l. Let 0,0
=ljp  for ml ,...,1= . 

Then lji
ML ,  can be calculated as follows: 





=+−

=+−+
=

−−

−−−
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Accordingly, 
ii jjL ,1−
 can be calculated by using the following formula: 

iiiii jjmjjj spspMLL −+=
−− 11 ,, .                                                             (2) 
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2.2 TWET-NFSSP with SDSTs. Denote 
ij

r  the arrival time of job ij , 
ij

St  the process start time of 

job ij  on machine 1, 
ij

C  the completion time of job ij  on machine m , 
ij

d  the due date of job ij , 

ij
E  the earliness of job ij  on machine m , 

ij
T  the tardiness of job ij  on machine m ,  and )(πTWET  

the total weighted earliness/tardiness cost function. Then 
ij

St  can be written as follows: 





=−+

=−
=

−−−
niStrLSt

irspML
St

iiiii

iii

i
jjjjj

jjmj

j ,...,2  },,max{

1 },,max{

111 ,

,
.                                       (3) 

So, 
ij

C , 
ij

E , 
ij

T , and )(πTWET  can be calculated as follows: 

nispStC
iii jjj ,...,1, =+= ,                                                               (4) 

niCdE
iii jjj ,...,1),0,max( =−= ,                                                   (5) 

nidCT
iii jjj ,...,1),0,max( =−= ,                                                       (6) 

0,0  ,)()( 1 >′′>′′′+′=∑ = iiiiii jjjjjj
n
i wwTwEwTWET π .                                 (7) 

The aim of this paper is to find a permutation *π  in the set of all permutations Π  such that 

)(min)*( ππ
π

TWETTWET
∏∈

= .                                                      (8) 

DE_TWET for TWET-NFSSP with SDSTs and RDs 

In this section, we will propose DE_TWET for TWET-NFSSP with SDSTs and RDs after explaining 

the solution representation, speed-up evaluation method, DE-based global search, and special 

designed local search. 

Solution Representation. Owing to the continuous nature of the individuals in DE, the standard 

encoding scheme of DE cannot be directly applied to NTJ-NFSSP with SDSTs and RDs. In this paper, 

we adopt a largest-order-value (LOV) rule in [11] to map DE’s ith individual =iX  [ niii xxx ,2,1, ,,, � ] 

to the job permutation vector =iπ [ niii jjj ,2,1, ,,, � ]. According to LOV rule, =iX [ niii xxx ,2,1, ,,, � ] 

are firstly ranked by descending order to get the sequence =iϕ [ niii ,2,1, ,,, ϕϕϕ � ]. Then the job 

permutation iπ  is calculated by the following formula: 

kj
kii =

,,ϕ .                                                                                                                                          (9) 

According to our tests, LOV rule can achieve better results than the well-known random key 

representation. 

Speed-up Evaluation Method. Based on the mathematical model of TWET-NFSSPs with SDSTs 

and RDs in Section 2, 
ii jjL ,1−
 is only decided by the job 1−ij  and ij . By utilizing this property, one 

method can be adopted to reduce the computing complexity (CC) of )(πTT . That is, 
ii jjL ,1−
, 

ij
sp  and 

∑ = ij
n
i sp1  can be calculated and saved in the initial phase of DE_TWET and then can be used as 

constant values in the global and local search phase of DE_TWET, which can reduce the CC of 

)(πTWET  from )(nmO  to )(nO . 

DE-based Global Search. Since many published works show that DE-based search has the strong 

ability of obtaining enough promising regions over the solution space, we use it to execute global 

search in the solution space. DE algorithm introduced by Storn and Price [5] is a branch of 
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population-based evolutionary algorithms for solving optimization problems over continuous domain. 

In the basic DE algorithm, it uses simple differential operator to create new candidate solutions and 

one-to-one competition strategy to select each new candidate. During its evolutionary phase, the 

searching behavior of each DE’s individual is dynamically adjusted according to the differentiations 

among population. In our DE_TWET, DE/rand-to-best/1/exp scheme [12] is adopted to perform 

DE-based global search, in which base vector is the best individual of the present population. So, the 

information of the best individual can be utilized by all individuals in the population.  

Special Designed Local Search.  

Interchange-based Neighborhoods. Because interchange is an effective neighborhood in the 

published papers, we select it as the fundamental neighborhood for local search. Denote 

( )vueinterchang ,,π  the interchange of the job at the uth dimension (i.e., uj ) and the job at the vth 

dimension (i.e., vj ). The interchange-based neighborhood of π  can be expressed as 

=)(πeinterchangN { ( ) nuvnuvueinterchangn,u,v ,...,1 and 1,...,1|,, +=−== ππ }.                             (10) 

As for a fixed u , the subset of )(πeinterchangN  can be written as 

=)( uN einterchang π, { ( ) nuvvueinterchangn,u,v ,...,1|,, +== ππ }.                                 (11) 

Thus, it has 

)1,(),2(),1()( −∪∪∪= nNNNN einterchangeinterchangeinterchangeinterchang ππππ � .               (12) 

Obviously, the sizes of )(πeinterchangN  and )( uN einterchang π,  are 2/)1( −nn  and un − , 

respectively. 

Speed-up Search Method for )(πeinterchangN . Let )(πeinterchangFindBestN  denote the search 

procedure of finding the best neighbor bestπ  in )(πeinterchangN , and n,u,v
π = 

[ nvu jjjjj ',...,',...,',...,',' 21 ]. When 1,2, −= nu �  and 1,1, −= ui � , it has 'ii jj = , 
11 ' −−

=
uu jj StSt , 

and ∑∑ ′′+′=′′+′ −
=′′′′

−
= )()( 1

1
1
1 iiiiiiii jjjj

u
ijjjj

u
i TwEwTwEw . Then, based on Eq. 4-Eq. 7, when 1>u , it has 

)()()( 1
1 iiiiiiii jjjj

n
uijjjj

u
i

n,u,v TwEwTwEwTWET ′′′′=′′′′
−
= ′′+′+′′+′= ∑∑π                                                         

 )()(1
1 iiiiiiii jjjj

n
uijjjj

u
i TwEwTwEw ′′′′=
−
= ′′+′+′′+′= ∑∑ .                                              (13) 

Therefore, in )(πeinterchangFindBestN , 
ij

St  and )(1 llllllll jjjj
i
ll TwEw ′′+′∑ =  ( 2,...,1 −= ni ) can be 

calculated and saved before scanning or evaluating the neighbors in )(πeinterchangN , and they can be 

used as constant values for evaluating )( n,u,vTWET π , which can reduce the CC of 

)(πeinterchangFindBestN  to some extent. In other words, if 1>u ,
1' −ujSt  and )(1

1 iiii jjjj
u
i TwEw ′′′′
−
= ′′+′∑  

need not be computed and can be replaced with 
1−uj

St  and )(1
1 iiii jjjj

u
i TwEw ′′+′∑ −
= , respectively, and 

ujSt '  can be computed directly from 
1−uj

St . In DE_TWET’s local search, the above speed-up search 

method is utilized in )(πeinterchangFindBestN , which is denoted as )(_ πeinterchangFindBestNSP .  

Two Strategies for )(_ πeinterchangFindBestNSP . Denote )(_ uFindBestNSP einterchang π,  the 

search procedure of finding the best neighbor u
bestlocal _π  in )( uN einterchang π,  by using speed-up search 

method in subsection 3.4.2. The procedure of )(_ πeinterchangFindBestNSP  is given as follows: 

Step 1: Set 1=u  and ππ =best ; 

Step 2: )(__ uFindBestNSP einterchang
u

bestlocal π,π = ; 
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Step 3: If )()( best_ ππ TWETTWET u
bestlocal < , then u

bestlocal _best ππ = ; 

Step 4: If 1−< nu , then 1+= uu  and go to Step 2; 

Step 5: Output bestπ . 

In order to reach quite different regions, two strategies are adopted in )(_ πeinterchangFindBestNSP . 

The first one is a first move strategy. That is, if the first neighbor u
firstπ  in )( uN einterchang π,  that can 

improve bestπ  is obtained, )(_ uFindBestNSP einterchang π,   terminates and outputs u
firstπ . The second 

one is a promising region search strategy. That is, the permutation π  in 

)(_ uFindBestNSP einterchang π,  is replaced by bestπ , which is helpful in executing the search 

immediately from the current promising regions found by )(_ uFindBestNSP einterchang π, . Denote 

)(__ uFBNSPFirstS einterchang π,  the procedure of )(_ uFindBestNSP einterchang π,  with the first move 

strategy. Then, a changed search procedure with the above two strategies, namely 

),(__ KLFBNSPTwoS einterchang π , can be given as follows: 

Step 1: Set KLu =  and ππ =best ; 

Step 2: )(__ best_ uFBNSPFirstS einterchang
u

bestlocal ,ππ = ; 

Step 3: If )()( best_ ππ TWETTWET u
bestlocal < , then u

bestlocal _best ππ = ; 

Step 4: If 1−< nu , then 1+= uu  and go to Step 2; 

Step 5: Output bestπ . 

),(__ KLFBNSPTwoS einterchang π  is the key element of DE_TWET’s local search. KL  is a 

variable in ),(__ KLFBNSPTwoS einterchang π , which is used to control the actual search range in 

)(πeinterchangN  and can be set to any value in 1},{1, −n� . Obviously, the larger value of KL  is set to, 

the smaller search range in )(πeinterchangN  is.  

Procedure of Local Search. Let ),,( vuinsert π  denote the insertion of uj  in the vth dimension of 

π . The procedure of DE_TWET’s local search is given as follows: 

Step 1: Convert DE’s individual )(tX i  to a job permutation 0_iπ  according to the LOV rule. 

Step 2: Perturbation phase. 

Set 0__ iti ππ = . 

For 1=kk  to KM  

Randomly select ii  and ll , where >− || llii  3/n ;  

),,( _ lliiinsert tii ππ = ; 

iti ππ =_ ; 

End. 
Step 3: Exploitation phase. 

Set loop=0; 
repeat 

),(__1_ KLFBNSPTwoS ieinterchangi ππ = ; 

 If )( 1_iTWET π < )( iTWET π  then 

                     1_ii ππ = ; 

else 
loop++; 

                 end; 
until loop=1. 

Step 4: If )()( 0_ii TWETTWET ππ ≤ , then ii ππ =0_ . 

Step 5: Convert 0_iπ  back to )(tX i . 
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In the above procedure, Step 2 is the perturbation phase, which can avoid cycling and overcome 

local optima, and Step 3 executes exploitation from the region obtained by Step 2. 

DE_TWET. According to the above solution representation, speed-up evaluation method, speed-up 

evaluation method, and special designed local search, the procedure of DE_TWET is presented as 

follows: 

Step 0: Let t denote a generation, )(tPop  a population with size pN  in generation t, )(tX i  the ith 

individual with dimension N ( nN = ) in )(tPop , )(, tx li  the lth variable of individual )(tX i , ltmp  

the lth variable of tmp , CR  the crossover probability, and )1,0(random  the random value in the 

interval [0,1]. The objective value of each individual is calculated by using speed-up evaluation 

method. 

Step 1: Input N , ≥pN 3, ∈CR [0,1], let bounds be 0)( , =lixlower  and 4)( , =lixupper , 

Nl ,,1�= . 

Step 2: Calculate and save 
ij

sp  and 
ii jjL ,1−
 ( njj ii ,...,1,1 ∈− ).  //prepare for using speed-up 

// evaluation method 

Step 3:   Population initialization. 

                  )0(,lix = )( ,lixlower  + )1,0(random * ))()(( ,, lili xlowerxupper − , l = N,,1�  for 

pNi ,,1�= . 

Step 4: Set t=1 and select an individual )0(bestX  from )0(Pop  as best  with the minimum 

objective value. 

Step 5:  Evolution phase (Step 5 through Step 11). Set i =1. 

Step 6: Set the trial vector )1( −= tXtmp i  and 0'=L . Randomly select ),,1(2,1 pNrr �∈ , where 

irr ≠≠ 21 , and randomly select ),,1( Nl �∈ . 

Step 7:   Perform DE’s Mutation and Crossover. 

       Step 7.1:   Let ltmp = ltmp + )(* ll tmpbestF − + F * ))1()1(( ,2,1 −−− txtx lrlr . 

If )( ,lil xlowertmp < , then let ltmp = lli tmpxlower −)(*2 , . 

If )( ,lil xuppertmp > , then let ltmp = lli tmpxupper −)(*2 , . 

       Step 7.2:  Set 1)mod( += Nll  and 1'' += LL . 

       Step 7.3: If ))1,0(( CRrandom <  and )'( NL < , go to Step 7.1. 

Step 8:  Perform DE’s Selection. 

If ( )(tmpf ))1(( −≤ tXf i ), then set tmptX i =)( ;  

else, set )1()( −= tXtX ii . 

Step 9:  If )(tmpf < )(bestf , then tmpbest = . 

Step 10:  Set i=i+1. If pNi ≤ , then go to Step 6. 

Step 11: Apply special designed local search to best . 

Step 12:  Set t=t+1. If ≤t max_t  (the maximum number of iteration), then go to Step 5. 

Step 13:  Output best  and its objective value. 

It can be seen that DE_TWET not only applies the DE-based algorithm to obtain promising regions 

within the entire solution space, but also applies a special designed local search to enhance the search 

quality. Because both global and local search are well balanced, DE_TWET is expected to achieve 

good results. 

Test Results and Comparisons 

Experiment Setup. Some random generated instances with different scales are used to test the 

performance of DE_TWET. That is, the mn×  combinations are: {20, 30, 50, 70, 100}×{10, 20}. 

The processing time lji
p ,  and the setup time ljj ii

s ,,1−
 are generated from a uniform distribution [1, 
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100]. The job arrival time 
ij

r  is an integer that is randomly generated in ]150 ,0[ αn , where the 

parameter α  is used to control the jobs’ arrival speeds. The values of α  are set to 0, 0.2, 0.4, 0.6, 0.8, 

1 and 1.5, respectively. Moreover, the due date of each job is specified as follows: 

Step 1: For each problem p , randomly generate a permutation of the jobs. 

Step 2: Calculate the completion time of each job in the permutation specified in Step 1. 

Step 3: Specify the due date of each job by 

]0,[ ,,, iii jpjpjp CrandomCd −+= ,                                                        (14) 

where 
ijpd ,  is the due date of job ij  to problem p , 

ijpC ,  is the completion time of job ij  to 

problem p , and ]0,[ , ijpCrandom −  is a random value in the interval ]0,[ , ijpC− . For each instance at 

each α , every algorithm independently run 20 replications for comparison. Thus, it has a total of 70 

different instances. 

For the purpose of evaluating the effectiveness of DE_TWET, we carry out simulations to compare 

our DE_TWET with an iterated greedy heuristic (IG) [13] and a hybrid DE (DE_NTJ) [10]. IG is the 

new state-of-the-art approach for solving FSSPs with SDSTs [13], and DE_NTJ is one of the current 

best algorithms for NFSSPs with SDSTs and RDs [10]. Moreover, we also compare DE_TWET with 

its five variants, whose abbreviations are as follows: 

(1) DE_TWET_S1: In DE_TWET’s local search, only speed-up evaluation method is used. 

(2) DE_TWET_S12: In DE_TWET’s local search, only speed-up evaluation method and speed-up 

search method are used. 

(3) DE_TWET_noST2: In DE_TWET’s local search, the promising region search strategy (i.e., 

strategy two) is not used. 

(4) DE_ TWET_0.3n: In Step 3 of DE_TWET’s local search, KL  is set to )*3.0( nround , where 

)(around  is a round function rounds a real-type value a  to an integer-type value. 

(5) DE_TWET_0.6n: In Step 3 of DE_TWET’s local search, KL  is set to )*6.0( nround . 

DE_TWET’s parameters are set as follows: the population size 30=popsize , the scaling factor 

F =0.7, the crossover parameter CR =0.1, the local search variable 3=KM , and the local search 

variable 1=KL . Moreover, all values of 
ij

w′  and 
ij

w ′′  in )(πTWET  are set to 0.1. To make a fair 

comparison, all the compared algorithms use the same runtime limit of nm2  milliseconds as a 

termination criterion. We code all procedures in Delphi 7.0 and run all tests on an Intel Q8200 

2.33GHz PC with 3 GB memory. 

Performance Metrics. Denote )(αiniπ  the permutation in which jobs are ranked by ascending value 

of job’s release date at α , ))(( απTWET  the total weighted earliness/tardiness of the permutation 

)(απ  at α , ))((_ απTWETavg  the average value of ))(( απTWET , ))((_ απTWETbest  the best 

value of ))(( απTWET , ))((_ απTWETworst  the worst value of ))(( απTWET , 

)(αARI = ))((/)))((_))((( ααα iniini TWETTWETavgTWET πππ − × %100  the                                    

average percentage improvement over ))(( αiniTWET π , −= ))((()( αα iniTWETBEI π   

%100))((/)))((_ ×αα iniTWETTWETbest ππ  the best percentage improvement over 

))(( αiniTWET π , =)(αWRI  %100))((/)))((_))((( ×− ααα iniini TWETTWETworstTWET πππ  the 

worst percentage improvement over ))(( αiniTWET π , )(αSD  the standard deviation of 

))(( απTWET  at α , αS  the set of all values of α , and || αS  the number of different values in αS . 

Then, we define four metrics to evaluate the performances of the compared algorithms, i.e., 

ααα α SARIARI S /)(∑ ∈= , ααα α SBEIBEI S /)(∑ ∈= , ααα α SWRIWRI S /)(∑ ∈= , and 

ααα α SSDSD S /)(∑ ∈= . 
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Comparisons of DE_TWET with Its Five Variants. In order to investigate DE_TWET’s local 

search ability, we compare DE_TWET with its five variants. Statistical results can be found in Table 

1. In Table 1, it can be seen from ARI  metric that DE_TWET can obtain better results than its five 

variants for most instances, which manifest the importance of simultaneously adopting two speed-up 

methods and two strategies in local search and show the necessity of setting KL  to the smallest value. 

From SD  metric, it can be seen that the SD  values of DE_TWET are smaller than those of five 

variants for almost all instances. This means DE_TWET is more robust than its five variants. 

Table 1  Statistical results of testing DE_TWET and its variants 

Instance 

n, m 

DE_TWET_S1 DE_TWET_S12 DE_TWET_noST2 DE_ TWET_0.3n DE_TWET_0.6n DE_TWET 

ARI SD ARI SD ARI SD ARI SD ARI SD ARI SD 

20, 10 45.827  0.728  46.662     0.247  46.569  0.323  43.119  1.749  39.501  1.888  46.655  0.207     
20, 20 43.094  0.384  43.527     0.116     43.503  0.149  42.218  1.084  41.012  1.046  43.479  0.123  
30, 10 51.787  1.015  53.547  0.420  53.522  0.345  44.417  3.743  41.091  2.365  53.570     0.246     
30, 20 54.753  0.726  56.054     0.253  56.024  0.265  51.304  1.918  49.800  1.505  56.027  0.247     
50, 10 58.414  1.644  61.389  0.442  61.266  0.420  42.194  5.772  39.124  2.778  61.581     0.334     
50, 20 55.472  1.699  58.618  0.385  58.383  0.508  43.949  3.678  44.459  1.998  58.693     0.379     
70, 10 57.447  2.245  62.067  0.526  61.164  0.971  28.760  6.178  28.003  3.873  62.414     0.406     
70, 20 58.895  2.337  63.425  0.386  63.120  0.479  40.245  5.328  42.068  2.492  63.552     0.325     

100, 10 62.876  1.555  65.642  0.680  64.044  1.547  23.096  5.885  24.262  4.065  66.508     0.405     
100, 20 63.296  1.402  66.545  0.422  65.799  0.652  32.481  6.390  34.898  3.006  66.979     0.346     
average 55.186  1.374  57.748  0.388  57.339  0.566  39.178  4.172  38.422  2.502  57.946     0.302     

Comparisons of DE_TWET, IG, and DE_NTJ. To show the effectiveness of DE_TWET, we carry 

out some comparisons with IG [13] and DE_NTJ [10]. The test results of the three algorithms are 

shown in Table 2. From Table 2, it can be concluded that the searching quality of DE_TWET is better 

than that of IG for almost all instances and is superior or comparable to that of DE_NTJ. Therefore, it 

is concluded that DE_TWET is an effective and robust algorithm for dealing with TWET-NFSSP 

with SDSTs and RDs. 

Table 2  Statistical results of testing DE_TWET, IG, and DE_NTJ 

Instance 

n, m 

IG DE_NTJ DE_TWET 

BEI ARI WRI SD BEI ARI WRI SD BEI ARI WRI SD 

20, 10 46.846  46.014  45.213  0.497  46.875  46.641  45.905  0.263  46.875  46.655  46.201  0.207  

20, 20 43.222  42.219  41.084  0.649  43.615  43.550  43.262  0.097  43.615  43.479  43.165  0.123  

30, 10 53.838  52.655  51.019  0.857  54.035  53.614  53.127  0.254  54.005  53.570  53.095  0.246  

30, 20 55.960  54.837  53.378  0.789  56.352  56.101  55.503  0.246  56.360  56.027  55.496  0.247  

50, 10 61.668  60.824  59.848  0.497  61.900  61.351  60.613  0.346  62.153  61.581  60.917  0.334  

50, 20 58.847  57.944  56.801  0.589  59.246  58.337  57.497  0.504  59.347  58.693  57.827  0.379  

70, 10 62.987  61.984  60.873  0.566  62.311  60.904  59.288  0.737  63.240  62.414  61.654  0.406  

70, 20 63.633  62.942  61.919  0.434  63.815  62.975  62.211  0.477  64.124  63.552  62.907  0.325  

100, 10 67.143  66.527  65.953  0.389  66.667  66.011  65.397  0.410  67.138  66.508  65.743  0.405  

100, 20 67.386  66.730  65.954  0.437  66.836  66.153  65.525  0.372  67.465  66.979  66.380  0.346  

average 58.153  57.268  56.204  0.570  58.165  57.564  56.833  0.371  58.432  57.946  57.338  0.302  

Conclusion and Future Research 

To the best of the current authors’ knowledge, this is the first report on the application of differential 

evolution (DE) algorithm for NFSSP with SDSTs and RDs with the criterion to minimize the total 

weighted earliness/tardiness. In our presented algorithm, DE-based global search was used to perform 

exploration for promising regions within the entire solution space, while a special local search based 

on problem’s properties was developed to stress exploitation in these regions. Due to the 

hybridization of DE and local search, DE_TWET’s search behavior can be enriched and its search 

ability can be enhanced. Simulations and comparisons showed the effectiveness and robustness of  

DE_TWET. The future work is to develop some effective DE-based algorithms for dynamical 

scheduling and reentrant scheduling.  
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