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Abstract. We address the problem of parameters identification and dataassimilation for river
flows modeled by the 2D St-Venant equations. In practice, available observations are very
sparse especially during flood events (very few measurements of elevation at gauging stations
in the main channel). We assume we have in addition either surface trajectories extracted from
video images (lagrangian data) or space distributed water levels extracted from one satellite
image. Then we identify parameters such as the inflow discharge or the topography and/or the
initial state (depending on the configuration and the observations available). Numerical twin
experiments demonstrate the efficiency of the present method for toy test cases.

1 Introduction
A major difficulty in numerical simulation of river hydraulics is to calibrate the models.

Variational data assimilation (VDA) combines, in an optimal sense, model and observations
allowing to identify some parameters values. However, in river hydraulics, observation data are
available only in very small quantities. Water level measurements can be available at gauging
stations, but it is the main channel only and they are very sparse in space. Velocity measure-
ments are even rarer and uncertain, since they require complex human interventions. Conse-
quently, in practice these observations are usually not sufficient to take full advantage of data
assimilation. This lack of data becomes even more problematic in case of floods. Thus, remote
sensed data such as videos and spatial images offer a large potential which is not exploited
quantitatively yet. We address the assimilation of the following two types of data (in addition
to classical ones) : 1) trajectories of particles flowing at the surface which could be extracted
from video images; 2) spatial distributed water level whichcould be extracted from a satellite
image of the flood plain.
In case 1), we extend the method of VDA to extra lagrangian data. The trajectories of particles
convected by the flow bring information on the surface velocity using an extra transport model.
In case 2), we define an extra cost function term.
Numerical twin experiments done for toy test cases show thatone improves the identification
of model parameters.

1



M. Honnorat, X. Lai, FX Le Dimet and J. Monnier

The forward model and VDA process The forward model relies on the 2D St-Venant model
(shallow water equations SWE) (h is the water elevation,q = hu the discharge,u the depth-
averaged velocity):







∂t h + div(q) = 0 in Ω×] 0, T ]

∂t q + div( 1

h
q ⊗ q) + 1

2
g∇h2 + gh∇zb + g

n2‖q‖

h7/3
q = 0 in Ω×] 0, T ]

(1)

with initial conditions(h0,q0) given,g the gravity,zb the bed elevation,n the Manning rough-
ness coefficient. Boundary conditions are: at inflow, the dischargeq̄ is prescribed; at outflow,
either the water elevation̄zs is prescribed or incoming characteristics are prescribed;and walls
conditions. We refer to [3] for more details.
Given the control vectorc = (h0,q0, n, zb, q̄, z̄s), the state variable(h,q) is determined by solv-
ing the forward model.
The full VDA process based on the optimal control method [7],is implemented into our soft-
ware DassFlow, [3]. The forward code is a HLLC Riemann solver, [1]. The cost functions
are minimized using a Quasi-Newton algorithm, which implies the computation of its gradient
using an adjoint model. The latter is created with the help ofthe automatic differentiation tool
Tapenade, [2].

2 Assimilation of lagrangian data
Lagrangian DA consists in using observations described by lagrangian coordinates in the

VDA process. Here, we consider observations of particles transported by the flow (e.g. ex-
tracted from video images). The link between the lagrangiandata made of N particle trajecto-
ries denoted byXi(t) and the classical eulerian variables of the shallow water model is made
by the following equations, see [4]:

{

d
dt

Xi(t) = γ u

(

Xi(t), t
)

∀ t ∈ ]t0i , t
f
i [

Xi(t
0

i ) = x0

i ,
for i = 1, . . . , N (2)

wheret0i andt
f
i are the time when the particle enter and leave the observation domain,γ is a

multiplicative constant. We consider two kinds of observations (classical eulerian observations
hobs(t) and trajectories of particles transported by the flowXobs

i (t)). Then, we build the following
composite cost function:

j(c) =
1

2

∫ T

0

∥

∥ Ch(t) − hobs(t)
∥

∥

2

dt +
αt

2

N
∑

i=1

∫ t
f
i

t0i

∣

∣ Xi(t) − Xobs
i (t)

∣

∣

2

dt (3)

whereαt is a scaling parameter,C the observation operator (restriction).j(c) is the cost func-
tion we minimize with respect toc.

Numerical results. Particle trajectories associated with local water depth measurements are
used for the joint identification of local bed elevationzb and initial conditions(h0,u0), Fig. 1.
Twin DA experiments are carried out. Observations are: (1) water depth recorded continuously
in time at the abscissaex1 = 15 m andx2 = 70 m, for the whole width of the domain; (2)
virtual particles dropped in the flow (640 in total) and transported by a turbulent surface velocity
ut = γu + up, whereγ = 1 andup is a Gauss-Markov process. Then these observations are
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filtered by averaging, see [4].
We identify jointly the reference topography and the reference initial conditions by minimizing
(3). (Thea priori value of the control variable was a constant slope bed and theresulting steady-
state flow as initial conditions. The identified topography we obtain is close to the reference one,
Fig. 1(b); while the identified initial conditions reproduces well the reference one.
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Figure 1: Joint identification of the topography and the initial conditions using water depth measurements and
particle trajectories withαt = 1 × 10

−4.

3 Assimilation of spatial distributed water levels

We consider the toy flood event described in Fig 2 and 3. This toy test case contains all
important features of the real case studied in [5] (Moselle river). We seek to identify the inflow
discharge only (other parameters are given). Available observations are, see Fig. 2 (b): (ObsA)
the water level measured at the gauge station (partially in time); (ObsB) the water levels ex-
tracted from a virtual image and available in three blocks only. Concerning the cost function,
in addition of the classical term related to theh observations (ObsA) and a regularization term
(‖∂tc‖

2), we introduce the following extra term (where informationis available):

Jflux(c) =
1

2

∫ T

0

‖C̃q(t) − q̃
obs(t)‖2 dt (4)

whereq is the computed discharge (net mass flux) andq̃
obs is a ”mix” net mass flux since it is

computed using the observed elevationhobs and the computed velocityu, q̃
obs = hobs

u. We
refer to [6] for more details.

Numerical results. Fig. 3 (b) shows that this extra termJflux improves the minimization
process since it quantifies a discrepancy related to the second component of the state variable.
Also, Fig. 3 (b) shows that if we assimilate both (ObsA) and (ObsB) then one obtains a quite
good identification of inflow discharge. At contrary, without the contribution of the ”partial
image” ((ObsA) only is available), the identification process fails.
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Figure 2: Spatial distributed water levels, the toy test case. (a): topography; (b): mesh, gauge station and observed
areas at image time.
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Figure 3: (a) Measures in-situ (gauge station) partially available in time and image time. (b) Identified inflow
discharge: comparison if the image is available or not; alsoif considering the extra termJflux or not.
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