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ABSTRACT 

 

A novel two-stage algorithm for detection of damages in large-scale structures under static 

loads is presented. The technique utilizes the vector of response change (VRC) and 

sensitivities of responses with respect to the elemental damage parameters (RSEs). It is 

shown that VRC approximately lies in the subspace spanned by RSEs corresponding to the 

damaged elements. The property is leveraged in the first stage of the proposed method by 

seeking RSEs whose spanned subspace best contains the VRC. Consequently, the 

corresponding elements are regarded as damage candidates. To alleviate the exploration 

among RSEs, they are first partitioned into several clusters. Subsequently, discrete ant 

colony optimization (ACO) is utilized to find the clusters containing the RSEs of damaged 

elements. In the second stage of the algorithm, damage amounts for the restricted elements 

are determined using a continuous version of ACO. Two numerical examples are studied. 

The results illustrate that the method is both robust and efficient for detection of damages in 

large-scale structures. 
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1. INTRODUCTION 
 

Damage detection is one of the branches of structural health monitoring which has recently 
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attracted many scientific efforts. Damage detection techniques have been successfully 

applied to several real-world problems. Recent work widely employ meta-heuristic 

searching tools for damage diagnosis. For example, Koh et al. [1] detected the damages 

using accelerations of a shear building under dynamic loads. To this aim, they improved the 

GA in two ways by embedding two different types of local search algorithms in the GA 

body. In a study, Koh and Dyke [2] detected damages of a cable stayed bridge by employing 

the GA for maximizing the response correlation for the actual and the hypothetically 

damaged structures. An application of the micro-genetic algorithm to detect a single crack 

in a real cracked beam has also been employed by Vakil-Baghmisheh et al. [3]. Begambre 

and Laier identified the structural damages by using FRFs and employing a hybridized 

particle swarm optimization with simplex algorithm [4]. Naseralavi et al. [5] improved the 

real coded genetic algorithm using sensitivity matrices of structural responses with respect 

to damage severities for diagnosing the damaged elements. Meruane and Heylen [6] also 

addressed an under-determined damage detection problem. To find the unique damage 

solution, they penalized the conventional objective function by summation of damage 

extents. They also hybridized the real-coded genetic algorithm through embedding a local 

search algorithm in the GA body to improve its performance for damage detection. Yu and 

Xu [7] employed continuous ACO to detect the damaged elements through minimizing the 

corresponding objective function. In their study, they used natural frequencies and mode 

shapes to access the damage. Many recently proposed methods consist of two stages for 

under-determined damage detection problems. In the first stage of these methods, the search 

space is usually reduced toward damaged elements. In the second stage, the true damage 

solution is computed by solving the corresponding optimization problem [8-12].  

Static damage identification methods are usually simpler than the dynamic ones, since 

the static equilibrium equation is only relevant to the stiffness properties of structures. 

Moreover, the equipments for static testing are comparatively cheaper [12]. One advantage 

of using static responses is that they are more sensitive to damages than natural frequencies 

and mode shapes [13]. Conversely, static responses are less popular in the case of highly 

stiff structures due to implementation problems. Combinations of static response with other 

types of responses are utilized for damage diagnosis in the previous work [14,15]. Static 

responses are also merely employed for damage detection in Refs. [16-18].  

This paper proposes a two-stage method specialized for damage detection of large-scale 

structures with several hundred members using static data. In the first stage, the search 

space is reduced through minimizing a new objective function using the discrete ACO. In 

the second stage, the continuous version of ACO is employed to identify the damage 

extents. To illustrate the efficiency of the proposed method, two large-scale steel trusses are 

studied. Finally, it is concluded that the method is promising in detection of damages in 

structures with hundreds of members. 

 

 

2. STATIC DAMAGE DETECTION USING SENSITIVITY ANALYSIS 

 

Due to damages, the stiffness of the damaged elements is reduced. Hence, the displacements 

under static loads are increased in comparison to the healthy state. The static equilibrium 
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equation of the structure can be expressed as:   

 

                                                            =KU F                                                           (1)  

 

where K is the stiffness matrix, U is the displacements vector, and F is the applied loads 

vector. By differentiating Eq. (1) with respect to a design variable (e.g. damage variable of 

an element), the sensitivity of structural displacements with respect to that design variable 

can be computed as [5]: 

                                            1−′ ′ ′ ′= ⇒ = −K U + KU 0 U K K U                                     (2) 

 

For damage identification, one has to find the set of damage variables in a way that the 

analytical displacements of the structure would best fit the measured ones. Damage 

detection problems can be expressed mathematically as below [5]: 

 

                                                               ( )d =U U X                                                    (3) 

 

where 
T

1 2(  ,   ,... )nx x x=X  is called the damage vector, and 0 1ix≤ ≤  is the damage extent 

(damage ratio) of the ith element where 0ix =
 

and  1ix =  indicate the intact and 

completely damaged states, respectively; and n is the number of structural elements. 
T

1 2( ) ( ( ) ,  ( ) , ... ( ))mu u u=U X X X X  is the vector of m displacements of hypothetically 

damaged structure with damage state X that can be evaluated from the analytical model, and 
T

,1 ,2 ,(  ,   , ... )d d d d mu u u=U is the vector of m structural displacements of the existing 

damaged structure. Eq. (3) can be estimated by using the first order approximation as 

follows [19]: 
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where hU  is the structural displacement vector of the healthy structure, ∆X  is the damage 

change vector caused by actual damage, = ∂ ∂S U X  is the sensitivity matrix, and 

( ),1 ,2 ,
, ,...,

T

d d d d n
x x x=X  is the actual damage vector. Notice that ( )

h
=U 0 U  and 

( )d d
U X = U . 

d h
∆ = −U U U  is the vector of the structural response change due to the 

damage. We denote the ith column of S as 
i

S , and hence 
1 2

...
n

  S = S S S . To ease the 

explanations, we also refer to iS ’s and ∆U  as response sensitivities to elements (RSEs) and 

the vector of response change (VRC), respectively. Considering Eq. (2), the ith column of 

matrix S, i.e. 
i ix= ∂ ∂S U , can be computed as 1 ( ix−− ∂ ∂K K )U .  
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3. THE PROPOSED ALGORITHM 
 

3.1. The first stage  

3.1.1. The objective function 

Due to the fact that in static response the number of measurements is usually less than the 

number of structural members, so the equation .∆ =U S X  is under-determined ( n m> ), and 

hence has infinite solutions. Mathematically speaking, there is an ( )n m− -dimensional 

subspace in Rn  that its points are solutions of .∆ =U S X . To find the true unique damage 

solution within the subspace, it should be noted that in the damaged structures most of the 

structural elements are still intact and, therefore, the true solution has high sparsity. In the 

first stage of the algorithm, we are to restrict the damage candidates by considering some of 

the elements healthy and eliminating them from the design variables. Since 

,
1

~ .
n

d d i i
i

x
=

∆ ∑U S X = S , and the damage ratio of the undamaged elements are zero, thus we 

can write 
,

~
d i i

i SDE

x
∈

∆ ∑U S , where SDE is the set of damaged elements. This means ∆U  

lies approximately in the span of such iS ’s corresponding to the damaged elements, i.e., 

∆U  lies approximately in span{ }:
i

i SDE∈S . In other words, VRC lies approximately in the 

subspace spanned by RSEs of the damaged elements. Therefore, it is expected that the 

component of ∆U  orthogonal to span{ }:
i

i SDE∈S  is smaller in magnitude than orthogonal 

component of ∆U  with respect to other same dimensional subspaces spanned by other 

combinations of 
iS ’s [20]. Here, the same dimension condition for such a comparison is 

imposed due to the fact that by enlarging a subspace through adding new dimensions to it, 

the orthogonal component of a certain vector to that subspace will get shortened. The 

component of ∆U  along 
i

S ; i SDE∈  is approximately equal to the damage ratio of the ith 

element. Let us review the above discussions with an example for better understanding. 

Consider a structure in which the elements 4, 6, and 8 are damaged. Therefore, as what is 

schematically shown in Figure 1, ∆U  lies approximately in the subspace 
4 6 8span( , , )S S S , 

i.e., the orthogonal vector 
4 6 8span( , , )⊥∆

S S S
U  which is denoted by f in the figure has a very 

small magnitude. Meanwhile, the orthogonal component of ∆U  to any other 3-dimensional 

subspaces spanned by any other 3-combinations of iS ’s is not generally that small as shown 

in Figure 1 (b). 
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 (a)                                                       (b) 

Figure 1. Orthogonal component of ∆U  with respect to: (a) the subspace associated with RSEs 

of all damaged elements, and (b) the subspace which is not associated with RSEs of the 

damaged elements 

As aforementioned, to find the damaged elements, one might excessively search for such 

RSEs so that VRC best lies in the subspace spanned by them, and consequently take the 

corresponding elements as damaged ones. However, such a kind of approach is 

computationally expensive and therefore impractical for large-scale structures. This idea is 

adopted in the first stage for restricting the potentially damaged elements with two 

stratagems for alleviating the searching effort: First, the elements are clustered into several 

groups and then damaged clusters (clusters consisting damaged elements) are searched 

instead of damaged elements themselves to reduce the computational effort. To this aim, 

searching is done for some clusters so that VRC best lies in the subspace spanned by their 

RSEs. Second, instead of excessively searching among damage clusters, discrete ACO is 

employed for the searching process.  

Let us elaborate on the clustering effect by an example. Consider a 1000-element 

structure having five damaged elements. In the case of no clustering, we have to search 

among 
1000

8.2503e+012
5

 
= 

 
 items to find the true damage members. By clustering the 

elements to four member groups as an instance, the number of clusters will be 1000 225
4
= . 

It should be noted that if the number of elements was not dividable into the number of 

clusters, we would duplicate some of the elements to make it dividable. In the case of 

clustering, the number of items will reduce to 
225

4.5951e+009
5

 
= 

 
. Hence, clustering of 

the elements leads to near 1800 times reduction in the size of search space. Thus, we see 

significant influence of clustering on reduction of computational effort for large-scale 

structures. 

To ease explanation of the method, we define ; 1, 2,...iV i nc=  as the vector subspaces 

spanned by the RSEs of the corresponding clusters, respectively. Mathematically, we can 

write iV   as: 



S.S. Naseralavi, E. Salajegheh, J. Salajegheh and M. Ziaee 

 

494 

                                          span( : ); 1,2,...i j iV j C i nc= ∈ =S                                        (5) 

 

where 
iC  is the ith cluster and nc is the total number of clusters. The associated 

optimization problem can be written as: 

Cost function:                              ( ) proj
i

i I

V
F I

∈

= ∆ − ∆
∑

U U                                          (6)   

Subject to:            { }1,2,...I nc⊂  & I l=
                                         

 

 

in which the cost function, ( )F I , should be minimized, where .  and .  denote Euclidean 

norm of a vector and the number of members of a set, respectively. l is the maximum 

number of damaged elements. Based on the standard definition of subspaces summation, 

i

i I

V
∈
∑  is equal to span( : )i j

j I

i C
∈

∈S ∪ . Noteworthy, l makes an upper bound for the number 

of damages in which the algorithm is valid. As an instance, in the case of setting l to 4, the 

proposed method is applicable only for the cases up to 4 damaged elements.  

 

3.1.2. Discrete ACO for the first stage 

ACO meta-heuristic was first proposed by Marco Dorigo [21] to tackle hard combinatorial 

optimization problems. The method mimics the social foraging behaviour of ants to identify 

the shortest path between food source and nest. As the ants move from food sources to the 

nest and vice versa, they leave a chemical liquid called pheromone on the ground, making a 

trail of pheromone. Ants can smell pheromone and they tend to choose the paths with more 

pheromone amount.  

We employ ACO to solve the optimization problem of Eq. (6). To this aim, we consider l 

nodes in a circle pattern which are mutually connected by nc paths to each other as shown in 

Figure 2. Some artificial ants are randomly placed in the nodes of this hypothetical model. 

The ants are allowed to move in clockwise direction only. In each time step (iteration), each 

of the ants stochastically selects one of the paths from 1 to nc to go to its next node. During l 

time steps, the ants come into their initial nodes and thus their tours are completed. The 

selected paths for each ant specify a solution for the problem. That is, the selected paths 

denote the clusters. The procedure of making a tour by each of the ants is called a cycle. As 

cycles proceed, the solutions are improved toward the optimal ones (the solutions containing 

all damaged clusters). The number of ants (k) is constant during ACO.  
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Figure 2. The model for selecting l clusters by ants 

 

Here, we see how stochastically the ants select their paths. We specify each path by the 

ordered pair ( , )i j  indicating the path j that an ant locating at the node i moves along it. An 

ant selects the path ( , )i j  by the following probability: 

                                                      

1

  

 

ij

ij nc

iq

q

a
p

a
=

=

∑
                                                        (7) 

where ija  is a value corresponding to path ( , )i j  which is evaluated using the relationship: 

                                                     

1

  

 

ij

ij nc

iq

q

τ
a

τ

α

α

=

=

∑
                                                       (8)  

where ijτ  is the pheromone intensity for path ( , )i j

 

at the current time, and α  is a positive 

value by which the effect of pheromone is adjusted. Initially, a small pheromone value, say 

0τ , is uniformly assigned to all paths, and thus all paths have equal chances to be selected 

by ants. Here, we employ ranked-based ant system (ASrank) for global pheromone updating 

[22]. In this scheme, after each cycle, the solutions are ranked according to the fitness of 

objective function ( )F I , from the best to worst. The pheromone value of the paths 

associated with high ranked ants and the elite ant is subsequently increased. The first λ
 

solutions are considered as high ranked solutions, where λ  is one of the parameters of 

ACO. The µ th ranked solution and its corresponding cost functions are denoted by T µ
 and 

F µ
, respectively. Also the tour and the cost function corresponding to the best-so-far 

solution are denoted by T +
 and F +

. In ASrank, the pheromone values concerning high 

ranked solutions and the best-so-far solution are increased using the following relationships: 
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, if ( , ) &

0 , otherwise

∆ ij

i j T
τ F

µ
µµ

λ
µ λ

µ ∈ ≤
=

−




 (9-a) 

 
, if ( , )

0 , other s

∆

wi e
ij

i j T
Fτ

λ
+

+
+

 ∈
= 


 (9-b) 

 

where ∆ ijτ +  and ∆ ijτ µ
 are increments in pheromone value for path ( , )i j  which concern the 

best solution and the µ th ranked solution, respectively. 

Evaporation of phenomenon helps real ants to escape from maturing. Evaporation is 

simulated in ACO by reducing the amount of pheromone deposited from past cycles. The 

evaporation procedure enables ACO to explore new areas in the search space and to escape 

from local minimums. The pheromone value of path ( , )i j  at the next cycle in the case of 

considering evaporation is given by the following formula: 

 

 
1

1

( ) . ( ) ∆ ∆ ( ))  (  
λ-

µ

ij ij ij ij

µ

τ t l ρ τ t tτ τ t+

=

+ ← + +∑  (10)
 

  

where  (0,1]ρ∈  is the evaporation rate. 

This stage consists of seven steps as follows: 

 

1. Establish the sensitivity matrix S by Eq. (4), and evaluate VRC. 

2. Partition the elements into same size clusters randomly. If the number of elements is 

not dividable into the number of clusters, duplicate some of the elements to make it 

dividable.  

3. Consider the hypothetical model of Figure 2 and assign initial pheromone values to the 

paths uniformly.  

4. Put the ants randomly in the joints of the model and select l clusters via ants 

considering the probabilities of Eq. (7).  

5. After all ants finish their tour, evaluate the objective function ( )F I . 

6. Identify the elite and best rank ants. Update their path trace using Eq. (10). 

7. If the convergence criterion is met, get the best-so-far solution as the final result; 

otherwise, go to Step 4.  

 

3.2. The second stage  

3.2.1. The objective function for the second stage 

In the second stage, the elements constituted the extracted clusters from the first stage are 

considered as damage candidates. These reduced elements are referred to restricted 

elements (RE) and denoted by the set { } { }1 2 nRE re , re , ... , re 1, 2,... , n= ⊂ , where 
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; 1, 2,...ire i n=  are the restricted elements and n  is the number of restricted elements. 

Note that when we use RE in the italic form, RE, we refer to the restricted elements as a set. 

If the ith element is a member of RE, this element is considered as damage candidates and, 

therefore, [ ]0,1ix ∈ . On the flip side, if the ith element is not contained in RE, that element 

is considered healthy, and thus 0ix = .  

In this stage, the damage extents of the restricted elements (RE) are determined using the 

continuous version of ACO [7]. Due to the reduction in the number of design variables at 

the first stage, Eq. (3) becomes over-determined. Hence, by best equalizing the sides of Eq. 

(3), the true solution is obtained. Thus, the objective function ( )
d

D = −U U X  should be 

minimized, where X  is the reduced damage vector with the entries associated with RE, i.e. 

1 2
( , ,... )

nre re rex x x=X . It should be noted that all elements of RE are not essentially 

damaged, and there may exist some healthy ones among them, i.e. SDE RE⊆ .  

 

3.2.2. Continuous ACO for the second stage 

In continuous ACO, the ants sample each of the components of the solutions from a 

continuous probability density function (PDF) in the feasible domain. The PDFs gradually 

changes in a way to bias the sampling toward the optimum solution during implementation 

of ACO. This kind of ACO is denoted by ACOR [23]. The best solutions in each cycle are 

kept for the next cycle and the other ones are replaced with the newly produced solutions. 

The Gaussian kernel PDFs are adapted for the associated PDFs. These PDFs are constructed 

using weighted sum of several one dimensional Gaussian functions. Gaussian kernel PDFs 

are capable of producing PDFs with several rises. We write the associated Gaussian kernel 

for ; 1,2,...
irex i n=  as: 

 

                          ( ) ( )
( )
( )

2

2
1 1

1
ω exp

σ 2π 2 σ

z
k k

iz

i z i z z z
z z i i

x µ
G x g xω

= =

 − − = =
 
 

∑ ∑                   (11) 

                  

where ( )z

ig x  is a Gaussian PDF having mean l

iµ
 

and standard deviation σl

i
. In ACOR, we 

also denote the number of ants by k. In each cycle, the k ants make k solutions as 

1 2
( , ,... ); 1,2,...

n

i i i i

re re rex x x i k= =X
 

in which 
j

i

rex  denotes the jth variable of the i th  

reduced solution. The objective function for all k solutions is computed. The solutions are 

ordered from the best to worst accordingly. Afterwards, the solutions are stored in an 

archive as shown in Figure 3.  

The weights of the solutions are evaluated as: 

 

 
2

2 2
exp

1 ( 1)
ω

22π
z

z

q kqk

− −
=

 
 
 

  (12)
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where z is the rank of each solution and q is a parameter of ACOR which should be assigned 

at first. Subsequently, the determined

 

ωz
’s are used in Eq. (11). Notice that, 

2 1ω ω  ωk ≤ ≤ ≤⋯ .  

  

  

  

  

  

  

  

  

        

        

        

        

1
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1
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Figure 3. The solution archive used in ACOR 

 

As expressed before, for sampling of solutions of the next cycle by ants, the PDFs 

( ) ; 1, 2,...iG x i n=  are needed. Hence, the values of 
z

iµ  and σz

i
 for 1,2,...z k=  and 

1, 2,...i n=  should be first assigned. The values of  ( 1, 2,... , 1, 2,... )z

i z k i nµ = =  are 

respectively considered as ( 1, 2,... , 1, 2,... )
i

z

rex z k i n= =  which are the components of the 

current solutions. The standard deviations are assigned as 
1

σ ξ
1

i i

e z
k

re rez

i

e

x x

k=

−
=

−∑  where ξ  is 

a constant playing the role of evaporation rate. To make the solutions in the first cycle, we 

employed the PDFs ( ) ( )
1

1 1 1
, 2 1 ,

2 2

k
z

i i

z

G x g x z
k k k=

 = − 
 

∑  [24]. 

The step by step summary of the second stage is as follows: 

 

1. Construct initial solutions by ants. 

2. Calculate the objective function for the current solutions, ; 1, 2,... .i i k=X  

3. Construct ( ) ; 1, 2,...iG x i n=  using the current solution archive. 

4. Keep the best solutions of the current cycle for the next cycle and omit the others. 

5. Construct new solutions to replace the omitted solutions. Sample the ith component of 

the new solutions using ( ) ; 1, 2,...iG x i n= .  

6. Iterate Steps 2 to 5, until the convergence criteria are met. 
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4. CASE STUDIES 
 

In this section, the efficiency of the proposed method is illustrated by two large-scale 

structures. Young’s modulus for steel materials in both case studies is considered as 2.1×10
6
 

kg/cm
2
. To identify the damaged elements, we measure the static deflections in gravity 

direction for all joints of the structures. In these two examples, the damage is simulated by a 

reduction in the Young’s modulus of the damaged elements with the amount of damage 

severity. 

 

4.1. The first case study  

A 721-element barrel vault is considered with the dimensions shown in Figure 4a. In this 

figure the joint numbers are given. The structure is supported at the corner joints of bottom 

layer as shown. Concentrated loads with magnitude of 100 kg are applied to all joints of top 

layer in the gravity direction. Cross sectional areas of all elements are 40cm
2
. Damage 

detection of the structure under two damage scenarios is considered. These two scenarios 

are shown in Figure 4b and c in which the damaged elements are highlighted. In the figure, 

the damage element numbers are illustrated. Also, the percentages of damages are given in 

the parentheses. 

As aforementioned, the first stage of the proposed algorithm reduces the damage 

variables. The parameters of discrete ACO in the first stage of the algorithm for Scenarios 1 

and 2 are given in Table 1a and b, respectively. For this stage the cluster size is selected to 

be four. Therefore, the number of design variables is equal to 181 (the ratio of 721 to 4 is 

equal to 180.25). After the first stage, the suspended elements are reduced to 40 and 60 for 

Scenarios 1 and 2, respectively. However, for more reduction in damage variables, the first 

stage in executed once more. After the second run of the first stage, the design variables are 

reduced to 10 for both scenarios. These ten elements are listed in Table 2 in which the true 

damaged ones are bold. Figure 5 illustrates the convergence history of F(I) for both average 

and the elite solutions in the first run and second run of ACO at the first stage. As it can be 

seen, in all cases the objective function truly converges to a very small value near zero. 

Noteworthy, clustering of elements is highly effective in performance of the first stage. That 

is, in the case of no clustering the first stage works much weaker. Based on our numerical 

results, in such a case, the first stage of algorithm is unable to identify all damaged 

elements. Namely, some of the damaged elements are missed from the reduced design 

variables. This event is due to the fact that in the case of no clustering, the search space is 

very large and has many local minimums. Hence, ACO enables to find the true solution 

among them. The parameters of ACOR in the second stage are presented in Table 3. Figure 6 

illustrates the convergence history of the objective function ( )
d

D = −U U X  for the 

second stage and both scenarios. The objective function converges to zero. This indicates 

that the damage extents are correctly obtained through the ACOR process. Figure 7 yields 

convergence history of the damage severities for the ten remained elements during the 

ACOR procedure. For clarity, in this figure convergence histories of damaged and healthy 

elements are given separately. The obtained damage extents for the intact elements are near 

zero which is desirable. 
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Figure 4. (a) Geometry of the 721-element barrel vault, (b) Scenario 1, and (c) Scenario 2  
 

Table 1a. Parameters of discrete ACO for the first stage in Scenario 1 

l n τ0 ρ2 ρ1 λ k β α Run 

10 720/4 1000 0.5 0.5 10 100 0 0.2 1 

10 40 1000 0.5 0.5 2 20 0 0.2 2 

 

Table 1b. Parameters of discrete ACO for the first stage in Scenario 2 

l n τ0 ρ2 ρ1 λ k β α Run 

15 181 1000 0.5 0.5 7 70 0 0.2 1 

10 60 1000 0.5 0.5 3 30 0 0.2 2 
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Figure 5. Convergence histories of objective function during run of the first stage: (a) first run 

for Scenario 1, (b) second run for Scenario 1, (c) first run for Scenario 2, and (d) second run for 

Scenario 2 

 

Table 2a. Remained design variables after twice execution of the first stage of algorithm for 

Scenario 1 

Label of elements by 

joints 

Label of 

elements 

 Label of elements 

by joints 

Label of 

elements 

52-156 542  76-86 175 

68-163 571  85- 95 184 

75-178 629  131-132 218 

95-196 701  165-166 248 

105-196 703  51- 156 541 

 

 

Table 2b. Remained design variables after twice execution of the first stage of algorithm 

for Scenario 2 

Label of elements 

by joints 

Label of 

elements 
 

Label of elements 

by joints 

Label of 

elements 

20-128 430 18-19 17 

42-138 472 88-98 187 

64-159 555 112-113 201 

96-187 668 185-194 354 

97-188 672 28-127 427 

 

Table 3. Parameters of ACOR for both scenarios 

k q ξ  m 

30 0.2 1.3 20 
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(b)                                                                                                                        

Figure 6. Convergence histories of objective function for the second stage: (a) for Scenario 1,  

and (b) for Scenario 2 
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Figure 7. Convergence history of ten suspended elements in second stage: (a) Scenario 1,  

and (b) Scenario 2 

 

4.2. The second case study  

A double-layer grid with 800 elements is considered as shown in Figure 8a. The length, 

width, and height of the structure are 30 m, 30 m and 2 m, respectively. The structure is 

supported at the joints 1, 10, 91, and 100. Concentrated loads with magnitude of 100 kg are 

applied to joints of the top grid in the gravity direction. The cross sectional area for all 

elements is 
240 cm . Two damage scenarios with three and eight damaged elements are to 

be considered. Figure 8b and c shows the pattern of these two scenarios with damaged 

element numbers and amounts of damage. 
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Figure 8. (a) A 800-element double-layer grid, (b) Scenario 1, and (c) Scenario 2 
 

Like the previous case study, the first stage is executed twice for more reduction in 

design variables. The cluster sizes are considered four. Table 4 gives the parameters utilized 

in ACO for the first stage. 
 

Table 4a. Parameters of discrete ACO for the first stage and Scenario 1 

l n τ0 ρ2 ρ1 λ K β α Run 

10 400 100

0 

0.5 0.5 10 100 0 0.2 1 

10 20 100

0 

0.5 0.5 1 10 0 0.2 2 

 

Table 4b. Parameters of discrete ACO for the first stage and Scenario 2 

l n τ0 ρ2 ρ1 λ K β α Run 

10 200 100

0 

0.5 0.5 8 80 0 0.2 1 

10 40 100

0 

0.5 0.5 3 30 0 0.2 2 

 

 

Figure 9 depicts the convergence history of the objective function ( )F I  for the first and 

second run of the first stage for both scenarios. After the second run of the first stage, only 

10 suspected elements are remained as design variables. Table 5 represents ten remained 
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elements from the first stage for both scenarios. In this table, the true damaged elements are 

bold. As seen, the remained elements truly consist of all damaged elements. Table 6 

represents the parameters of ACOR for the second stage of the algorithm. Figure 10 shows 

convergence histories of the objective function D which correctly converges to zero for both 

scenarios. Finally, Figure 11 depicts convergence history of the design variables during 

implementation of ACOR in the second stage. As it can be seen, the damage severities of 

healthy elements of RE are accurately obtained as zero. 
 

Table 5a. Remained design variables after twice execution of the first stage of algorithm for 

Scenario 1 

Label of elements 

by joints 

Label of 

elements 

 Label of elements 

by joints 

Label of 

elements 

13-115 450  11-12 10 

43-148 570  17-27 107 

55-172 620  44-54 134 

66-183 663  124-135 314 

80-199 720  189- 200 379 

 

Table 5b. Remained design variables after twice execution of the first stage of algorithm for 

Scenario 2 

Label of elements 

by joints 

Label of 

elements 

 Label of elements 

by joints 

Label of 

elements 

110-121 300  77-78 70 

25-139 500  88- 89 80 

50-166 600  10-20 100 

75-194 700  27-37 117 

100-221 800  196-197 268 

 
 

Table 6. Parameters of ACOR for both scenarios 

k q ξ  m 

30 0.2 1.3 20 
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Figure 9. Convergence histories of objective function during run of the first stage: (a) first run 

for Scenario 1, (b) second run for Scenario 1, (c) first run for Scenario 2, and (d) second run for 

Scenario 2 
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Figure 10. Convergence histories of objective function for the second stage: (a) for Scenario 1, 

and (b) for Scenario 2 
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Figure 11. Convergence history of ten suspended elements in the second stage: (a) Scenario 1,  

and (b) Scenario 2 

 

 

5. CONCLUSIONS 

 

In this work, an efficient two-stage technique is presented for damage detection of large-

scale structures. In the first stage of method, the design variables are reduced by employing 

discrete version of ACO and utilizing sensitivity matrix of structure. In the second stage, a 

continuous version of ACO detects the damage extents of the restricted elements by 

minimizing the difference of static responses between hypothetically damaged and real 

damaged structures. The performance of the proposed procedure is investigated by a 721-

element and an 800-element space structure. For both cases, all damaged elements exist in 

the reduced damage candidates of the first stage. This is also true when the first stage is 

executed twice for more reduction in damage candidates. In the second stage, ACOR 

correctly identifies the damage extents of the reduced damage variables. Noteworthy, in 

both cases the damage extents of the healthy elements are truly assigned to be zero. Finally, 

it is concluded that the proposed method is capable of identifying the damages in the large-

scale structures accurately with a low computational burden. 
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