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1. Introduction

An image is a two dimensional projection of a three dimensional scene. Hence a degeneration
is introduced since no information is retained on the distance of a given point in the space.
In order to extract information on the three dimensional contents of a scene from a single
image it is necessary to exploit some a priori knowledge either on the features of the scene,
i.e. presence/absence of architectural lines, objects sizes, or on the general behaviour of
shades, textures, etc. Everything becomes much simpler if more than a single image is
available. Whenever more viewpoints and images are available, several geometric relations
can be derived among the three dimensional real points and their projections onto the
various two dimensional images. These relations can be mathematically described under the
assumption of pinhole cameras and furnish constraints among the various image points. If
only two images are considered, this research topic is usually referred to as epipolar geometry.
Naturally there is no mathematical difference whether the considered images are taken at the
same time by two different cameras (the stereoscopic vision problem) or at different times
by a single moving camera (optical flow or structure from motion problem). In Robotics both
these cases are of great significance. Stereoscopy yields the knowledge of objects and obstacles
positions providing a useful key to obtain the safe navigation of a robot in any environment
(Zanela & Taraglio, 2002). On the other hand the estimation of the ego-motion, i.e. the measure
of camera motion, can be exploited to the end of computing robot odometry and thus spatial
position, see e.g. (Caballero et al., 2009). In addition the visual sensing of the environment is
becoming ubiquitous out of the ever decreasing costs of both cameras and processors and the
cooperative coordination of more cameras can be exploited in many applicative fields such
as surveillance or multimedia applications (Arghaian & Cavallaro, 2009). Epipolar geometry
is then the geometry of two cameras, i.e. two images, and it is usually represented by a
3 x 3 fundamental matrix, from which it is possible to retrieve all the relevant geometrical
information, namely the rigid roto-translation between camera positions. The estimation of
the fundamental matrix is based on a set of corresponding features present in both the images
of the same scene. Naturally the error in the process is directly linked to the accuracy in the
computation of these correspondences. In the following a novel genetic approach to epipolar
geometry estimation is presented. This algorithm searches an optimal or sub-optimal solution
for the rigid roto-translation between two camera positions in a evolutionary framework. The
fitness of the tentative solutions is measured against the full set of correspondences through
a function that is able to correctly cope with outliers, i.e. the incorrectly matched points
usually due to errors in feature detection and/or in matching. Finally the evolution of the
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2 Stereo Vision

solution is granted through a reproduction and mutation scheme. In Section 2 the relevant
geometrical concepts of epipolar geometry are recalled, while in Section 3 a review of some
of the algorithms devised for the estimation of epipolar geometry is presented. In Section 4
the details of the proposed epipolar geometry estimation based on evolutionary strategies is
given. In Section 5 some experimental data relative to both ego-motion and stereoscopy are
shown and in Section 6discussion and conclusions are presented.

2. Theoretical background

Let us briefly review the relevant geometrical concepts of the pinhole camera model and of
epipolar geometry.

2.1 Pinhole camera
A point M = (X,Y,Z,1)T in homogeneous coordinates in a world frame reference and the
correspondent point m = (x,y,1)T on the image plane of a camera are related by a projective
transformation matrix:

sm= PM (1)

here s is a scale factor and P is a 3x4 projective matrix that can be decomposed as:

P = A[R|t] (2)

where A is the 3x4 matrix of the internal parameters of the camera:

A =

⎡

⎣

f α γ cx 0
0 f β cy 0
0 0 f 0

⎤

⎦ (3)

with (cx, cy) the optical centre of the camera, f its focal length, α and β take into account
the pixel physical dimensions and γ encodes the angle between x and y axis of the CCD
(skew) and is usually set at 0, i.e. perpendicular axes. The matrix [R|t] is a matrix relating
the camera coordinate system with the world coordinate one, i.e. the camera position t and
rotation matrix R:

[R|t] =

[

R t

0T3 1

]

. (4)

2.2 Epipolar geometry
Let’s now consider two images of the same three dimensional scene as taken by two cameras at
two different viewpoints (see Fig. 1). Epipolar geometry defines the imaging geometry of two
cameras, either a stereoscopic system or a single moving camera. Given a three dimensional
point M and its projections m and m′ on the two focal planes of the cameras, the three points
define a plane Π which intersects the two image planes at the epipolar lines lm and lm′ while
e and e′ are the epipoles, i.e. the image point where the optical centre of the other camera
projects itself. The key point is the so called epipolar constraint which simply states that if the
object point in one of the two images is in m, then its corresponding image point in the other
image should lay along the epipolar line lm′ Such a constraint can be described in terms of a
3x3 fundamental matrix through the:

m′T
Fm= 0. (5)
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Evolutionary Approach to Epipolar Geometry Estimation 3

Fig. 1. Epipolar geometry.

The fundamental matrix F contains the intrinsic parameters of both cameras and the rigid
transform of one camera with respect to the other and thus describes the relation between
correspondences in terms of pixel coordinates. A similar relation can be found for the so called
essential matrix where the intrinsic parameters of the cameras are not considered and the
relation between correspondences is in terms of homogeneous coordinates. The algorithms
for the estimation of epipolar geometry deal with actual pixel positions as produced by
actual lenses and cameras. Therefore the interest of such algorithms is in the fundamental
matrix rather than in the essential one. The standard approach for the computation of the
fundamental matrix is based on the solution of a homogeneous system of equations in terms
of the nine unknowns of the matrix F:

Zf= 0 (6)

where
f= ( f1, f2, f3, f4, f5, f6, f7, f8, f9)

T (7)

and

Z =

⎛

⎜

⎝

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

⎞

⎟


. (8)

If nine or more correspondences are known the system is overdetermined and a solution can
be sought in a least square sense; in a subsequent step, from the found fundamental matrix, the
geometrical information is derived, exploiting the knowledge about the two camera matrices
(equation 3). The number of independent unknowns varies among the different approaches
employed for the computation. Some approaches don’t take into account the additional
rank-two constraint on the fundamental matrix (8 point algorithms) and some do (7 point
algorithms). Naturally the former considers the rank constraint in a subsequent phase; finally
the solution is derivedwith an unknown scale factor. Let us now suppose that the rigidmotion
of one camera with respect to the other is a-priori known, it is then possible to build directly
the fundamental matrix. Let us consider the essential matrix E defined as (Huang & Faugeras,
1989):

E = TR (9)
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4 Stereo Vision

and

T=

⎛

⎝

0 −tz ty
tz 0 −tx
−ty tx 0

⎞

 (10)

here (tx, ty, tz) is the translation vector and R the rotation matrix. It is possible to rewrite the
equation for the fundamental matrix using E and taking into account the intrinsic parameters
matrix A, as

F = (AT)−1
TRA

−1. (11)

This equation holds if the intrinsic parameters matrix is equal for both cameras, i.e. a single
moving camera is considered as in the ego-motion problem. In the case of stereoscopic
imaging, there will be two different matrices (AL, AR), one for each of the cameras considered
and the equation would be:

F = (AT
L)

−1
TRA

−1
R . (12)

In practical terms the relation linking the correspondences to the epipolar lines can be
considered from two different perspectives. On one side it helps in correctly finding a
correspondence to a given pixel since it will lay along the relative epipolar line, on the other
side if a given match, obtained with some matching algorithm, is far from the epipolar line
relative to the considered pixel, it will be incorrect, i.e. an outlier.

3. State of the art

As described in Section 2 the starting point for epipolar geometry estimation is represented
by a set of correspondences between two images of the same scene as taken from different
viewpoints. The existing techniques to exploit this pairwise information for fundamental
matrix estimation can be classified in three broad classes: linear, iterative and robust.
Longuet-Higgins in 1981 (Longuet-Higgins, 1981) opened the way to the computation of
scene reconstruction from epipolar geometry through a linear approach. The basic procedure
is the so called Eight-Point Algorithm, an algorithm of low complexity but prone to great
sensitivity to noise in the data, i.e. error in the pixel position of the correspondences, and to
the possible presence of outliers, i.e. incorrectly matched points. The outliers are usually due
to error in feature detection and in matching and are in large disagreement with the inliers,
i.e. the correctly matched points. Further refinement by Hartley (Hartley, 1995) allowed a
sensible amelioration of the original algorithm through a simple normalization of image data.
The linear approach solves a set of linear equations relating the correspondences through
the fundamental matrix, i.e. solves equation (6). If a large number of correspondences is
available, the solution is sought in a least square sense or through eigen analysis determining
the fundamental matrix through eigen values and vectors, see (Torr & Murray, 1997). The
iterative methods basically try to minimize some kind of error signal and can be classified
in two groups: those minimizing a geometrical distance between points, and their is
corresponding epipolar lines and those based on the gradient. The most widely used
geometrical distances are the Euclidean distance and the Sampson one. They both measure
with slightly different means the distance between a correspondence and its relative epipolar
line in a symmetric way. Since two are the correspondences, the distance from the first
one to the epipolar line originating from the other is computed and then the positions are
reversed and the distance of the second from the epipolar line originating from the first one is
computed and added to the former. Finally all the contribution are added up and considered
in an average value. The minimization can be carried out with different approaches: classical
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Evolutionary Approach to Epipolar Geometry Estimation 5

gradient descent, Levenberg-Marquardt or more refined ones such as the Newton-Raphson
technique (Chojnacki et al., 2000; 2004) Themain drawback of iterativemethods is represented
by their incapability to correctly treat outliers. Moreover the iterative methods compute
in a intensive way, even if with more accuracy than the linear methods. Finally robust
methods are those methods able to cope with outliers and noise, maintaining a relative good
accuracy. Most of them are based on statistical methods used to pick a subset of all the
available correspondences yielding the best linear or iterative estimation of the fundamental
matrix. The basic idea is that if a sufficient number of random extractions of correspondences
subsets is performed, eventually a good one, i.e. one composed of inliers only with a limited
noise, will be picked out. This implies a large number of linear or iterative estimations,
but on a limited number of correspondences. Following (Hu et al., 2008) the best known
robust methods are LMedS (Least Median of Squares) (Zhang, 1998), RANSAC (RANdom
SAmple Consensus) (Torr & Murray, 1997), MLESAC (Maximum Likelihood Estimation
SAmple Consensus) (Torr & Zisserman, 2000) and MAPSAC (MaximumA Posteriori SAmple
Consensus) (Torr, 2002). LMedS and RANSAC randomly sample some subset of seven
matching points in order to estimate, with a linear approach, the model parameters and use
additional statistical methods to derive aminimal number of samples needed since all possible
subset can not be considered to save time; the difference between the two is the technique used
to determine the best result: on one side the median distance between points and epipolar
lines on the other the number of inliers. MLESAC is an improvement over RANSAC and
MAPSAC is a further improvement over MLESAC. It must be here noted that there is an
important drawback in robust methods: they are usually not repeatable. Since they aleatorily
select points there is no certainty that any of these algorithms on a given pair of images will
yield the same result if made run more than once. A side effect of this is that it sometimes
happens that even if accurate from a numerical point of view (error value) a robust algorithm
does not always properly model the epipolar geometry. In (Armangué & Salvi, 2003) a
full comparison both theoretical and experimental among many approaches of the three
different categories is presented in depth. Besides these classical algorithms, more recently
a philosophically different approach has been proposed. Several authors (Chai & De Ma,
1998; Hu et al., 2002; 2004; 2008) have employed a genetic computing paradigm to estimate
epipolar geometry. The main idea is to employ an evolutionary approach in order to choose,
among the available correspondences, the optimal, or sub-optimal, set of eight points by
which the epipolar geometry estimation can be carried out with minimal error. In these
genetic approaches each individual is represented by a set of pairs and the algorithm is
able to change a subset of these during the temporal evolution, measuring the fitness of
each individual with the already mentioned geometrical distance functions. Therefore these
evolutionary approaches can be considered part of the robust algorithms family. In conclusion
all of the algorithms in literature start with the the available correspondences and try to
estimate the fundamental matrix solving the epipolar constraint equation, trying to avoid
with different means the faulty matches. The roto-translation between the cameras is then
computed with a single value decomposition (SVD) method. It is interesting to note that
no constraints are placed on the fundamental matrix from geometrical considerations on the
final roto-translation. In other words the fundamental matrix is computed regardless to the
possibility that the resulting roto-translation between the cameras may be physically incorrect
or even impossible.
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4. Epipolar geometry estimation using a genetic approach

As briefly reminded in Section 3 the genetic approaches found in the literature evolve their
characteristics in order to pin out the set of correspondences data point able to perform best
in a standard computation of the geometric parameters. The idea underlying the present
algorithm is different, the evolutionary approach is exploited in a more natural way. A set of
solutions for the epipolar geometry estimation (i.e. a set of roto-translations) is hypothesized,
then it is tested against the available experimental data points, genetically evolving the initial
hypotheses into better and better ones until an optimal or near optimal solution is reached.
The evolutionary algorithm goes through the standard logical steps of any genetic approach.
An individual is defined and a fitness function is designed in order to measure the individual
ability to solve the task. Finally a reproduction phase is implemented inserting some kind of
variability in the genetic pool.

4.1 The individual
Each individual of the population of N estimators of the epipolar geometry is implicitly a
possible fundamental matrix and is implemented by a vector of six real values representing
the chromosomes:

ii = [θ,φ,ψ, tα, tβ,σ] (13)

these chromosomes are the three angles of a three dimensional rotation (the pitch, roll and
yaw angles), two direction cosines for the translation and a sixth value that is the standard
deviation of a normal distribution used for the chromosome mutation, as it will be explained
in more detail later. The translation is here described with the two direction cosine only, since
the solution for any epipolar geometry estimation is always found with an unknown scale
factor. In other words the epipolar geometry is insensitive to scale, a scene can be viewed
either at a close distance with a short translation between cameras or at far with a large
translation, with no difference on the fundamental matrix. In order to superimpose a metric to
the environment a simple calibration step considering a known distance measurement about
the image must be added.

4.2 The fitness function
Each individual is used to compute a fundamental matrix following equation (11) if
considering an ego-motion case or equation (12) for stereoscopy. Each individual must be
tested against the environment, i.e. the correspondences, employing a fitness function, whose
design is critical for the success of the algorithm. The implemented function takes into
account the following two aspects of the problem: on one side the interest in having a low
geometric error between correspondences and their relative epipolar lines and on the other in
maximizing the number of correct correspondences, i.e. the inliers. Thus the fitness function
has been defined as the ratio between the number of inliers found and the total symmetric
transfer error:

f =
ninliers

E
(14)

where

E =
N

∑
i=0

[d(x′i ,Fxi) + d(xi,F
Tx′i)] (15)

is the symmetric transfer error and d(x,y) is the standard Euclidean distance. This error is the
sum of the distances between a given point and the epipolar line relative to its corresponding
point plus the symmetric distance obtained switching the points; finally it is summed over the
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full set of available correspondences. Naturally it may be convenient to use a relative error
measure in order to weight in an opportune way those correspondences which are very close
to each other and that may be less reliable in the geometry estimation, using:

E =
N

∑
i=0

d(x′i ,Fxi) + d(xi ,F
Tx′i)

d(xi ,x
′
i)

. (16)

The number of inliers is defined as the number of correspondences for which

[d(x′i ,Fxi) + d(xi,F
Tx′i)] < λ (17)

where λ is a threshold, empirically determined. As an alternative it can be also employed the
Sampson distance, defined as:

E =
N

∑
i=0

(x′iFxi)
2

(Fx′i)
2
1 + (Fxi)

2
2 + (FTx′i)

2
1 + (FTxi)

2
2

(18)

here the subscripts indicate the k-th entry of the vector. The experiments have shown that the
results in the algorithm performance are practically insensitive to the used error distance.

4.3 Reproduction
At each time step a subset of individuals, represented by the best 20%, is allowed to
reproduce. This subset gives rise to a new generation of full 100% individuals through a five
fold replication of the chosen subset, affected by a mutation mechanism in order to search
further in the solution space. This mechanism is implemented with a random extraction
of a number from a normal distribution as the displacement around the current value of
a single chromosome of the individual. The standard deviation of the normal distribution
employed is that of the sixth chromosome in the individual, see equation (13). Thus this
mutation amplitude becomes itself part of the genetic algorithm optimization strategy. In
more detail, of the six chromosomes one of the five geometrically meaningful is chosen
with equal probability. This is mutated adding a value randomly extracted with a normal
distribution of zeromean value and standard deviation as indicated by the sixth chromosome,

Fig. 2. Mutation implementation.
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8 Stereo Vision

see Figure 2. The sixth chromosome is then itself updated through a similar mutation with a
random extraction of normal distribution with zero mean and a fixed σ′ = 0.4. The individual
with the overall best fitness is always retained at each time step.

4.4 Outliers detection and exclusion
A very important issue to discuss here is relative to the outliers. As seen in Section 3 one
of the main concerns of the algorithms in literature is the individuation of outliers and their
elimination for an accurate estimation of epipolar geometry. These outliers originate from
inaccurate performance of the image processing algorithms resulting in errors in feature
detection and in matching. In the presented approach the fitness function computation
(equation (14)) easily and naturally shows which of the point pairs are outliers, as it will be
experimentally presented in Section 5. After a few iterations the error distribution over the
experimental pairs relative to the best individual, computed with equation (15), clearly shows
which of the points are inliers and which outliers, permitting the limitation, in the following
time steps, of the number of pairs used for the fitness function computation. In other words
the algorithm is capable to perform the detection and exclusion of outliers in a fully automatic
way. This detection is performed through a threshold value to isolate those correspondences
yielding a too large error in the best individual. The cutoff value can be chosen as three times
the standard deviation in the error distribution, since the expected value for the error is null.

4.5 Algorithm flow
The algorithm flow is as follows.

Initialization: a population of 100 individuals is created with random values for θ, φ, ψ, tα, tβ

and σ = 10.

Main loop:

1. For each individual

(a) compute F (equation (11) or (12))

(b) compute fitness on the available number of N correspondences (equation (14))

2. order the population with ascending fitness

3. take the 20 best individuals and reproduce with mutation, keeping the best individual

4. goto 1

After a given number of iterations the outliers are removed (K) and the set of used
correspondences reduced to M= N−K. The genetic algorithm then restarts with this reduced
set of correspondences. Presently the genetic algorithm removes its outliers only once and is
stopped after a given number of iterations has passed without an improvement in error.

5. Experimental data

In the following experimental data in the two cases of ego-motion computation and
stereoscopy are provided. The proposed algorithm has been tested on both synthetic and
real images. The synthetic data have been prepared projecting a grid of three dimensional
points onto two image planes displaced one with respect to the other via equations (1)
and (2), inserting given amounts of Gaussian noise when needed. Also for the purpose of
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Fig. 3. Algorithm convergence and mutation amplitude.

testing, different quantities of inliers have been added. The real images data come from
different sources: some of them derive from a paper (Armangué & Salvi, 2003) presenting
a comparative study on epipolar geometry estimation, some have been acquired in the ENEA
Robotics Lab using different kinds of calibrated cameras and of moving robots, some are from
publicly available data-sets and finally one has been shot in everyday life.
Let us first consider the features of the present approach. The rapid convergence of the
genetic algorithm is plotted in Fig. 3(a) where the inverse of the average fitness of the entire
population is shown as a function of time for a typical run over synthetic data. Here two
different modes are compared: one plot is relative to an adaptive σ in the individual, i.e.
undergoing a genetic optimisazion as described in Section 4, while the second is relative
to a fixed σ value. It is evident that the adaptivity is an advantage in terms of speed of
convergence. The reason for such a behaviour can be understood examining Figure 3(b). Here
the time evolution of the mutation amplitude σ is plotted as a function of time for the former
of the two modes described. The decreasing behaviour shows how the algorithm searches the
solution space at first in a coarse way, with large jumps and, as the error decreases, the search
becomes finer and finer. This variability accounts for a more efficient search in the solution
space, while a constant amplitude in the mutation algorithm forces the algorithm to jump away
from a good solution, rendering the convergence much longer. In (Armangué & Salvi, 2003)
a very interesting comparison is presented among most of the epipolar geometry estimators.
Since the relative experimental data are freely available over the Internet a direct comparison
of the presented algorithm is possible. In Fig. 4 is shown the robustness of the algorithm
against the adding of Gaussian noise to the data point location. The error of the best individual
increases linearly with the amount of added noise. These data are compared to the available
results relative to the two best performing robust algorithms reviewed in (Armangué & Salvi,
2003), i.e. MAPSAC and LMedS. The presented approach performs better. The capability of
the algorithm to identify and remove outliers is evidenced in Figure 5. Here it is plotted the
ordered error value for the best individual as a function of the correspondence pair. The
plot can be easily divided in two parts: on the left the inliers, with a limited amount of
error, on the right the outliers, with a large error. From this plot appears evident how it
is possible to separate the two sets via an opportune threshold. If it is assumed that the
expected value for the error should be null and that a Gaussian distribution may describe
the behaviour, a tentative threshold can be placed at three times the standard deviation in the
error distribution. Naturally a limited number of outliers must be assumed. The robustness
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10 Stereo Vision

Fig. 4. Performance as a function of noise.

against the presence of outliers is further shown in Table 1 where the algorithm insensitivity
is evident. In Figure 6 is shown the relevant data to assess the repeatability of the presented
approach. The graphs are relative to 100 runs of the algorithm with different random seeds,
i.e. initial conditions, in a real image case (the kitchen one, Figure 7(f)). They present the
distributions of differences from the average value for the five physically meaningful values
of the approach, namely θ, φ, ψ, tα and tβ. Even if the number of runs is not large, the
distributions can be considered Gaussians with a null expected value, moreover the spread of
the differences is very limited, less than one hundredth of degree for the rotation angles and
half a degree for the direction cosines of the translation vector. These data show that the found
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Evolutionary Approach to Epipolar Geometry Estimation 11

Outliers GeneticAlgo
10% 0.193

0.123
20% 0.236

0.120
30% 0.169

0.116

Table 1. Performance as a function of percentage of outliers. Every cell show the mean and
standard deviation of the error between points and epipolar lines in pixels.

solution is always the same, i.e. that repeatability is no concern for this approach. While robust
approaches may found different subsets of correspondences for a given error limit, yielding
different fundamental matrices, this algorithm when repeated simply changes the starting
point for the search for an extremisation of the same error function (or fitness function),
always yielding a near optimal solution in a limited neighbourhood of the actual optimum,
properly modelling epipolar geometry. In Table 2 it is presented the algorithm performance
on the real images shown in Figure 7. The data are compared to those of the LMeds and
MAPSAC robust algorithms. The performance of the presented approach is similar in most
cases with that of the published algorithms and with markedly better performances on the
mobile robot image (Figure 7(b)). The reason of the choice of these two algorithms among those
in (Armangué & Salvi, 2003) is the combination of two positive features: they performed well
and they yielded the correct epipolar geometry for the used images. As above pointed out, it
may actually happen that a robust algorithm gives a good performance in terms of error but
with a mistaken geometry. In Figure 8 an example on real images taken by one of the surface
robots is shown together with the capability of the algorithm to remove outliers. In this figure
most of them are in the central part of the image. In Figure 9 an example of an everyday life,
large baseline stereogram is shown. In Figure 9(a) and 9(b) are visible the epipolar lines. In

(a) θ(pitch angle) (b) φ(roll angle) (c) ψ(yaw angle)

(d) tα (first direction cosine) (e) tβ (second direction cosine)

Fig. 6. The distributions of distances in pixels from average values over 100 runs.
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(a) Urban scene (b) Mobile robot (c) Underwater scene

(d) Road scene (e) Aerial view (f) Kitchen scene

Fig. 7. The real images set from (Armangué & Salvi, 2003)

the second one is also visible the epipole, i.e. the actual location of the centre of projection
of the other camera. In Figure 9(c) are shown the displacements of the correspondences from
one image to the other. In Figure 10 two classical stereograms and their epipolar lines are
presented as computed by the presented approach. The algorithm computed data for Figure
10(b) are: θ = 0.0000, φ = 0.0049, ψ = 0.0000, tα = 90.0373 and tβ = −0.0003 with an average
symmetric transfer error of E = 0.1819 pixels, in optimal agreement with the actual values,
representing a perfect lateral shift.

Image LMedS MAPSAC GeneticAlgo

urban 0.319 0.440 0.393
0.269 0.348 0.314

mobile robot 1.559 1.274 0.490
2.715 2.036 0.715

underwater 0.847 1.000 0.848
0.740 0.761 0.792

road 0.609 0.471 0.433
0.734 0.403 0.491

aerial 0.149 0.257 0.432
0.142 0.197 0.308

kitchen 0.545 0.582 0.543
0.686 0.717 0.571

Table 2. Real images results. Comparison with Lmeds and MAPSAC from
(Armangué & Salvi, 2003). Every cell show the mean and standard deviation of the average
discrepancy between points and epipolar lines in pixels.
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Fig. 8. An example of real image and the outliers removal.

6. Discussion and conclusions

A novel genetic approach for the estimation of epipolar geometry has been here presented.
The classical algorithms take as input the whole experimental data, the correspondences, and
from them compute the fundamental matrix and then the rigid roto-translation from one
camera to the other. The presented approach, instead, tackles the problem in the opposite
way, it hypothesize an initial set of random roto-translations and then genetically optimise
it against a fitness function computed over the correspondences set. The advantages of the
described approach are represented by the following points. The algorithm is sensibly simpler
than the ones in literature allowing amore limited computing intensiveness. The convergence
is quickly reached. This is especially true if considering the ego-motion problem. If the

13Evolutionary Approach to Epipolar Geometry Estimation

www.intechopen.com



14 Stereo Vision

(a) Left image (b) Right image

(c) Optical flow

Fig. 9. An example of large baseline stereoscopy on real images.

(a) Aerial view of Pentagon. (b) A synthetic corridor.

Fig. 10. Two classical examples of stereograms.
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epipolar geometry is exploited to measure the motion of a camera in the three dimensional
space, the solution search space of the genetic algorithm can be dramatically reduced. If the
camera at the preceding time step was heading in a given direction with a given pose, at
the following one will head toward a direction and with a pose not much dissimilar from
the preceding ones, with a very high probability. This means that the initial population of
roto-translation can be tuned on the basis of the near motion history of the camera and the
algorithm will quickly converge to the right solution. With a standard approach the motion
information would have been of no use, since the epipolar geometry estimation would have
been performed blindly, processing all the data points. In different words, using the present
approach it is possible to add constraints on the geometry of the camera system. The genetic
design of the algorithm is responsible for the capability to automatically ignore outliers during
the computation. The fitness computation is based on the geometric distance between points
and epipolar lines relative to their correspondences. If a given roto-translation is the one
accurately describing the geometry, then all the correct correspondences will have a quasi
null distance and the outliers will yield a large one. This mechanism can be exploited to
automatically pin out the outliers from the set of available experimental correspondences also
implying the possibility to reduce the data set to the inliers only, gaining in precision and
on the quantity of data to process. The results in terms of performance are good. In Section
5 it has been shown that the error is not larger than that of the best performing algorithm
presently available in literature, that the robustness against noise in the data is good and
also the insensitivity against the presence of outliers among the data point is high naturally.
The algorithm has a high degree of repeatability, reaching the same solution even if started
from different initial conditions. This feature must be compared to some difficulties in the
robust approaches to the same end. Future work will be carried out in the direction of tuning
the genetic components of the algorithm and of code optimisation in order to obtain real
time performances in the processing of video streams from PAL cameras. This in order to
compute visual odometry for underwater robotic platforms, where such a solution may be
of help since the number of exploitable sensors is limited. Under water the electromagnetic
radio signals are rapidly damped and GPS can’t be used, accelerometers or gyroscopes need
numerical integration and thus present large errors, unless using expensive ones. Naturally
also underwater video sequences are blurred and noisy and need some kind of pre processing,
but still this may be a viable solution. Further work will be dedicated to the implementation
of a full visual odometry system as a standalone device composed of a camera of the webcam
class and of an embeddable computer of the genre of the Gumstix computer-on-module. This
means the implementation of a feature extraction stage (e.g. using Harris angles), of an optical
flow model (e.g. Lucas Kanade algorithm) and finally of the present algorithm completed
with a metric calibration. From the point of view of epipolar geometry estimation in the
stereoscopy field of application, further efforts will be devoted towards the exploitation of
the computed geometry in order to match targets across different cameras for the purpose of
video surveillance and target tracking in cluttered environments.
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