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PREDICTING HVAC ENERGY CONSUMPTION IN COMMERCIAL BUILDINGSUSING
MULTIAGENT SYSTEMS

ABSTRACT

Energy consumption in commercial buildings has hieereasing rapidly in the past decade. The
knowledge of future energy consumption can bringnisicant value to commercial building energy
management. For example, prediction of energy aopsion decomposition helps analyze the energy
consumption patterns and efficiencies as well asteyaand identify the prime targets for energy
conservation. Moreover, prediction of temporal ggeronsumption enables building managers to pldan ou
the energy usage over time, shift energy usagefftpeak periods, and make more effective energy
purchase plans. This paper proposes a novel moderédicting heating, ventilation and air condititg
(HVAC) energy consumption in commercial building$ie model simulates energy behaviors of HVAC
systems in commercial buildings, and interacts vaitmultiagent systems (MAS) based framework for
energy consumption prediction. Prediction is doneaodaily, weekly and monthly basis. Ground truth
energy consumption data is collected from a test difice building over 267 consecutive days, and is
compared to predicted energy consumption for theegaeriod. Results show that the prediction carcimat
92.6 to 98.2% of total HVAC energy consumption withefficient of variation of the root mean square
error (CV-RMSE) values of 7.8 to 22.2%. Ventilatiemergy consumption can be predicted at high
accuracies (over 99%) and low variations (CV-RMSHugs of 3.1 to 16.3%), while cooling energy
consumption accounts for majority of inaccuracied @ariations in total energy consumption predittio
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INTRODUCTION

Commercial buildings consume approximately 19%lloé@ergy and account for 18% of all ¢O
emissions in the U.S. (U.S. DOE, 2012a; U.S. DAH,2b). By 2035, commercial building floor space is
expected to increase by 28% in the U.S. comparettie¢ctotal floor space area in 2009, reaching 103
billion sg. ft. (U.S. DOE, 2012a). This makes comeid buildings a significant target for achieving
sustainability. Energy management is of criticabartance in achieving energy conservation and iaduc
the environmental impact of commercial buildingsi] &nowledge of future energy consumption can bring
critical value in this regard (Rivard, Yang, & Znmeanu, 2005). For example, prediction of energy
consumption decomposition helps analyze the eneogyumption patterns and efficiencies as well as
waste, and identify the prime targets for energgseovation. Moreover, prediction of temporal energy
consumption enables building managers to plantauenhergy usage over time, shift energy usagefto of
peak periods, and make more effective energy peechins.

Multiagent systems (MAS) have been used as a wddupport sustainable building energy
management (Abras et al., 2008; Cook, 2009; Karaba)., 2011; Rogers et al., 2011; Mamidi et 012
Kwak et al., 2013). MAS is a subarea of artificiatelligence (Al) that particularly focuses on agen
interactions and technologies that contribute tohsiteractions. This is distinct from other indival
aspects of Al such as how intelligent agents peectrie world, how they reason about their own astio
isolation of other agents, or how they interacthvitieir environment. Instead, MAS considers alleatp



together related to such agent interactions. Spadif for applications in buildings, researche@vé
employed MAS to address challenges of adaptivelgtroting a home heating system in order to
minimize cost (Abras, Ploix, Pesty, & Jacomino, 0Bogers, Maleki, Ghosh, & Jennings, 2011) and to
compute energy-efficient schedules for the optinsa of limited resources (Kamboj et al. 2011; Sétial.
2012; Miller et al. 2012; Kwak et al., 2013).. Tipaper proposes to use a simulation model, which
interacts with a MAS based framework for modelingrgy behaviors in commercial buildings, to address
another important challenge in commercial buildimgnagement, namely the prediction of heating,
ventilation and air conditioning (HVAC) related egg consumption.

LITERATURE REVIEW

Two types of methods have been used in researchuitding energy consumption prediction.
These methods are engineering methods and staltistiethods. Two criteria have been widely used to
evaluate the performance of different methods. @laieria are accuracy and coefficient of variatod
the root mean square error (CV-RMSE). Accuracyhés percentage of predicted energy consumption to
the actual energy consumption. CV-RMSE is non-disi@ral measure calculated by dividing root mean
square error (RMSE) of the predicted energy consiempby the mean value of the actual energy
consumption. For example, a CV-RMSE value of 5% lddndicate that the mean variation in actual
energy consumption not explained by a predictiord@hds 5% of the mean value of the actual energy
consumption (Reddy et al., 1997). Accuracy and QWSE are used in result validation in this paper.

Engineering methods use physical principles toutate thermal dynamics and energy behavior
at the building level or for sub-level componeritdo & Magoules, 2012). A number of software tools
have been developed for modeling and predictingdimg energy consumption, such as DOE-2,
EnergyPlus, BLAST, and ESP-r. A more comprehenbsteis available on U.S. Department of Energy
(U.S. DOE, 2013) website. As these tools requireesgive input of building and environmental details
and are complicated to operate, researchers hapesed simplified methods as substitutes. To sfynpli
building’s physical characteristics, Wang and X0Q@&) used frequency characteristic analysis totifjen
parameters of building envelopes, and a genetarighgn to infer building parameters using operatiata.
When validated using a real commercial office boig the model achieved an accuracy of 88% in
predicting hourly cooling load in office building$o simplify environmental characteristics, Whiteda
Reichmuth (1996) proposed to use average monthigid®itemperatures only. They derived a set of
formulas for predicting monthly building energy somption; however, they did not use the formulas to
do prediction and measure the accuracy. WestplalLamberts (2004) proposed another model that
involved more comprehensive weather data includémperature, humidity, wind speed, etc. to predict
annual building energy consumption. The model wdldccuracies above 90% for buildings with low
mass envelope but failed to represent thermalimgfluence on annual cooling and heating loads.

On the other hand, statistical methods are usegrédict building energy consumption by
correlating energy consumption with influencing ishtes such as weather and energy bills (Zhao &
Magoules, 2012). The correlation is establishedelayning from historical data. For example, Dhaalet
(1999) proposed a Fourier series model that reptedenon-linear relationships between building imegt
and cooling loads and outdoor dry-bulb temperatiileey reported CV-RMSE values of 16.96% for
predicting annual heating loads and 6.32% for ptedj cooling loads. Lei and Hu (2009) also used
outdoor dry-bulb temperatures as an input, andgeeg a linear model to predict annual energy saving
from building retrofits. They reported CV-RMSE vakiof 4% or higher. With a regress model that used
weather data input, Cho et al. (2004) were ablprtalict building annual energy consumption with an
accuracy of up to 94%. Artificial neural networkNA) is a popular algorithm used by researcherautiol b
statistical energy consumption prediction modelal@girou, 2009). Ekici and Aksoy (2009) used a back
propagation (BP) ANN model to predict annual builgtheating loads based on building orientation,
insulation thickness and transparency ratio. Udiegting loads calculated with a finite difference
approach as ground truth, they reported accuradi€s!.8 to 98.5% in three buildings. Taborda (2010)
compared an engineering method with an ANN-basethade and concluded that both methods could
yield similar accuracies over 90%, while ANN waigistly better in short-term prediction. Support tgc



machine (SVM) algorithm is also widely used. Dongle (2005) made an early attempt in using SVM in
building energy consumption prediction. Their modséd weather data and monthly utility bills asuinp
to predict annual building energy consumption wpical regions, and reported CV-RMSE values that
were less than 3% and a percentage error withinl4%t al. (2009) built an SVM-based model to poadi
hourly cooling load in office buildings. They reped that the model performed better than BP ANNebas
models, and that a CV-RMSE of about 1% could béeaeld. Using data collected from 59 buildings, Li e
al. (2010) trained and compared the performancano$VM-based model and three ANN-based models,
and concluded that the SVM-based model yielded Higlest accuracy in predicting annual energy
consumption in residential buildings, with a CV-RE 8alue of 2.4% and a percentage error within 4.5%.

A review of prior research shows that existing @imidj energy consumption prediction methods
have reported satisfactory results. However, siedis methods have limited temporal and spatial
resolutions that are dependent on the availabdftyactual energy consumption data needed in model
training. Prediction is usually done on an annuadi® for an entire building. They cannot prediot, f
example, daily energy consumption, or energy comsiam of a particular floor or a thermal zone. The
majority of simplified engineering methods also édimited spatial resolutions. Complex commercial
software tools can perform prediction with betesalutions. However, they usually allow limited amb
of customization for buildings’ physical and mecitahcharacteristics. They also require input aficas
parameter values that are not always known to umespplicable in all buildings. To address theabo
mentioned challenges, this paper proposes a newelmadhich has comparable performance to prior
research, can perform prediction with better rasmhs, and allows users to customize the parameter
settings when modeling a specific building.

METHODOLOGY

MAS have been used in many different fields as theyide a well-defined framework that
supports required expressivity and flexibility fbandling different levels of real-world problems in
sustainability, security, public safety, etc. liogk cases, agents must reason either ‘competitizvghinst
or ‘cooperatively’ with other agents to achieveieeg individual or common goal. For instance, dgpth
software agents in building management systems (BdpEmally and often cooperatively interact with
occupants in the building via their correspondimgxy agents for shifting their energy related bets/
and with building component agents to optimally rape buildings to conserve energy (Abras et a0820
Kwak et al., 2012; Rogers et al., 2011; Mamidilet2012; Cook, 2009).

The specific MAS simulation used in this paperasdd on a novel multiagent framework called
SAVES (Sustainable multiAgent systems for optimigivariable objectives including Energy and
Satisfaction) (Kwak et al., 2012). SAVES is basedactual occupant preferences and schedules, actual
energy consumption and loss data measured fronalaest bed building at the University of Southern
California. The three-story building has a size agproximately 1,100 fm per floor, and hosts
approximately 50 permanent residents (i.e. stafiitfg/grad students) and more than 2,000 temporary
residents (i.e. undergraduate and graduate stQd&RY¥ES then provides an efficient statistical gael
of different control strategies in buildings whesptbying the system to an actual physical worldVES
particularly highlights two types of agents (roomdaproxy agents), and explicitly models interacsion
between human occupants, agents and the HVAC sgstefoth the actual building and the simulated
environment. A room agent is in charge of reducemergy consumption and can access building
components in a room. A proxy agent (Scerri, Pyttad& Tambe, 2002) resides in an individual
occupant’s hand-held device and communicates oralb@h an occupant to room agents, building
components and other people. The details of SAV&She found in (Kwak et al., 2012). It needs to be
noted that although the test bed is an office lImngldthe modeling process for other types of conumakr
buildings, such as stores, restaurants, wareh@umbgovernment buildings, is generally the same.

This paper particularly focuses on modeling the H3/8ystem and evaluating the simulation
accuracy. The HVAC system in the test bed buildimyks as follows. Two air handling unites (AHUS)
take in outside air, mix it with air flow that retufrom all thermal zones, and cool or heat theehiair to



a set point with chilled or heated water. The ekiilbr heated water is generated by chillers oeboihat
serve multiple buildings on campus. Gas is usdtiiprocess to cool or heat the water, which cisepr
one major source of energy consumption in the H\&¥€tem. The conditioned air is then distributed by
fans and duct systems to all thermal zones. The &@ driven by electricity, which comprises thikeot
major source of energy consumption in the HVAC eystThe demand for the volume of conditioned air
of a thermal zone is determined by the volume efzbne and the difference between the zone's actual
temperature and the set point, and is regulated BAV box that serves the zone. The VAV box can
reheat the air with heated water, if necessarygrbet pushes the air into the room. Thereforéhearal
zone is the base unit for air conditioning and Wetidn in the building. These mechanical detaits a
modeled in the simulation environment with which\&S interacts, and energy consumed by HVAC is
calculated following a set of equations presentedKlein et al., 2012). These equations take into
consideration both mechanical characteristics ofABVsystems, such as temperature set points and air
conditioning processes, and the interaction betvegstfronmental characteristics, such as outsidehgea
conditions and indoor space layouts and the mechbciaracteristics.

FINDINGS

The actual HVAC energy consumption data of the tesi building was collected for 267
consecutive days starting from Nov 21, 2011. Tredjetion of HVAC energy usage was carried out for
the same period. Due to unavailability of actusdthy energy consumption data (heating is not radter
for this building), energy usage for heating was medicted by the model. Therefore, the total HVAC
energy consumption was comprised of two parts, haowoling energy consumption due to chilled water
generation, and ventilation energy consumption usefans. The test bed building was shut down &ed t
HVAC system was turned off for 16 university holdaduring the test period, including national halid,
Thanksgiving holiday, and winter break. This fagilmanagement policy was simulated in the predictio
model by predicting zero energy consumption oneluksys.

The prediction results are summarized in Tablehke prediction was done at different temporal
resolutions, including daily, weekly and monthlyegictions. Limited by the availability of actualergy
consumption data, it was done at one spatial résalonly, namely the building level prediction.

As can be seen in Table 1, results show that orageehe prediction could match 92.6 to 98.2%
of the actual HVAC energy consumption. However,thdance was high for daily prediction, with a CV-
RMSE value of 22.2%. The variance was smaller feekly prediction, with a CV-RMSE value of 15.6%.
Monthly prediction had the least variance, with ¥-BRMSE value of 7.8%. The accuracies were
comparable to prior research. In particular, théygaediction accuracy was comparable to or evigihér
than the accuracies of predictions done at lowaslutions (monthly or annual) that varied from 8®8%
as reported in prior research. Such results ingitdhat the HVAC model in SAVES could generally
predict the HVAC energy consumption, although tleamvariation in the HVAC energy consumption not
explained by the model accounted for 7.8 to 22.2%@mean of HVAC energy consumption.

In addition, ASHREA 14 standards (ASHRAE, 2002)dfyethat for a monthly simulation, the
accuracy should be higher than 95% and the CV-RM&H&e should be less than 15%. No requirements
for daily or weekly simulations are specified. Bdsmn this requirement, the predictions of ventiati
energy consumption, cooling energy consumptiontatad energy consumption are all satisfactory.

Table 1 — Summary of simulation results

Prediction Total Cooling Energy Ventilation Energy
type Error (%) | CV-RMSE (%)| Error (%) CV-RMSE (%) Errd) | CV-RMSE (%)
Daily -2.3 16.2 -4.9 26.9 0.8 11.8
Weekly 2.2 6.8 -4.8 10.9 0.8 4.5
Monthly 2.5 3.5 -3.9 7.1 1.1 2.4




When the HVAC energy consumption was decomposeaxadiing energy and ventilation energy
(Figure 11), results showed that the majority Gfcicuracies and unexplained variations were related
prediction of cooling energy consumption. Takingilydgrediction as an example, cooling energy
consumption had a CV-RMSE value of 33.1%, whichoaated for the majority of total variation in the
daily HVAC energy consumption prediction. As candeen in Figure 11a, both actual cooling energy
usage curve and the prediction curve had the seend.tHowever, the former had large variations,lavhi
the latter was generally smoother, which resultetihé large CV-RMSE values. The variation of theiak
cooling energy usage was caused by its dependenoetside weather conditions, especially outside ai
temperature and humidity. Such dependency, asdtetichy the results, need to be better modelelein t
simulation. The proposed MAS model used monthlyraye temperature data in simulation. In future
research, the authors plan to use actual daily¢eambpre data instead, and integrate other weathv@bles,
such as humidity and wind speed, to examine ifvir@ations could be better captured and explained.

At the meantime, the predicted ventilation energnstimption (Figure 11b) had significantly
higher accuracies and smaller CV-RMSE values. A&sviéntilation energy usage was mostly determined
by mechanical features of the HVAC system, sucthasmal zone division and AHU specs, and physical
characteristics of the buildings, such as flooaaard wall-to-window ratio, the results indicatbdttthese
parameters were successfully recorded in field miasens of the building, and accurately modeled in
SAVES.
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Figure 1 — Actual and predicted weekly cooling &edtilation energy consumption

CONCLUSIONS

To facilitate energy management in commercial g, this paper evaluated a new model for
predicting HVAC energy consumption. Constructed &aumked with data collected from a real test bed
office building, the model was part of an effort riodel commercial buildings with a MAS approach.
Energy consumption was predicted on a daily, weakig monthly basis, and compared to actual energy
consumption data for validation. Results showed tha MAS model could match up to 98.2% of the
actual HVAC energy consumption, which is comparabler better than results reported by prior regear
Accuracy of prediction of ventilation energy usageuld reach 99.0% or higher with low variance.
Meanwhile, results indicated that prediction of lawgp energy usage need to be further improvedtas i
accounted for the majority of inaccuracies and atarns in the prediction of total HVAC energy
consumption. As part of their future research,ahthors plan to install meters to measure HVAC gyer
consumption in different areas in the building, aisd the measurements to validate predictiondfateint
spatial resolutions. Future work will also incluidgproving the modeling of cooling energy consumptio
and adding heating energy consumption to the piiedicin addition, the authors plan to apply the
improved model to the evaluation of energy implmas$ of various facility management policies, sdas
identify those that can lead to the most energyngavin commercial building HVAC operations.
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