The Darboux transformation and the complex Toda lattice

D. Barrios Rolanía
A. Branquinho*
\section*{A. Foulquié Moreno**}

Facultad de Informática, Universidad Politécnica de Madrid, Spain
*Departamento de Matemática, Universidade de Coimbra, Portugal
** Departamento de Matemática, Universidade de Aveiro, Portugal

It is well known that each solution of the Toda lattice can be represented by a tridiagonal matrix $J(t)$. Under certain restrictions, t is possible to obtain some new solution by using the Darboux transformation of $J(t)-C I$. Our goal is the extension of this fact, which is known for the real lattice, to high order complex Toda lattices as well as to the bi-infinite Toda lattice. In this latter case, we use the factorization $L U$ for block-tridiagonal matrices.

1 The Toda lattice

We study the construction of some solutions $\left\{\tilde{\alpha}_{n}(t), \tilde{\lambda}_{n}(t)\right\}, n \in \mathbb{Z}$, of the Toda complex lattice

$$
\left.\begin{array}{rl}
\dot{\alpha}_{n}(t) & =\lambda_{n+1}^{2}(t)-\lambda_{n}^{2}(t) \tag{1}\\
\dot{\lambda}_{n+1}(t) & =\frac{\lambda_{n+1}(t)}{2}\left[\alpha_{n+1}(t)-\alpha_{n}(t)\right]
\end{array}\right\}
$$

$n \in \mathbb{S}$,
from another given solution $\left\{\alpha_{n}(t), \lambda_{n}(t)\right\}, n \in \mathbb{Z}$.
We consider:

$$
\begin{array}{ll}
\text { 1. the semi-infinite problem: } & \mathbb{S}=\mathbb{N}, \quad \lambda_{1}=0, \\
\text { 2. the infinite problem: } & \mathbb{S}=\mathbb{Z},
\end{array}
$$

In [6] the semi-infinite complex problem was analyzed. In the real, infinite case, sufficient conditions for the existence of a new solution were given in [7].
The problem: obtain a similar result to the complex infinite Toda lattice.

2 The generalized Toda lattice

In a more general way, when $\mathbb{S}=\mathbb{N}$ we consider the generalized Toda lattice of order $p \in \mathbb{N}$ (see [1]),

$$
\left.\begin{array}{rl}
\dot{J}_{n n}(t) & =J_{n, n+1}(t) J_{n, n+1}^{p}(t)-J_{n-1, n}(t) J_{n-1, n}^{p}(t) \tag{2}\\
\dot{J}_{n, n+1}(t) & =\frac{1}{2} J_{n, n+1}(t)\left[J_{n+1, n+1}^{p}(t)-J_{n, n}^{p}(t)\right]
\end{array}\right\}
$$

where we denote by $J_{i, j}(t)$ (respectively $J_{i, j}^{p}(t)$) the entry in the $(i+1)$-row and $(j+1)$-column of matrix $J(t)$ (respectively $(J(t))^{p}$,

$$
J(t)=\left(\begin{array}{ccc}
\alpha_{1}(t) & \lambda_{2}(t) & \\
\lambda_{2}(t) & \alpha_{2}(t) & \cdots \\
\ddots & \ddots
\end{array}\right), \quad t \in \mathbb{R} .
$$

The generalized Toda lattice admits a Lax pair representation, i.e. a formulation in terms of the commutator of two operators,

$$
K(t)=\frac{1}{2}\left(\begin{array}{cccccc}
0 & -J_{01}^{p}(t) & \cdots & -J_{0 p}^{p}(t) & 0 & \cdots \\
J_{01}^{p}(t) & 0 & -J_{12}^{p}(t) & \cdots & \cdots & \\
\vdots & \ddots & \ddots & \ddots & & \\
J_{0 p}^{p}(t) & & & & & \\
0 & J_{1, p+1}^{p}(t) & \cdots & & & \\
\vdots & 0 & \cdots & & &
\end{array}\right), t \in \mathbb{R}
$$

In [2, Th. 1.3], given a solution $J(t)$ of (2), for each $C \in \mathbb{C}$ verifying

$$
\begin{equation*}
\operatorname{det}\left(J_{n}(t)-C \mathrm{I}_{n}\right) \neq 0, \quad n \in \mathbb{N}, \tag{3}
\end{equation*}
$$

we prove the existence of

$$
\tilde{J}(t)=\left(\begin{array}{ccc}
\tilde{\alpha}_{1}(t) & \tilde{\lambda}_{2}(t) & \\
\tilde{\lambda}_{2}(t) & \tilde{\alpha}_{2}(t) & \cdots \\
& \ddots & \cdots
\end{array}\right), \quad \Gamma(t)=\left(\begin{array}{cccc}
0 & \gamma_{2}(t) & & \\
\gamma_{2}(t) & 0 & \gamma_{3}(t) & \\
& \gamma_{3}(t) & 0 & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

verifying

$$
\begin{aligned}
& \left.{\underset{\sim}{n}}_{2}^{2}(t)=\gamma_{2 n}^{2}(t) \gamma_{2 n+1}^{2}(t), \quad \alpha_{n}(t)=\gamma_{2 n-1}^{2}(t)+\gamma_{2 n}^{2}(t)+C\right\} \\
& \left.\tilde{\lambda}_{n+1}^{2}(t)=\gamma_{2 n+1}^{2}(t) \gamma_{2 n+2}^{2}(t), \quad \tilde{\alpha}_{n}(t)=\gamma_{2 n}^{2}(t)+\gamma_{2 n+1}^{2}(t)+C\right\}
\end{aligned}
$$

such that $\tilde{J}(t)$ is another solution of (2), and $\Gamma(t)$ is a solution of the Volterra lattice:
$\dot{\Gamma}_{n-1, n}(t)=\frac{1}{2} \Gamma_{n-1, n}(t)\left[\left(\Gamma^{2}(t)+C \mathrm{I}\right)_{n n}^{p}-\left(\Gamma^{2}(t)+C \mathrm{I}\right)_{n-1, n-1}^{p}\right]$

3 Relation between the generalized Toda lattice and some polynomials

The matrix $J(t) \mathrm{t}$ defines the sequence of polynomials given by $\left.\begin{array}{c}P_{n}(t, z)=\left(z-\alpha_{n}(t)\right) P_{n-1}(t, z)-\lambda_{n}^{2}(t) P_{n-2}(t, z), n \in \mathbb{N}, \\ P_{-1}(t, z) \equiv 0, P_{0}(t, z) \equiv 1 .\end{array}\right\}$

The main tools in the proof of [2, Th. 1.3]:
a. We have established the dynamic behavior of $P_{n}(t, z)$,

$$
\dot{P}_{n}(t, z)=-\sum_{j=1}^{p} J_{n, n-j}^{p}(t) \lambda_{n-j+2}(t) \ldots \lambda_{n+1}(t) P_{n-j}(t, z),
$$

b. As was proposed in [6], we use the kernel polynomials (cf. [4])

$$
Q_{n}^{(C)}(t, z)=\frac{P_{n+1}(t, z)-\frac{P_{n+1}(t, C)}{P_{n}(t, C)} P_{n}(t, z)}{z-C}
$$

where $C \in \mathbb{C}$ verifies (3). The sequence $Q_{n}^{(C)}(t, C)$ satisfies a threeterm recurrence relation whose coefficients define the new generalized solution $J(t)=\widetilde{J}(t, C)$

4 The new solutions and the Darboux transfor-

 mationIf we define

$$
J^{(1)}(t):=\left(\begin{array}{cccc}
\alpha_{1}(t) & \lambda_{2}(t)^{2} & & \\
1 & \alpha_{2}(t) & \lambda_{3}(t)^{2} & \\
& 1 & \alpha_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

and $C \in \mathbb{C}$ verifies (3), then there exist

$$
L(t)=\left(\begin{array}{ccc}
\gamma_{2}^{2}(t) & & \\
1 & \gamma_{4}^{2}(t) & \\
& \ddots & \ldots
\end{array}\right), \quad U(t)=\left(\begin{array}{ccc}
1 \gamma_{3}^{2}(t) & & \\
1 & \gamma_{5}^{2}(t) & \\
& & \ddots
\end{array}\right)
$$

such that $J^{(1)}(t)-C \mathrm{I}=L(t) U(t)$. The new solution is defined by the Darboux transformation of $J^{(1)}(t)-C \mathrm{I}$, this is,

$$
\widetilde{J}^{(1)}(t)-C \mathrm{I}=U(t) L(t),
$$

being

$$
\widetilde{J}^{(1)}(t):=\left(\begin{array}{cccc}
\widetilde{\alpha}_{1}(t) & \widetilde{\lambda}_{2}(t)^{2} & & \\
1 & \widetilde{\alpha}_{2}(t) & \widetilde{\lambda}_{3}(t)^{2} & \\
& 1 & \widetilde{\alpha}_{3}(t) & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

5 The infinite Toda lattice

Let us consider (1) with $\mathbb{S}=\mathbb{Z}$ and take the infinite matrix

$$
J=\left(\begin{array}{ccccc}
\ddots & \ddots & & \\
\ddots & \alpha_{-1}(t) & \lambda_{0}(t) & & \\
& \lambda_{0}(t) & \alpha_{0}(t) & \lambda_{1}(t) & \\
& & \lambda_{1}(t) & \alpha_{1}(t) & \ddots \\
& & & \ddots & \ddots
\end{array}\right)
$$

The infinite Toda lattice admits also a Lax pair representation. However, in this case it is not possible to use directly the sequences of polynomials associated to J.
Taking $\mathcal{R}_{n}:=\binom{f_{n}}{f_{-n+1}}, n \in \mathbb{N}$, it is possible to change the infinite recurrence relation
$\lambda_{n+1}(t) f_{n-1}(t, z)+\left(\alpha_{n+1}-z\right) f_{n}(t, z)+\lambda_{n+2}(t) f_{n+1}(t, z)=0, \quad n \in \mathbb{Z}$,
to a semi-infinite recurrence relation,
$E_{n}(t) \mathcal{R}_{n-1}(t, z)+\left(V_{n}(t)-z I_{2}\right) \mathcal{R}_{n}(t, z)+E_{n+1}(t) \mathcal{R}_{n+1}(t, z)=0, \quad n \in \mathbb{N}$
where $E_{m}, V_{m}, m \in \mathbb{N}$, are 2×2-finite matrices. In this way, we can study the infinite case as a semi-infinite vectorial case. The vectors \mathcal{R}_{n} are not polynomials, but we can prove

$$
\mathcal{R}_{n}=\left(E_{2} \cdots E_{n}\right)^{-1} C_{n} \mathcal{R}_{1}
$$

where the sequence $\left\{C_{n}\right\}$ of 2×2 matrices verifies

$$
\left.\begin{array}{r}
E_{n}^{2} C_{n-1}+\left(V_{n}(t)-z I_{2}\right) C_{n}+C_{n+1}=0, \\
C_{0}=O_{2}, \\
, C_{1}=I_{2}
\end{array}\right\}
$$

i.e.,

$$
C_{n}=\left(\begin{array}{cc}
c_{n 1}(t, z) & c_{n 2}(t, z) \\
c_{n 3}(t, z) & c_{n 4}(t, z)
\end{array}\right)
$$

and for each $i=1,2,3,4, c_{n i}$ is a polynomial in $z, \operatorname{deg} c_{n i} \leq n-1$.
Taking $I_{-1}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), W_{n}:=I_{-1} V_{n}, n \in \mathbb{N}$, we can show

$$
\left.\begin{array}{rl}
\dot{W}_{n} & =E_{n+1}^{2}-E_{n}^{2} \tag{4}\\
\dot{E}_{n+1} & =\frac{1}{2} E_{n+1}\left(W_{n+1}-W_{n}\right)
\end{array}\right\}, n=2,3, . .
$$

This is, $\left\{W_{n}, E_{n}\right\}$ is a solution of a semi-infinite matricial Toda lattice, like (1).

6 The infinite Toda lattice and the Darboux transformation

We define

$$
J^{(B)}:=\left(\begin{array}{cccc}
V_{1} & E_{2}^{2} & & \\
I_{2} & V_{2} & E_{3}^{2} & \\
& I_{2} & V_{3} & \cdots \\
& & \ddots & \cdots
\end{array}\right)
$$

Let $C \in \mathbb{C}$ be such that

$$
\operatorname{det}\left(J_{2 n}^{(B)}(t)-C I_{2 n}\right) \neq 0, \quad t \in \mathbb{R}, n \in \mathbb{N}
$$

Then, we know (see [5]) that there exist two blocked matrices

$$
L^{(B)}:=\left(\begin{array}{cccc}
A_{1} & & & \\
I_{2} & A_{2} & & \\
& I_{2} & A_{3} & \\
& & \ddots & \cdots
\end{array}\right), \quad U^{(B)}:=\left(\begin{array}{cccc}
I_{2} & \Gamma_{1} & & \\
& I_{2} & \Gamma_{2} & \\
& & I_{2} & \ddots \\
& & & \ddots
\end{array}\right)
$$

such that $J^{(B)}-C I=L^{(B)} U^{(B)}$. We define the blocked Darboux trans formation of $J^{(B)}-C I$ as

$$
\widetilde{J}^{(B)}-C I:=U^{(B)} L^{(B)}=\left(\begin{array}{cccc}
\widetilde{V}_{1}-C I_{2} & \widetilde{E}_{2}^{2} & & \\
I_{2} & \widetilde{V}_{2}-C I_{2} & \widetilde{E}_{3}^{2} & \\
& I_{2} & \widetilde{V}_{3}-C I_{2} & \cdots \\
& & \ddots & \ddots
\end{array}\right)
$$

We are researching the two following questions:

1. Can we construct a vectorial solution of hte Toda lattice, like (4), from $\widetilde{J}^{(B)}-C I$?
2. Are the (scalar) entries of $\widetilde{J}^{(B)}$ a new solution of the Toda lattice (1)?

References

[1] A.I. Aptekarev, A. Branquinho, 2003, Padé approximants and complex high order Toda lattices, J. Comput. Appl. Math. 155, 231-237

2] D. Barrios Rolanía, A. Branquinho, Complex high order Toda lattices, J. Diff. Eq. Appl. 15(2) (2009), 197-213
[3] D. Barrios Rolanía, A. Branquinho, A. Foulquié Moreno, Dynamics and interpretation of some integrable systems via multiple orthogonal polynomials, submited (2009)
[4] Chihara, T. S., 1978, An Introduction to Orthogonal Polynomials (New York: Gordon and Breach Science Pub.)

5] E. Isaacson, H. Bishop Keller, Analysis of Numerical Methods (New York: Courant Inst. of Math. Sci., John Wiley \& Sons, Inc.)

6] F. Peherstorfer, On Toda lattices and orthogonal polynomials, J. Com put. Appl. Math. 133 (2001) 519-534.

7] F. Gesztesy, H. Holden, B. Simon, and Z. Zhao. On the Toda and Kac van Moerbeke systems. Trans. Am. Math. Soc., 339(2) (1993) 849-868

