
ROBUST SPARSE ANALYSIS REGULARIZATION

Samuel Vaiter
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ABSTRACT

This work studies some properties of `1-analysis regu-
larization for the resolution of linear inverse problems.
Analysis regularization minimizes the `1 norm of the
correlations between the signal and the atoms in the
dictionary. The corresponding variational problem in-
cludes several well-known regularizations such as the
discrete total variation and the fused lasso. We give
sufficient conditions such that analysis regularization
is robust to noise.

1. ANALYSIS VERSUS SYNTHESIS

Regularization through variational analysis is a popular
way to compute an approximation of x0 ∈ RN from the
measurements y ∈ RQ as defined by an inverse problem
y = Φx0 + w where w is some additive noise and Φ is
a linear operator, for instance a super-resolution or an
inpainting operator.

A dictionary D = (di)
P
i=1 is a (possibly redundant)

collection of P atoms di ∈ RN which is used to synthe-
size a signal

x = Dα =

P∑
i=1

αidi.

Common examples in signal processing of dictionary
include the wavelet transform or a finite-difference op-
erator.

Synthesis regularization corresponds to the follow-
ing minimization problem

min
α∈RP

1

2
||y −Ψα||22 + λ||α||1, (1)

where Ψ = ΦD, and x = Dα. Properties of synthesis
prior had been studied intensively, see for instance [1,
3].

Analysis regularization corresponds to the following
minimization problem

min
x∈RN

1

2
||y − Φx||22 + λ||D∗x||1. (Pλ(y))

In the noiseless case, w = 0, one uses the constrained
optimization which reads

min
x∈RN

||D∗x||1 subject to Φx = y. (P0(y))

This prior had been less studied than the synthesis
prior, see for instance [2]. In a synthesis prior, the gen-
erative vector α is sparse in the dictionary D whereas in
analysis prior, the correlation between the signal x and
the dictionary D is sparse. Synthesis and analysis reg-
ularizations differ significantly when D is redundant.

2. UNION OF SUBSPACES MODEL

It is natural to keep track of the support of this corre-
lation vector, as done in the following definition.

Definition 1. The D-support I of a vector x ∈ RN
is defined as I = supp(D∗x). Its D-cosupport J is
defined as J = Ic.

A signal x such that D∗x is sparse lives in a cospace
GJ of small dimension where GJ is defined as follow.

Definition 2. Given a dictionary D, and J a subset
of {1 · · ·P}, the cospace GJ is defined as

GJ = KerD∗J ,

where DJ is the subdictionary whose columns are in-
dexed by J .

The signal space can thus be decomposed as a union
of subspaces of increasing dimensions

Θk = {GJ \ dimGJ = k} .

For the 1-D total variation prior, Θk is the set of piece-
wise constant signals with k − 1 steps.
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3. ROBUSTNESS AND IDENTIFIABILITY

We give [4] a sufficient condition on x0 ensuring that
the solution of Pλ(y) is close to x0 when w is small
enough.

Definition 3. Let s ∈ {−1, 0,+1}P , I its D-support
and J its D-cosupport. We suppose

GJ ∩Ker Φ = {0}, (HJ)

holds. The analysis Identifiabiltiy Criterion IC of s is
defined as

IC(s) = min
u∈KerDJ

||ΩsI − u||∞,

where Ω = D+
J (Φ∗ΦA[J] − Id)DI and A[J] denotes the

matrix U(U∗Φ∗ΦU)−1U∗ where U is a matrix which
columns form a basis of GJ .

Theorem 1. Let x0 ∈ RN be a fixed vector of D-
cosupport J , and of D-support I = Jc. Suppose (HJ)
holds and IC(sign(D∗x0)) < 1. There exist two con-
stants cJ > 0 and c̃J > 0, such that if y = Φx0 + w,
where

||w||2
T

<
c̃J
cJ

and T = min
i∈{1,··· ,|I|}

|D∗Ix0|i,

and if λ satisfies

cJ ||w||2 < λ < T c̃J ,

the vector defined by

x̂? = x0 +A[J]Φ∗w − λA[J]DIsI , (2)

is the unique solution of Pλ(y). Moreover,

x̂? ∈ GJ and sign(D∗x0) = sign(D∗x̂?).

Note that it is possible to choose λ proportional to
the noise level ||w||2. Hence, for ||w||2 small enough,
equation (2) gives

||x̂? − x0|| = O(||w||2).

The same condition ensures that x0 is the unique
solution of P0(y) when w = 0.

Theorem 2. Let x0 ∈ RN be a fixed vector of D-
cosupport J . Suppose that condition (HJ) holds and
IC(sign(D∗x0)) < 1. Then x0 is identifiable (i.e x0 is
the unique solution of P0(Φx0)).

Our last contribution defines a stronger criterion
that ensures robustness to an arbitrary bounded noise.

Definition 4. The analysis Recovery Criterion (RC)
of I ⊂ {1 . . . P} is defined as

RC(I) = max
x∈GJ

IC (sign(D∗x)) .

Theorem 3. Let I be a fixed D-support and J its as-
sociated D-cosupport J = Ic. Suppose that (HJ) holds.
If RC(I) < 1 and

λ = ρ||w||2
cJ

1−RC(I)
with ρ > 1,

where cJ is a positive constant, then for every x0 of
D-support I, there exists a unique solution x? of D-
support included in I, verifying

||x? − x0||2 = O(||w||2).

This theorem shows that if the parameter λ is big
enough, then Pλ(y) recovers a unique vector which is
close enough in the `2 sense and lives in the same GJ
as the unknown signal x0.

4. EXAMPLE : TOTAL VARIATION

The most popular analysis sparse regularization is the
total variation which corresponds to using a derivative
operator, i.e a convolution by the vector (1,−1).

A signal is said to contain a staircase subsignal if
there exists i ∈ {1 . . . |I| − 1} such that

sign(D∗Ix)i = sign(D∗Ix)i+1 = ±1.

Proposition 1. We consider the denoising case, Φ =
Id. If x does not contain a staircase subsignal, then
IC(sign(D∗x)) < 1. Otherwise, IC(sign(D∗x)) = 1.

This proposition together with Theorem 1 shows
that if a signal does not have a staircase subsignal, TV
denoising is robust to a small noise.
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