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Thermal conductivity of supercooled water
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The heat capacity of supercooled water, measured down to −37 ◦C, shows an anomalous increase as temperature
decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit
volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in
supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to
diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled
water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an
anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the
thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement
would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of
thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular,
we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and
Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between
the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.
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I. INTRODUCTION

Supercooled water exhibits several thermodynamic anoma-
lies, perhaps the best known of which is its density maximum
just above the freezing point, at 4 ◦C [1]. The isobaric heat
capacity [2,3], isothermal compressibility [4], and thermal
expansivity [1] show anomalies that resemble critical-point
power laws [4]. Moreover, the correlation length characterizing
density fluctuations increases markedly upon supercooling [5].

In 1992, Poole et al. proposed a coherent and particularly
fruitful account of the thermodynamic anomalies of water,
that deep in the supercooled region is a first-order phase
transition between two liquid states distinguished by their
different densities. This transition line would terminate at
a critical point, and proximity to this critical point could
explain the anomalous behavior of the response functions
[6]. The liquid-liquid phase transition and critical point are
hypothesized to occur at temperatures and pressures that are
inaccessible to experiment due to unavoidable homogeneous
nucleation of ice I [1].

This conjecture has given rise to several models, most of
which propose two different ways in which water molecules
might form hydrogen bonds. One of these supermolecular
arrangements (the high-density liquid or HDL) is associated
with higher density and is favored at higher temperatures
and higher pressures; the other (the low-density liquid or
LDL) is associated with lower density and is favored at lower
temperatures and lower pressures.

Intriguing experiments on the melting lines of metastable
phases of D2O and H2O ice [7,8] have lent additional
support to this hypotheses, as has the finding of a phase
transition in glassy water between two amorphous states of
different density [9]. A recent study comparing the locus
of glass-transition temperatures as a function of pressure in
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simulations of water molecules and in real water has found
the behavior of real water to bear a stronger resemblance to
the model that exhibits a liquid-liquid phase transition [10].
Other simulations [11–13] note an increase in tetrahedrality
in water upon supercooling, giving some idea as to the
difference between the HDL and LDL states. Equations of
state based on the hypothesized existence of a liquid-liquid
critical point have provided increasingly accurate accounts of
the thermodynamic properties of water over the last several
years [14–16]. The most recent two-state model of Holten and
Anisimov (with entropy-driven liquid-liquid separation) [17]
shows excellent agreement with the thermodynamic data with
fewer adjustable parameters than any model so far. We have
used the predictions of this two-state equation of state (which
we abbreviate “TSEOS”) for thermodynamic properties in our
calculations of the thermal conductivity.

While most of the phenomenology surrounding two-state
models generally and the liquid-liquid critical point in par-
ticular has focused on thermodynamics, there are important
implications for dynamics as well. To take one example,
the viscosity of water decreases upon compression, which is
anomalous. A suggested explanation for this anomaly is that
compression forces a greater fraction of water into the HDL
state, which has greater mobility than the tetrahedrally ordered
LDL state [18]. Furthermore, the dispersion of sound at high
frequencies seems likely to reflect viscoelastic behavior asso-
ciated with a structural relaxation in supercooled water [19].

In this paper we examine the thermal conductivity of
supercooled water in light of the two-state conjecture, and
we examine the possible effects that critical fluctuations might
have on thermal conductivity. According to our calculations,
any effect of critical fluctuations associated with the virtual
liquid-liquid critical point on the thermal conductivity would
be too small to be measured at experimentally accessible tem-
peratures. Remarkably, the behavior of thermal conductivity
can be fully explained by the anomalies of the thermodynamic
properties. The difference between the behavior of the thermal
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conductivity in the vapor-liquid and in the hypothesized
liquid-liquid critical regions is the result of differences in
both the dynamic and thermodynamic environments in the
respective regions.

II. THERMAL DIFFUSIVITY AND THERMAL
CONDUCTIVITY

The thermal diffusivity a of water has been measured by
Taschin et al. down to 256 K [20] and by Benchikh et al.
down to 250 K [21], and it decreases steadily with decreasing
temperature, as shown in Fig. 1. Thermal conductivity λ

can be calculated from these data by means of the formula
λ = ρcpa, since isobaric specific heat capacity cp and mass
density ρ are both known experimentally in the relevant
temperature range. The heat capacity changes little in the range
for which thermal-diffusivity data are available (Fig. 2), so
in that temperature range the thermal diffusivity and thermal
conductivity are nearly proportional. At atmospheric pressure,
thermal conductivity decreases with temperature, from the
boiling point to the lowest temperatures at which thermal
conductivity has been measured [22]. Water’s behavior in this
regard is unique among nonmetallic liquids of low molecular
weight, as all other such liquids show an increase in thermal
conductivity upon cooling [23].

Benchikh et al. have noted a strong correlation between
the thermal conductivity of both supercooled and stable liquid
water at low temperatures and the thermodynamic speed of
sound c (in the limit of zero frequency) [21]. We find excellent
agreement between the experimental data and two classical
formulations for the thermal conductivity of liquids, as shown
in Fig. 3. The first is Bridgman’s formula [25] as adapted for
polyatomic molecules:

λ = 2.8kBv−2/3c, (1)

FIG. 1. Thermal-diffusivity data of Benchikh et al. [21] and
Taschin et al. [20], compared with the thermal diffusivity calculated
from Bridgman’s (4) and Eyring’s (5) formulas. We use the TSEOS
to evaluate the thermodynamic properties in these formulas [17]. The
inset shows simulation results of Kumar and Stanley for the TIP5P
model [12].

FIG. 2. Heat capacity data of Archer and Carter [3] and
Angell et al. [24]. The solid curve shows the prediction of the
TSEOS [17].

where kB is Boltzmann’s constant and v is the molecular
volume of the liquid, that is, the molecular mass divided by
the mass density ρ. The second formulation is due to Eyring,
with a correction from Eucken [26]:

λ = 2.8kBv−2/3γ −1/2c, (2)

where γ is the ratio of the isobaric heat capacity to the
isochoric heat capacity, cp/cv . The speed of sound can be
related to the adiabatic compressibility κS and the isothermal

FIG. 3. Thermal conductivity calculated from thermal diffusivity
[20,21] and the TSEOS [17]. The formulations due to Bridgman
(4) and Eyring (5) are both shown, as is the IAPWS correlation for
thermal conductivity (which is only guaranteed down to 273 K) [22].
The inset shows the simulation data of Kumar and Stanley for the
TIP5P model [12], and the dashed curve on the inset is a quadratic fit
to the simulation data. TW refers to the Widom temperature in both
the main graph and the inset.
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compressibility κT as follows:

c =
(

1

ρκS

)1/2

=
(

cp

cv

1

ρκT

)1/2

, (3)

allowing us to rewrite Bridgman’s formula in terms of
thermodynamic properties as

λ = 2.8kBv−2/3

(
1

ρκS

)1/2

(4)

and Eyring’s formula as

λ = 2.8kBv−2/3

(
1

ρκT

)1/2

. (5)

We have used the TSEOS [17] to evaluate these expressions.
Bridgman’s and Eyring’s formulas differ little in the region

where experimental data are available. According to two-
state thermodynamics, both the isothermal and the adiabatic
compressibilities show maxima associated with the existence
of a virtual liquid-liquid critical point. These maxima are
located close to the Widom line, defined as the locus of
maximum fluctuations of the order parameter, a continuation
of the liquid-liquid transition line into the one-phase region
[14–17]. We note that the magnitudes of these maxima are
strongly dependent on the value of the critical pressure, the
value of which (possibly ranging from 10 to 40 MPa) is
difficult to determine. In conclusion, the observed behavior
of thermal conductivity is anomalous inasmuch as it decreases
upon cooling; it tracks the anomalous behavior of the adiabatic
and isothermal compressibilities as shown in Fig. 3.

Recently, Kumar and Stanley [12] reported evidence of a
thermal conductivity minimum in a simulation of the TIP5P
model of water. The simulation results indicated that the
thermal conductivity of this model at first decreases upon
cooling, as has been observed experimentally in real water; it
then reaches a minimum at approximately 255 K and increases
as the temperature is further decreased [12]. The latter increase
might seem at first to conflict with experimental data for real
water. However, Kumar and Stanley’s simulation locates the
Widom temperature for the TIP5P model at roughly 245 K
at atmospheric pressure, while thermodynamic equations of
state place the Widom temperature for real water close to
228 K [14–17]. Rescaling the temperatures in the simulation
results so that the Widom temperature occurs at 228 K places
the predicted minimum at 237 K, several degrees below the
lowest temperature measurements of the thermal conductivity,
so there is no real contradiction between simulation data
and the predicted behavior of thermal conductivity in real
water. Moreover, one can expect the minimum of thermal
conductivity observed in this model to be smoothed by finite-
size effects, as is typical for simulations. As can be seen in
Fig. 3, both the Bridgman formula (4) and the Eyring formula
(5) indicate that thermal conductivity should go through a
minimum. We shall return to this topic in more detail in Sec. IV.

Next, we address the possible effects of critical fluctuations
on the thermal conductivity of supercooled water. It is well
documented that the thermal conductivity of water diverges
at its vapor-liquid critical point, and the associated anomaly
affects the thermal conductivity noticeably throughout the
critical region [27]. We investigate the possibility of such a

divergence of the thermal conductivity near the liquid-liquid
critical point of H2O and any effects that this might have
on the measurable behavior of the thermal conductivity in
supercooled water.

III. PREDICTIONS OF MODE-COUPLING THEORY

In the vicinity of a critical point, couplings among the
various hydrodynamic modes of a system become increasingly
significant as fluctuations in the system become long ranged.
This leads to anomalous behavior of the thermal conductivity
in the critical region, including a divergence of the thermal
conductivity at the vapor-liquid critical point. This divergence
has been observed in striking agreement with the mode-
coupling theory in many molecular fluids near their respective
liquid-vapor critical points [27,28]. (This mode-coupling
theory describes dynamics in the vicinity of a critical point
and should not be confused with the mode-coupling theory of
the glass transition.) Due to a mode-coupling contribution to
the thermal diffusivity, which arises in molecular fluids from a
coupling between the heat mode and the viscous mode, thermal
conductivity can be expected to diverge near any critical point
at which the isobaric heat capacity diverges more strongly than
the correlation length ξ [28]. Such a strong divergence of the
isobaric heat capacity is a feature of the TSEOS [17], as well
as other related scaling models [14–16]; this prompted us to
investigate the possibility that a critical enhancement to the
thermal conductivity might be experimentally observable.

In order to carry out our mode-coupling calculations we
once again made use of the TSEOS [17] for thermodynamic
properties. This formulation is renormalized by critical fluc-
tuations, and asymptotically close to the critical point it is
identical to the scaling models referred to above [14–16].
For the background value of the thermal conductivity we
used the formulation from the International Association for
the Properties of Water and Steam (IAPWS) [22]. IAPWS
provides a formulation for the viscosity of water at atmospheric
pressure that is valid for temperatures as low as 253.15 K
[29,30]. Extrapolating below that value is a more subtle task.
Data taken by Osipov et al. [31] from 238 K to 273 K
show a clear super-Arrhenius dependence on temperature
(“fragile” behavior in Angell′s nomenclature [32]). Some
researchers [33] have found evidence of Arrhenius temperature
dependence (“strong” behavior) close to the glass transition,
and thus of a fragile-to-strong crossover in water; such a
crossover has been observed to occur at 228 K in confined
water [34]. Other measurements, however, have found super-
Arrhenius behavior at the glass transition [35]. Starr et al.
have used Adam-Gibbs theory to estimate the viscosity in the
experimentally inaccessible region [36], and this extrapolation
includes a fragile-to-strong crossover as well. We have fit a
super-Arrhenius equation to the experimental data of Osipov
et al. (see Fig. 4), and in making the fit we have chosen
a hypothetical temperature of structural arrest so that our
extrapolation agrees with that of Starr et al. in the portion
of the unstable region for which we make predictions. In our
calculations we use the IAPWS formulation for viscosity at
atmospheric pressure [29,30] for temperatures above 254 K
and our extrapolation for temperatures below 254 K.
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FIG. 4. Viscosity data taken by Osipov et al. at atmospheric
pressure (dots) [31]. The solid curve shows the IAPWS formulation
for viscosity at atmospheric pressure [29,30], while the dashed curve
is a fit to the data of a super-Arrhenius or Vogel-Fulcher-Tamman
law: η = 0.0885 exp [220/(T − 197)], with T in K . The inset shows
the product of viscosity and thermal conductivity. The increase
in the viscosity completely dominates the decrease in the thermal
conductivity, so it is clear that the decrease in thermal conductivity is
not a result of the increase in viscosity.

Mode-coupling theory gives a pair of coupled equations for
the critical enhancements to viscosity and thermal diffusivity,
and these equations should in principle be solved by iteration
[37]. However, the viscosity anomaly associated with critical
fluctuations is very weak, so we work only to one-loop
order in the iteration and simply use the background value
of viscosity, which is strongly temperature dependent (see
Fig. 4). The anomaly of the thermal diffusivity is additive in
nature, meaning that the thermal diffusivity can be split into a
background and a critical contribution [27]:

a = ab + �a, (6)

and the thermal conductivity can be treated similarly:

λ = ρcpa = λb + �λ. (7)

Even to one-loop order the integral for the thermal-
diffusivity enhancement cannot be solved exactly except in
the asymptotic limit ξ → ∞. Our approximation strategy for
treating the crossover from critical to mean-field behavior is
based on the model put forward by Olchowy and Sengers
[38,39]. It yields an expression of the form

�λ = ρcp�a = ρcp

RDkBT

6πηξ
(
 − 
0) , (8)

where RD is a universal amplitude very close to unity
(experiments by Burstyn et al. [40] find RD = 1.02 ± 0.06).
In the limit ξ → ∞, we have (
 − 
0) → 1. If we adopt
RD = 1, this expression tends to the well-known limit of
a Stokes-Einstein law for thermal diffusivity in which the
correlation length of the critical fluctuations replaces the

FIG. 5. The main figure shows thermal conductivity in water,
both from experimental data [20,21] and from the Eyring’s equation
(5), evaluated with the TSEOS [17]. The inset shows the critical
enhancement in the same units but magnified by a factor of one million
(106). The curves change from solid to dashed at the temperature
of homogeneous nucleation. The critical effect is several orders
of magnitude smaller than the background and will be completely
undetectable.

hydrodynamic radius of Brownian particles:

�a = kBT

6πηξ
. (9)

Due to the effects of long-time tails on the hydrodynamic
modes, mode-coupling effects do not completely vanish far
from criticality [38,41]. These long-time effects are already
present in the background, and so the phenomenological term

0 is introduced to subtract these effects from our expression
so that it represents only the critical enhancement. Further
details of the approximation scheme can be found in the
appendix to this article.

The path along atmospheric pressure is not the critical
isobar, and along this path properties may exhibit finite
anomalies but they do not diverge. We find that at atmospheric
pressure, the critical enhancement to the thermal conductivity
would reach its maximum in the vicinity of the Widom
temperature and at a value close to �λ = 6 × 10−6 Wm−1 K−1

(see Fig. 5). This effect is certainly too small to be measurable,
either in the experimentally accessible regime or in the region
of the phase diagram below the homogeneous nucleation line
(predictions for this region appear in Fig. 5 as a dashed curve).
Figure 5 shows experimental data as well as the prediction
from Eyring’s equation [26]. Any effect from the critical
enhancement is far too small to be visible on such a graph; it is
shown in the inset, magnified by a factor of a million. We note
further that error bars on thermal-conductivity measurements
in water are typically of the order of 10−2 Wm−1K−1, several
orders of magnitude larger than any possible effect induced
by critical fluctuations at atmospheric pressure. Even at the
critical pressure (for which the TSEOS uses 13.1 MPa [17]),
and even if one could somehow carry out measurements in “no
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man’s land,” any critical enhancement would be undetectable,
as it would be confined to to small a range of temperatures.

IV. DISCUSSION

While thermal transport near the vapor-liquid critical point
is dominated by a Stokes-Einstein law for thermal diffusivity,
near the hypothesized liquid-liquid critical point thermal
transport will continue to be governed by the thermodynamic
properties. We can identify two immediate reasons for this
striking difference between the two critical regions. First of all,
mode-coupling theory predicts that the critical enhancement
to the thermal conductivity will be inversely proportional to
the viscosity. The viscosity of supercooled water increases
dramatically as the temperature decreases; Osipov et al. [31]
found an increase of a factor of 10 between 273 K and
238 K in their experiment. Our extrapolation predicts that the
viscosity at the Widom temperature will be yet another order of
magnitude larger than at 238 K. This means that the viscosity
of water at the Widom temperature for the hypothesized second
critical point is between 2 and 3 orders of magnitude larger
than at the liquid-vapor critical point, which greatly suppresses
any critical enhancement to the thermal conductivity.

The second physical reason why any measurable anomaly
will be confined to such a tiny region of the phase diagram
in supercooled water is that while temperature is (to a good
approximation) the thermal field for the vapor-liquid phase
transition, for the hypothesized liquid-liquid phase transition
in water it very nearly plays the role of the ordering field
h1 [14–16]. Near the critical point, the ordering field is related
to the order parameter according to a power law φ ∼ h

1/δ

1 ,
with δ ≈ 4.8 for the Ising-model universality class [42,43].
Thus, asymptotically close to the critical temperature, small
variations in the temperature correspond to large variations
in the order parameter, and so for practical purposes a small
deviation from the Widom temperature moves the system far
from criticality.

The thermal-conductivity minimum merits some further
discussion. We have noted, following Benchikh et al. [21],
that thermal conductivity in supercooled water follows the
thermodynamic (low-frequency) speed of sound in good
agreement with Bridgman (4) and Eyring’s (5) formulas for
thermal conductivity in a liquid. Trinh et al. have raised the
possibility of a minimum in the speed of sound [44], and
calculations from the TSEOS predict such a minimum at 233
K [17]. So it is plausible that thermal conductivity does indeed
have a minimum and that it continues to follow the speed
of sound in the medium, as it does throughout the measured
part of the supercooled regime. The anomalous behavior of
the speed of sound probably results from the existence of a
region of the phase diagram in which it is thermodynamically
rather inexpensive to convert water between the HDL to
LDL structures, leading to a higher compressibility. Once this
condition no longer obtains, more typical liquid behavior might
be expected to resume. In explaining their simulation results,
Kumar and Stanley have noted that many other systems show
an increase in thermal conductivity upon ordering [12]. It is
interesting to note that strong links between thermodynamics
and dynamics are a general feature of the supercooled region of
glass-forming liquids; a good discussion of this can be found

in [45]. However, the correlation between compressibility and
thermal conductivity in water is robust in much of the stable
liquid region as well, and it is not associated with glassy
dynamics.

Finally, we note the possibility of an even more fundamental
difference between water near its vapor-liquid critical point
and water in the supercooled regime, one that points to
a possible direction for further research. In the vicinity
of the vapor-liquid critical point, the fluctuations in the
density are not associated with the conversion of molecules
between distinct molecular structures. No or little structural
relaxation takes place, and the decay of density fluctuations is
completely governed by diffusion dynamics. In supercooled
water, contrarily, the existence of distinct molecular structures
seems likely to introduce into the dynamics a relaxation
time for conversion between these structures [19]. Although
liquid water at atmospheric pressure is nondispersive down to
temperatures of −15 ◦C, high-frequency sound (ω > 1 GHz)
below that temperature shows a positive dispersion relation.
This phenomenon has been widely attributed to a structural
relaxation process taking place in supercooled water [46–48];
in particular, it may be related to the conversion between
the kinds of hydrogen bonding characteristic of HDL and
LDL water. We emphasize that while the dispersion of sound
near the vapor-liquid critical point is solely an effect of the
relaxation of critical fluctuations, the dispersion of sound in
supercooled water is most likely a viscoelastic phenomenon
[19]. The characteristic time of this relaxation probably does
not depend on the wave number of any fluctuation of the
density, and such a relaxation will be present even in the mean-
field approximation. Near the liquid-liquid critical point, both
kinds of effects—diffusive decay of density fluctuations and
structural relaxation associated with hydrogen bonding—may
be present. Coupling between a relaxational viscoelastic mode
and a diffusive decay mode has been observed and analyzed in
polymers both near to a critical point and far from the critical
region [49]. This analysis may provide a point of departure for
further investigation of transport in supercooled water.

V. CONCLUSION

At high temperatures, density fluctuations associated with
the vapor-liquid critical point noticeably affect the thermal
conductivity over a fairly broad temperature range. Our calcu-
lations suggest, however, that this will not be the case for the
hypothesized liquid-liquid critical point in supercooled water.
The effect of density fluctuations on the liquid-liquid critical
point is too small to be measurable. The Stokes-Einstein law
that describes thermal transport in the vapor-liquid critical
region will not be applicable to the thermal diffusivity in the
liquid-liquid critical region. On the other hand, the thermal
conductivity and thermal diffusivity of supercooled water are
strongly correlated with the anomalies of the thermodynamic
properties associated with the existence of a liquid-liquid
transition. The minimum of the thermal conductivity, found
in simulations by Kumar and Stanley [12], should also
exist in real water, being associated with the maximum of
compressibility and with the minimum of the speed of sound.

Moreover, supercooled water may differ even more fun-
damentally from water in the vapor-liquid critical region due
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to the possible existence of a nonconserved order parameter
associated with the structure of the water molecules [50].
Rather than obeying the dynamics of diffusive decay, the
relaxation of this order parameter would be associated with
a characteristic time that is independent of wave number.
This would have far-reaching implications for various dynamic
properties of supercooled water.
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APPENDIX: DETAILS OF THE MODE-COUPLING
CALCULATIONS

We start from the mode-coupling integral as given in
Ref. [39]:

�a = kBT

(2π )3

∫ qD

0
dk

cp(k)

cp(0)

k−2sin2(θ )

η(k)[1 + a(k)ρ/η(k)]
. (A1)

The Olchowy-Sengers approximation [41] reasons that close to
the critical point the term aρ/η is negligible. As noted, we use
the background value of the viscosity in our approximation, so
after carrying out the angular integrals the integral to evaluate
is as follows:

�a = kBT

3π2η

∫ qD

0
dk

cp(k)

cp(0)
. (A2)

In the TSEOS the isobaric heat capacity can be expressed
in terms of the relevant scaling variables and a few parameters
of the system as follows:

cp = −λ(1 + b�P̂ )T̂ (φ + 1) + cA
p + 1

2λ2(1 + b�P̂ )2T̂ 2χ1,

(A3)

where λ and b are parameters from the TSEOS with the values
given in the supplement to Ref. [17]. cA

p is a background term
representing the dimensionless heat capacity of pure HDL.
The strongest divergence in the isobaric heat capacity is in the
strong scaling susceptibility χ1, so for our third approximation
we separate the term containing χ1 from the rest of the heat
capacity, and treat the remaining terms (the sum of which we
shall call A) as having no wave-number dependence. We then
use the Ornstein-Zernike approximation for the wave-number
dependence of χ1:

χ1(k) = χ1(0)

1 + k2ξ 2
, (A4)

where ξ is the correlation length characterizing the fluctuations
of the order parameter.

Henceforth cp without any explicit wave-number depen-
dence will refer to the hydrodynamic value, cp(k → 0). With
that notation, the integral that we must evaluate for the thermal
diffusivity takes the form

�a = kBT

3π2η

∫ qD

0
dk

[
cp − A

cp

1

1 + ξ 2k2
+ A

cp

]
, (A5)

which yields the modified Stokes-Einstein law,

�a = kBT

6πηξ

2

π

[
cp − A

cp

arctan(qDξ ) + A

cp

qDξ

]
. (A6)

For convenience we define


 = 2

π

[
cp − A

cp

arctan(qDξ ) + A

cp

qDξ

]
. (A7)

This result is still not entirely satisfactory, because in the limit
of vanishing correlation length, that is, far from criticality, it
does not vanish. In fact,

lim
ξ→0

kBT

6πηξ

2

π

[
cp − A

cp

arctan(qDξ ) + A

cp

qDξ

]
= kBT qD

3π2η
.

(A8)

The physical reason for this as summarized by Olchowy
and Sengers in Refs. [38,41] is that mode coupling is
also responsible for the “long-time-tail effects on transport
properties” [38]. These effects are not critical effects and will
be observed in the background, so if we want to find the effects
due to critical fluctuations we should subtract off this remnant.
For this reason we subtract the following term from 
:


0(qDξ ) = 2

π

{
1 − exp

[
− qDξ

1 + (1 − A/cp)(qξ )4

]}
. (A9)

This phenomenological expression has the following limiting
behavior:

lim
x→0


(x) = 2

π
, (A10)

lim
x→∞ 
(x) = 0, (A11)

so that we have

lim
ξ→0

�a = 0. (A12)

The complete expression, using the above definitions, is

�a = kBT

6πηξ
(
 − 
0) . (A13)

Because we are interested only in the critical enhancement
to the thermal conductivity, for the correlation length we
should use only the critical enhancement to the correlation
length. We estimate the “background” correlation length ξ b by
observing the correlation length at a temperature Tref = 315 K
far from any critical point and assuming that the background
correlation length in the system is proportional to the space
between molecules. So we have

ξ b(T ) = ξ (Tref)

v(Tref)1/3
v(T )1/3. (A14)

For the correlation length in our calculations we use

ξ c = ξ − ξ b, (A15)

where ξ is the correlation length predicted by the TSEOS [17].
For the wave-number cutoff qD, we used a correlation

identified by Perkins et al. between the wave-number cutoff
and the amplitude ξ0 of the correlation length anomaly [39]:

q−1
D = 3.683ξ0 − 1.336 × 10−10 m. (A16)
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