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Natural Confection on Both Sides of 
a Vertical Wall Separating Fluids at 
Different Temperatures 
This paper describes an analytical study of laminar natural convection on both sides of 
a vertical conducting wall of finite height separating two semi-infinite fluid reservoirs of 
different temperatures. The countercurrent boundary layer flow formed on the two sides 
is illustrated via representative streamlines, temperature and heat flux distributions. 
The net heat transfer between reservoirs is reported for the general case in which the wall 
thermal resistance is not negligible relative to the overall reservoir-to-reservoir thermal 
resistance. 

I n t r o d u c t i o n 
The engineering importance of heat transfer by natural convection 

is widely recognized. For example, in the area of energy conservation 
in buildings natural convection is often responsible for prohibitively 
large heat leaks to the environment. This and many other applications 
have stimulated a strong interest in the phenomenon, reflected in an 
impressive volume of research at the fundamental and applied 
level. 

A central natural convection geometry in many applications is the 
transfer of heat across a vertical wall separating two semi-infinite fluid 
reservoirs at different temperatures (see Fig. 1). This problem is of 
fundamental importance for a variety of reasons. From the insulation 
engineering point of view, it is important to know the net heat transfer 
rate across solid walls and windows separating a warm room from a 
colder environment. From the point of view of fundamental research 
in heat transfer and fluid mechanics, it is important to understand 
the interaction of two convective systems coupled across a partially 
conducting wall. 

In spite of the importance of coupled flows, the existing work on 
natural convection is centered on the study of surfaces with specified 
heat flux or temperature distributions. We are familiar with only a 
few examples which allow the heat flux and temperature distribution 
to be determined by the interaction between adjacent boundary layers 
[1, 2]. Recently, the first author developed an approximate solution 
based on the hypothesis that the wall heat flux is uniform [3]. This 
analysis is outlined in the Appendix. The only other attempt to ana
lyze the configuration shown in Fig. 1 appears to be due to Lock and 
Ko who reported a numerical solution for heat transfer valid in the 
limit where the solid wall thermal resistance is negligible [4]. 

Our objective in this paper is to present an analytical solution for 
the problem of two countercurrent free convective flow fields sepa
rated by a vertical plate with a wide range of conductive resistance. 
The great advantage of an analytical approach is that the parametric 
dependence of the heat transfer mechanism is considerably more 
visible than in a numerical solution. To our knowledge, the present 
report contains the only analysis and results applicable to situations 
in which the solid wall thermal resistance is not negligible relative to 
the two boundary layer resistances formed on either side of the 
wall. 

M a t h e m a t i c a l F o r m u l a t i o n 
In dimensionless form, the equations expressing conservation of 

mass, momentum and energy for each boundary layer shown in Fig. 
1 are 

du dv 
+ : 

dx dy 
1 d I du du1 
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The height of the wall, H, is used as length scale in the vertical di
rection. The horizontal length scale of the boundary layers is £, while 
TH and Tc are the dimensional temperatures of the hot and cold 
fluids. It can be shown via dimensional analysis that [5] 

£ = [paH/PgAT]l/* (7) 

while the vertical velocity scale is aH/£2 

In writing equations (1-3) the terms involving viscous dissipation 
and gravity work have been ignored. It was assumed that the 
Boussinesq approximation applies, i.e., that the bouyancy force is 
proportional to the local temperature difference. The dependence of 
all other physical properties upon temperature was neglected. 

The appropriate boundary conditions in the horizontal (y) direction 

-Y T, 

Fig. 1 Schematic of vertical conducting wall with natural convection 
boundary layers on either side 
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•u = Oaty = ±w/2 (8) (to + ' %) 

(10) 

t = =FV2aty= ±°° (9) 
In addition, at any given vertical position (%) the heat flux entering 
the left face of the plate must equal the flux leaving the right face, 

ldt_\ =ldt\ . ku 

\dyjy=-ui/2.x \dyjy=w/2,x 

An important observation is that the governing equations and 
boundary conditions (1-10) remain unchanged after simultaneously 
changing the sign of u,v,x,y and t. Therefore, the temperature and 
velocity fields are centro-symmetric with respect to the origin of the 
x-y coordinate system shown in Fig. 1, 

k/ \d;y/waii 

u(x,y) = -u(- x,-y), 

v(x,y) = -v(-x,-y) 

t(x,y) = -t(-x,-y). 

(11) 

(12) 

(13) 

Equations (1-3) are difficult to treat analytically due to the non-
linearity in the convection part of the energy equation. One way to 
circumvent this difficulty is to linearize the energy equation according 
to the modified Oseen technique developed by Gill [5]. In a recent note 
Bejan [6] showed that Gill's technique produces excellent overall heat 
transfer results. Linearization is accomplished by regarding v and 
dt/dx in equation (3) as unknown functions of altitude, v{x) and t' 

(*). 
Consider the limit Pr —• «>, in which the boundary layer equations 

become 

du/dx + dvjdy = 0 

dt/dy + dau/dy3 = 0 

dt d2t 

(14) 

(15) 

(16) (t')u +(u) 
dy dyz 

As shown in the Appendix and Fig. 8, the Pr —>• <*> approximation is 
acceptable in the case of fluids with Prandtl number of order one or 
greater. Eliminating t between equations (15) and (16) leads to a 
fourth order ordinary differential equation in u(x,y). The solution 
to this equation has the general form 

" = £ An(x)ex"^y (17) 

where Xn are the roots of the characteristic equation 

X3(X - iJ) + t' = 0 (18) 

Applying the boundary conditions and symmetry properties, equa
tions (8-13), we obtain 

tc 

-fa-Q + y2) /2). 
(Xi2 - X2

2) 

(to - Q + y2) 

3X2(y-u)/2)) 

UH : 

(Xl2 - X2
2) 

- ( t o + Q - % ) 

(£l2 - h2) 

(Xi2ex i(>""' / 2) - X2
2ex2^-""/2 ' ) - V2 

(e-fi(>+"'/2) - e-(i(y+u>/2)) 

(19) 

(20) 

(21) 

tH = " ^ - - - (tfe-^y+«>n) - tfe-H(y+«m) + y2 (22) 
Ui - kr) 

In the above equations to(x) is an unknown function representing the 
temperature distribution along the midplane y = 0. For reasons dis
cussed in detail by Gill [5], Xii2 are the roots with negative real parts. 
In addition 

£1,2 = -Ai,2(-*) 
and 

wldt\ 

2 (dy/wali 

Since Xi |2 and £i |2 are all solutions of equation (18) we can write 

(23) 

(24) 

(X - Xx)(X - X2)(X + &)(A + &) = 0 (25) 

Expanding result (25) and comparing it with equation (18) we ob
tain 

D,U) = X1 + X 2 - ( ? i + ?2) (26) 

t'(x) = (AiA2)(£i£2) 

?i?2 + XiX2 = (Xi + X2)(?i + &) 

(XiX2)(£! + &) = «ife)(Ai + X2) 

(27) 

(28) 

(29) 

The solution is simplified if we define two new functions of x, p (even) 
and q(odd), 

p = Ai + A2 + £i + £2 (30) 

(31) 

Combining these definitions with equations (26-29) allows expressions 
for Xij2 and £i?2 in terms of the unknown functions p{x) and q(x) 

--ViPd + q) 

y 2 p ( i - g ) 

Xi + X2 = 

£1 + b --

XiX2 = y 8 p 2 ( i - Q 2 ) ( i + <?) 

W 2 = y s P 2 ( l - ( ? 2 ) ( l - g ) 

Xi,2 = y 4 p ( l + 9)[1 ± iVT=2q~\ 

h,i = ViP (1 - <?)[! ± i v W + T ] 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Functions p and q can be determined from the heat flux continuity 
constraint, equation (10), and the condition that the linearized so
lution (19-22) must satisfy the energy equation in intergral form 

— utdy\ + 
dx \Jo I 

ot (38) 

As parameter w approaches zero, the vertical wall becomes a thin 
membrane whose face-to-face temperature difference is negligible 
compared with the overall AT between the fluid reservoirs. Substi
tuting w = 0 into equations (19-22) and utilizing the heat flux con
straint (10) we find 

(% - to)[(fi + £2)2 - Mi] (% + to)[(Ai + X2)
2 - XiX, 

(£1 + £2) (Xi + X2) 
(39) 

.Nomenc la tu re . 

• fffc B ^ = wall local Biot number, hx 

g = gravitational acceleration 
Gr = Grashof number, Ra/Pr 
H = wall (window) height 
K = constant of integration 
£ = horizontal length scale, equation (7) 
Nu = Nusselt number, hH/kf 
p = even function of x, equation (30) 
Pr = Prandtl number 
q = odd function of x, equation (31) 
Q = wall temperature drop, equation (24), 

Bix/2 

Ra = Rayleigh number, g/3HsAT/(av) 
T = temperature 
u = vertical velocity 
v = horizontal velocity 
W = wall thickness 
X - vertical position 
Y = horizontal position 
a = thermal diffusivity 
|S = coefficient of thermal expansion 
v = kinematic viscosity 
\p = streamfunction 
co = wall parameter, equation (53) 

Subscripts 

C = ambient conditions on the cold (right) 
side of the plate 

/ = fluid 
H = ambient conditions on the hot (left) side 

of the plate 
w = wall 
0 = conditions at midplane of plate 
03 = ambient conditions on either side of 

plate 
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The integral energy constraint (38) applied to each side of the mem
brane yields 

d_ 

dx 
d_ 

dx 

(ti + y2)
! 

.(Xi + X2)
3J 

(to " %) 

2(t0 + %)(Xi8 - A23) 

(Xl2 - X2
2) 

2 ( t0 -V2) (? l 3 -?2 3 ) 

m + &)8J (f i2 - h2) 

In terms of p and g, equation (39) can be written as 

to = -<?/(l + g2). 

Finally, writing equations (40) and (41) in terms of p and q, adding 
side by side and integrating the result once yields 

(40) 

(41) 

(42) 

[(1 - q)7 + (1 + t?)7]i/3/[K(l - q2)(l + q2)2/a] (43) 

Parameter K appearing in equation (43) is an arbitrary constant of 
integration. Substitution of equation (43) into equation (40) produces 
a first order ordinary differential equation for the unknown function 
x(q), 

dx 
-112K 4( l + (J2)5/3(l- (j2)5]/[(1 . ' + (1 + q)1} 717/3 (44) 

function K(co) is listed in Table 1. An important value in this table 
is K(0) = —0.6362 which corresponds to the thin wall limit; this value 
can also be obtained by integrating equation (44) subject to conditions 
(48-50). 

Results 
Figures 2(a,b) illustrate a set of representative streamlines and 

isotherms obtained in the thin wall limit (co = 0). The streamfunction 
\j/ was defined in the usual way by writing u = itip/dy and v = —d\j//dx. 
As in Fig. 1, the warm reservoir is on the left side of the picture. The 
streamlines reveal a descending boundary layer on the warm side 
coupled with a centrosymmetric ascending boundary layer on the cold 
side. In the vicinity of the solid wall (y = 0) the isotherms are nearly 
parallel, particularly in the central region. This feature implies that 
the heat flux is nearly constant along the wall, as shown by the curve 
a) = 0 in Fig. 6. The slight tilt of the isotherms indicates that the 
boundary layers transfer heat from the upper left to the lower right 
across the thin wall. 

The wall temperature distribution resulting from the coupled flows 
is summarized in Figs. 3 and 4. In Fig. 3 we plotted the temperature 
distribution in the mid-plane (y = 0) of the vertical wall, for a series 

The boundary conditions necessary for solving (44) are based on 
the approximation that the vertical velocity and horizontal temper
ature gradient are zero at the beginning of the two boundary 
layers. 

u = Oat-oo <y < 0, x = +V2 

— = Oaty = 0,x = ±V2 
dy 

(45) 

(46) 

(47) 

Condition (45) can be satisfied if to = _ 1 /2 or, Xi,2 —• °° when x = 
—y2. This is equivalent to setting q = 1 in expression (42). 

q = +1, to = -V2atx (48) 

Applying similar arguments to the descending boundary layer in the 
hot fluid leads to the result 

- 1 , t0=y2atx = V2 (49) 

Since to is an odd function of q in (42) it is also an odd function of x, 
hence 

to = 0, q = 0 at x = 0. (50) 

Wall w i t h F in i t e T h i c k n e s s 
A procedure similar to that used for the thin membrane was also 

applied to the more general case of finite w. Substitution of equations 
(19-22) into equation (10) yields 

to= - < 7 ( l - 2 Q ) / ( l + q2) (51) 

Q = - w p ( l - <?2)2/[16(l + q2) - 2G>P(1 - q2)2] (52) 

(53) co = LHa1/4. 
Hkw 

As shown in the Nomenclature, 2Q is the wall local Biot number, Bi*. 
When the energy integral (38) is applied to the cold side one finds 

"T Kto - Q + y2)7[p3(l + Q)s]\ = - Q / 2 « . (54) 
dx 

Adding this result to the corresponding energy integral for the hot side 
and integrating once produces 

(1 - q)i + (1 + q)i 

[4(1 + q2) - - p ( l - q2)2]2p3(l - q2)s 

K3 , , 

« (55> 

where if is a constant of integration. The value of this constant was 
determined by integrating equation (54) numerically, trying different 
values for K until conditions (48-50) were satisfied. The resulting 

Table 1 Constant K and overall heat transfer rate 
Nu/Ra1 / 4 as a function of w 

K INu/Ra1/4! 
0 
0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 

10.0 
20.0 

0.6362 
0.6232 
0.6113 
0.6004 
0.5903 
0.5809 
0.5422 
0.4891 
0.4529 
0.4259 
0.4047 
0.3390 

0.2575 
0.2422 
0.2285 
0.2164 
0.2057 
0.1961 
0.1594 
0.1170 
0.0929 
0.0773 
0.0663 
0.0389 

Fig. 2(a) Streamline pattern 

Fig. 2(6) Temperature field, in the thin wail limit (00 = 0) 

Fig. 2 
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O.S 

Fig. 3 Temperature distribution In mid-plane (y = 0) 

0.5 

Fig. 4 Temperature distribution over the solid surface facing the cold res
ervoir 

&5 

Fig. 5 Comparison of the present result ( — ) for surface temperature against 
the numerical solution of Lock and Ko ( — ) Fig. 6 The distribution of heat flux along the vertical wall 

of values of thickness parameter co. The mid-plane temperature be
comes more and more uniform as the wall thermal resistance in
creases, i.e., as the thermal contact between the two boundary layers 
deteriorates. Figure 4 shows the corresponding temperature distri
bution on the surface facing the cold reservoir; the results for the 
surface facing the warm reservoir are readily obtained by rotating Fig. 
4 by 180 deg. It is clear that as the wall becomes thicker the surface-
to-surface temperature difference increases to the point where, for 
co = 20, it is roughly 80 percent of the reservoir-to-reservoir temper
ature difference. 

In their numerical study of the same phenomenon, Lock and Ko 
[4] graphed results for Pr = 0.72 and a limited range of wall thickness, 
a>. In Fig. 5 we compare our results for cold side surface temperature 
with the results of Lock and Ko, for co = 0 and co = 1. The two solutions 
agree in an average sense, although the numerical solution [4] de
scribes a relatively more uniform surface temperature in the central 
region of the plate. The constant flux solution developed in the Ap
pendix predicts that the surface temperature distribution will become 
more nearly isothermal as Pr -» 0. Hence, the discrepancy between 
the two sets of curves on Fig. 5 is attributed to the different Prandtl 
numbers used in each investigation. 

The wall heat flux is presented in Fig. 6 as the horizontal temper
ature gradient {dt/dy)y=w/2. The heat flux decreases as the thickness 
parameter co increases. This effect is to be expected since a thicker 
wall means more effective insulation between the two reservoirs. 

Regardless of co, the wall heat flux is nearly uniform oyer most of 
the height H. This observation is the basis for the constant heat flux 
analysis [3] summarized in the Appendix. In this analysis the wall heat 
flux is assumed independent of vertical position x and the natural 
convection problem of Fig. 1 is reconstructed by piecing together two 
Sparrow and Gregg [7] solutions for convection along a vertical con
stant heat flux surface, via pure conduction through a wall of finite 
thickness. The cold surface temperature distribution predicted by 
the constant heat flux analysis is presented in Fig. 7 vis-a-vis results 
based on the analysis developed in this paper. The agreement is ex
cellent expecially as co increases, which is the limit where the constant 
heat flux assumption is more appropriate. 

Overall Hea t Trans fe r 
Defining the heat transfer coefficient in terms of the average heat 

flux through the wall and the total temperature difference between 
fluid reservoirs 
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0.5 

Fig. 7 Comparison of the present result for cold surface temperature ( — ) 
against the result based on the constant heat flux approximation ( — ) 

C o n c l u d i n g R e m a r k s 
In this paper we analyzed the fundamentals of laminar free con-

vective heat transfer across a vertical wall sandwiched between two 
fluid reservoirs at different temperatures. In order to gain some insight 
into the fluid mechanics and basic heat transfer mechanism we con
structed an analytical solution based on the Oseen linearization ap
proach without making assumptions about the heat flux or temper
ature distribution at the wall. We were able to illustrate streamlines 
and isotherms for the flow field. We also presented results for the 
distribution of temperature and heat flux along the vertical wall. The 
effect of increasing wall thermal resistance was documented. 

The engineering importance of this study is that it reports means 
for estimating the reservoir-to-reservoir heat transfer for cases in 
which the thermal resistance of the wall is not negligible. Prior to our 
study, the heat transfer literature contained information on overall 
heat transfer only in the limited range 0 < co < 1. Another conclusion 
of our study is that the vertical wall can be approximated as a constant 
flux surface and that the overall heat transfer rate is relatively inde
pendent of Prandtl number, for Pr of order 1 or larger. 
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Fig. 8 Dependence of total heat transfer rate on wall resistance parameter 
0) 

AT Uy/y=u,/2 £ [dyl. £ \dyly=u>/2 

M 

(56) 

(57) 

AT\dYh=wn 

the Nusselt number can be written as 

Eh H I dt\ 
Nu = — = - — = R a 1 M , , 

kf £ \dy/y=uj/2 \dy/y=« 
Figure 8 shows the Nusselt number predicted by our solution and the 
estimate based upon the constant flux approximation for Pr = 0.72 
and Pr —>• °°. The agreement between the two solutions is excellent 
over the entire o> range of interest. The ratio Nu/Ra1 /4 decreases 
substantially as the wall thickness increases from 0 to 10. Recalling 
that the present solution was obtained in the limit Pr - • <*> and that 
the constant heat flux result is Pr dependent, Fig. 8 demonstrates that 
the overall heat transfer rate is a weak function of Pr provided Pr is 
of order one or greater. Representative values for Nu/Ra1 /4 for the 
present solution are shown in Table 1. 

Overall heat transfer calculations in the range examined by Lock 
and Ko are presented in the inset of Fig. 8. The numerical result [4] 
predicts a weaker dependence on wall thickness than either the 
present solution or the constant heat flux analysis. 

APPENDIX 
C o n s t a n t H e a t F l u x Ana lys i s 

Sparrow and Gregg [7] report the following wall temperature dis
tribution for a constant flux surface 

Tw-T„ •f(vATxUb -1/5 
(Al) 

where Tw and T„ are the dimensional temperatures at the wall and 
at infinity, and X is the distance measured from the start of the 
boundary layer. The temperature at X = H/2 on the surface facing 
the cold fluid is 

TH + TC Wkf_ldT\ 

2 fe^ldY/i 
(A2) 

2 2 kw\dYJY=w/2 

Substituting this for Tw in (Al) and rearranging we find 

| ( fe / 4 / B ) (^) 1 / 6 / [ (H/2) 1 / B / (Pr) ] 

(A3) 
which, in combination with (Al), yields 

Tw-T. 1/ ldt\ W X \ i / s 

„„ A T / Idt 

dy/y="j/2, 

AT 
1 / Idt 

••- 1 + w — , 
2 \ \dy/y=u>/2, J \H/2j 

Defining h as g/AT, the Nusselt number is 

hH ^ G r ^ d + J B ^ 
\dyly=w/2, 

Nu = -

(A4) 

(A5) 
kf 2[/(Pr)]5/4 

Sparrow and Gregg [7] report a solution for /(Pr) derived using the 
Karman-Pohlhausen method, 

I \5/4 25/4 Pr1 /2 

tc f(Pr)/ (360)1/4 (0.8 + Pr)1 / 4 

Substituting now (A6) into (A5) we obtain 

Nu = 
Pr 

0.8 + Pr 

1/4 Ral/4 
l + O ) 

dt\ 

Since 

(180)1/4 I \dy/y=u>/2. 

h=jiL[m=hm 
&T\dYl £ \dyj. 

5/4 

'jy=w/2 

(A6) 

(A7) 

(A8) 
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Table Al Nu/Ra1 / 4 for constant heat flux solution 

01 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 

10.0 
20.0 

Nu/Ra1/4 

Pr = 0.72 
0.226 
0.214 
0.203 
0.194 
0.185 
0.177 
0.147 
0.110 
0.088 
0.074 
0.064 
0.038 

P r = co 

0.273 
0.256 
0.241 
0.227 
0.215 
0.205 
0.165 
0.120 
0.095 
0.079 
0.067 
0.039 

we can write 

Nu = Ra1/*(—) 

Combining (A9) and (A7) results in 

y=w/2 

n 
\dy]y=w/2 

= |1 + C0|^J I 
dyly=w/2j 

\B/4 Pr 1/4 

(A9) 

(AlO) 
(0.8 + Pr)(180)j 

Equation (AlO) was solved numerically to establish the relationship 

between dt/i>yy-w/2 and co. Temperature distributions for the constant 
flux approximation are shown in Fig. Tand the variation of Nu/Ra1/4 

with o> is shown in Fig. 8. Values for (dt/dy) are shown in Table Al. 
Note that | dt/dy | decreases with Pr. Equation (A4) implies a wall 
temperature distribution which is more isothermal in the central re
gion of the plate for small values of Pr. 
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