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Abstract—We consider the problem of finding the minimum
sampling frequency required for non-overlapping, bandpass
signals. Recently a novel algorithm with a significantly reduced
computational cost has been proposed for this problem. By ex-
ploiting a redundancy in this algorithm, we propose a method
which further reduces the cost significantly. We use the fact that
a valid sampling frequency for a set of bandpass signals must be
a valid sampling frequency for any subset of the signals. Several
examples are given to illustrate the savings in the computational
cost achieved.

Index Terms—Bandpass sampling, software defined radio.

I. INTRODUCTION

B ANDPASS sampling is a technique by which we
can down-convert bandpass signals to the baseband

without the use of analog mixers. It is widely used for mul-
tiple, non-overlapping, bandpass signals without requiring
high-quality filters at high frequencies to retrieve the informa-
tion in the bands. It finds applications in several areas such as
the software defined radio (SDR).

The basic principles and techniques for bandpass sampling
can be found in [3], [4], and [6]. Techniques for finding valid
sampling frequencies have been proposed in [1] and [2]. The
case of simultaneous sampling of two bandpass signals has been
dealt with in [2], and it has been extended to the general case of

signals in [5]. In [5], all the possible arrangements of
the sampled signals in the baseband has been discussed whereas
[1] describes an algorithm for a specific arrangement of the sig-
nals. In [1], a guard-band has also been considered to separate
the down-converted signals in the baseband.

In this letter, we build upon the novel algorithm for bandpass
sampling (ABS) proposed in [1] to further reduce the computa-
tional cost. We use the fact that a valid sampling frequency for a
set of bandpass signals must be a valid sampling frequency for
any subset of the signals. This reduces the search space consid-
erably.

In Section II, we introduce the notation and give the problem
statement. In Section III, we derive the necessary conditions for
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the algorithm. We give the algorithm in Section IV and analyti-
cally prove its computational efficiency in Section V. We com-
pare our results with ABS in Section VI and finally conclude the
letter in Section VII.

II. PRELIMINARIES

As in [1], let the signals be denoted as for
and , represent the lower and the upper fre-

quency limits, respectively, of . Thus, the bandwidth
for is given by

We assume that there is no overlap in the signals and the signals
are ordered such that

We sample the composite signal with a sampling frequency .
Our motive is to find the minimum value of such that the
signals are down-converted to the baseband without aliasing.

III. PROPOSED METHOD

Let denote the width of the guardband between succes-
sive signals in the baseband and , where de-
notes the floor function. As in [1], satisfies the following two
conditions:

(1)

and

(2)
where

(3)

For convenience of notation, we take and
.
Now we observe that the value of for signals will also

be a valid sampling rate for all signals. In other words,
if fails to be a valid sampling rate for any signals,
it cannot qualify to be a valid sampling rate for the signals.
This observation is the fundamental difference between our al-
gorithm and ABS. Thus, replacing by in (2), we get
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(4)

for .
We note that in the RHS of (4), contains the term

and none of the preceding con-
tains it. Thus, we need to treat these two cases separately as the
LHS also contains a term involving . Hence, from (3) and (4),
we get the following two inequalities for :

(5)

and

(6)

where

for

From (5), it follows that

(7)

Thus, (7) gives us the upper bound for . Further, from (6), it
follows that

for (8)

where denotes the ceiling function. This gives us the lower
bound for .

The problem can now be rephrased as that of finding the
-tuple of positive integers which would sat-

isfy the constraints as given in (7) and (8) which define a valid
range for each . Let the lower limit of this range be denoted
as and the upper limit as . However, having chosen

, the computed might turn out to be less
than which implies that our choice of is
not a valid one. Thus, we need to iterate on each and construct
a valid tuple . Further, it can be seen from (2)
that is in the denominator, and hence to minimize , we
need to choose as large as possible. It is clear from (7) and
(8) that the range of depends on and hence by induction
on . Thus, to choose maximum possible , we
need to choose maximum possible .
Thus we compute the minimum denoted as from

(9)

We note that (8) does not give us . Since is a
positive integer and there are no constraints on , we
choose to be unity. Further, we note that the upper bound
given by (7) for does not take into account the presence of

. However, in [1], the upper bound for
is derived from the boundary condition taking into account all
the signals. Hence, that bound is tighter. Therefore, we choose
the upper bound on as in [1], i.e.,

Fig. 1. Flowchart for the proposed algorithm.

(10)

In Section IV, we enumerate the steps of the proposed algorithm
to compute . The flowchart of the algorithm is given in
Fig. 1.

IV. ALGORITHM

1) Input the frequencies and for .

2) Input the width of the guard-band .

3) Initialize to the Nyquist rate .
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4) Set to 1 and calculate from (10).

5) Set to .

6) Compute RHS of (7) and set it to and compute the
RHS of (8) and set it to .

7) If , decrease by 1.

8) If , go to step 16; else go back to step 6.

9) Set to .

10) Compute RHS of (7) and set it to and compute the
RHS of (8) and set it to .

11) If , decrease by 1.

12) If , decrease by 1 and go to step 6; else go
to step 10.

13) Continue the process similarly until we get a valid set of
.

14) Compute RHS of (7) and set it to and compute the
RHS of (8) and set it to .

15) If , then calculate from (9) and go to
step 16; else decrease by 1 and go back to step 13.

16) Output .

17) End.

V. ANALYSIS

Now we prove that our algorithm takes lesser iterations as
compared to that in [1]. We start with some preliminaries that
we require in the proof. In step 15) of our algorithm, rather
than breaking from the loop structure after computing , we
simply list all possible -tuples that satisfy the
conditions given by (7), (8), and (10). Let us denote each such

-dimensional vector by and the set of all
possible ’s as . Each gives a range of sam-
pling frequencies as

(11)

We suitably generalize ABS to give us all possible ’s.
We note that these modifications to both the algorithms do
not affect the computational efficiency of the algorithms but
lists all possible ’s instead of just generating one such
corresponding to . We compare the generalized versions
of both of these algorithms in the theorem, and the result for
the specific case of follows trivially. We observe
that both of the algorithms give us the same set of ’s be-
cause they use the same theoretical constraints to obtain such

’s. Given any signals , for every
, let us define as the

number of iterations taken by our algorithm to generate
and to be the number of iterations taken by ABS to do
the same. Now we prove the following theorem by induction.

Theorem 1: For signals, for every
.

Proof: First we prove it for . We note that the range
of is the same in both of the algorithms. Now given an ,
our algorithm constructs the set

directly using in (7) and (8). Now we define

satisfies of

For each , we check the condition given in (2) for
. Now we note that for each , we get . But

may or may not satisfy (2). If it does, then
and hence . If it does not, then but .
But for each , also belongs to , as otherwise it
would mean that is not generated by ABS,
which is not possible given the fact that both of the algorithms
generate the same set . Hence, . Thus, we iterate on
a smaller search space to reach each element of leading to
savings in computations and hence .

Now let the theorem be true for . We add a
signal to the set of signals
and construct the set . We note that for all

, the corresponding
. This key observation forms the basis

for the difference between the algorithms and leads to the
computational efficiency of our approach. Now by hypothesis,

. Given this , we see how both of the algo-
rithms construct and hence . As earlier, let us define

and

satisfies in

By the same chain of arguments as in case, we obtain that
for every , we have , but there might
exist that fails to satisfy (2) and consequently

. Thus, , and hence,
. Hence, it is proved.

For any set of signals, comprises of all possible ’s that
correspond to a range of sampling frequencies as given by (11).
Now the theorem proves that for each in , the modified
version of our algorithm reaches in equal or lesser number
of steps than the modified version of ABS. Let us denote the
in that corresponds to by . From the theorem,
it follows that . However, since the algorithms
in their original form only compute , they only generate

. Hence, guarantees us that the proposed al-
gorithm performs the task in less or equal number of iterations
than ABS. For equality to hold, i.e., , we must
have the search space of both the algorithms to be the same. In
other words, we require for .

Now we illustrate through an example how our algorithm
achieves the computational efficiency as compared to ABS.
Suppose we have signals and we have already chosen

. Now both of the algorithms choose a value for . The
value of as chosen by ABS may be such that
but . But this cannot yield an for which

. But ABS iterates over each with this
pair of for which we already know cannot

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on September 30, 2009 at 03:47 from IEEE Xplore.  Restrictions apply. 



880 IEEE SIGNAL PROCESSING LETTERS, VOL. 15, 2008

TABLE I
PERFORMANCE COMPARISON

belong to . On the contrary, our algorithm generates only
those such that . Thus, we save on iterations.
Furthermore, to find the minimum sampling frequency for
three signals, we do not iterate on . Rather, is computed
directly. If the bounds given by (7) and (8) for are such
that , then , and thus, the given
cannot have a corresponding value of . If , then
gives us . However, ABS does not
take into account this fact and iterates over . Thus, we save
on the iterations on .

VI. NUMERICAL RESULTS

In this section, we compare the performance of our algorithm
with ABS. Consider the three bandpass signals as given in serial
number 1 in Table I with carrier frequencies 864.3 MHz, 890.3
MHz, 935.7 MHz, and .
With , our algorithm gives , ,

, and . As expected, these values
are identical to the values obtained in [1]. However, the number
of iterations taken by our algorithm is only 230 while ABS needs
422 iterations. For the same case when is changed to 0.2
MHz as given at serial number 2 in Table I, we obtain ,

, , and . In this case, our
algorithm gives the result in 53 iterations as compared to 89
iterations taken by ABS.

In Table I, we illustrate four more cases to compare the com-
putational efficiency of the proposed algorithm with ABS. In
each case, as expected, the values obtained for are the
same for both the algorithms. However, the proposed algorithm
needs fewer iterations. Thus, for example, at serial number four
in Table I, it can be seen that the number of iterations needed by
ABS is 3208 while the proposed algorithm needs only 93 iter-
ations that is a reduction by more than a factor of 30. Similarly

we can see the savings for the other cases reported in Table I.
The savings obtained depends on the frequencies of the indi-
vidual signals as well as on the guard-band and vary from case
to case. Since the cost of each step involved in the proposed al-
gorithm is the same as that of ABS, the savings in the number
of iterations translates directly into lower computational cost of
the proposed algorithm.

VII. CONCLUSION

In this letter, we have proposed an algorithm for finding the
minimum sampling frequency for non-overlapping bandpass
signals. The proposed algorithm provides significant savings on
the computational cost of existing algorithms by exploiting the
fact that a frequency is a valid sampling frequency for signals,
only if it is a valid sampling frequency for a subset of the signals.
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